Chapter 11

Preliminaries

II.1 Hilbert Spaces

Definition 1.1 (Function Spaces). We denote the set of all functions X +— C
by CX. Here X is an arbitrary set. We define
fH+g: = f(z)+g(z), (=“sum”of fand g),
cf : xw—cf(x), (= “product” of f and a constant ¢ € C).

This makes CX a vector space.

Example 1.2. (*(Z) consists of all functions (= sequences in this case)
f : Z — C which satisfy the condition

AP = 1f )P

n=—oo

Alternative notation (sequence): {f(n)}oo .
In this space we define the inner product

= Y fln)g(n)

n=—oo

1l = Z Fn)g(n) ",

n=—oo

and the norm

These satisty:
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(P) Positivity: ||f]| > 0if f # 0, |0 =0,
(H) Hermitian: (f,g) = (g, f),
(L) Linearity: (af + Bg,h) = a(f, h) + B(g, h).

Definition 1.3. An inner product is a function which maps the pair (f, g)
into a number (f, g) which has properties (P), (H) and (L) above. A vector
space which has an inner product is called a unitary space (or inner product
space). It is a Hilbert space if it is, in addition complete.

Complete means: lim,, .|| fr — fr|| =0 = the limit lim,,_. f,, = f
exists.

Lemma 1.4. (*(Z) is a Hilbert space
Proof. Analysis 11 O

Example 1.5. (*(N) is the same as (*(Z), but the “index set” is N =
{1,2,3,...}. The inner product is now

(frg) = f(n)g(n).

Example 1.6. L?(R) consists of all measurable functions R — C which
satisfy

1172 = /_OO |f(x)]2dz < .

e}

The inner product is o
(o) = | fagard.

Two functions are considered to be “equal” if they are equal “almost every-
where” (= ignore the values in a set of measure zero).

Definition 1.7. f 1 ¢ <— (f,g9) =0.

2

Example 1.8. f = ze* is orthogonal to e** = ¢, since

[e.e]

o) = [ st = [ ez —o

% 0dd even
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11.2 Orthonormal Bases

Definition 2.1. A sequence {t,}22, of vectors in a Hilbert space H is or-
thonormal if

1, n=m,

0, n#m.

It is an orthonormal basis if, in addition

(n, f) =0 = f=0.

Thus, orthonormal means ||¢,]|> = 1, Vn, and v, L ¥, for n # m. Basis
means: only f = 0 is orthogonal to every 1,.

Definition 2.2. A Hilbert space is separable if it has an orthonormal basis.
Theorem 2.3. The following conditions are equivalent:
(i) {¥n}2y is an orthonormal basis in H.

(i) No f is orthogonal to every 1, and

k k
Z|Ck|2 = ”Z Cn¢n||${
n=1

n=1
for all k and all ¢1,co,...,c, € C. (This is “Pythagoras theorem”.)
(113) ||1n|| = 1 for all n, and

£ =D [, 2, feH

(“Bessel’s equality”.)

(iv) {n}22, is orthonormal, and
F= tnltn. f), feH.
n=1

Proof. “Analysis II” or “Hilbert spaces”. O
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Example 2.4.

A) Y, = \%TeQ’Ti"t/T, n =0,41,42,...is an orthonormal basis in L?(0,T).

See Example 1.1 on page 3.

B) ¢, = Tlﬁez”i"k/N, n=0,1,2,...,N —1is an orthonormal basis in C".

See FFT (course on Fourier Analysis).

Note 2.5. The formulas which involve sums in the intro can be interpreted as
“expansions with respect to an orthonormal basis”. Those involving integrals
have a different name: They are “resolutions of the identity” which are based
on “unitary mappings between two Hilbert spaces”.

II1.3 Orthogonal Projections

Definition 3.1. Let H and K be two Hilbert spaces. A function A: H +— K
is a linear operator if

a) Alau) = aA(u), vweH, aeC
b) A(u+v)=A(u) + A(v), wu,veH.
This operator is bounded if there is some constant M € R, so that
[Aullx < Mllulln, ue™r.

Definition 3.2. A (bounded) linear functional on H is the same as a (bounded)
linear operator from H to C (i.e., = C).

Example 3.3. Let h € H. Then the mapping F(u) = (u,h) (= h*u) is a
bounded linear functional on H.

Proof. Linearity easy. Boundedness follows from Schwartz inequality (see
below). O

Theorem 3.4 (Schwartz inequality). In every Hilbert space H we have
[(Fs @)l < N Fllnllglln

where || flln = \/{f, f) and [|gll» = /{9, 9)-

Proof. Analysis II. O
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Definition 3.5. Let H and K be Hilbert spaces, and let A be a bounded
linear operator H — K. Then
i) A (A) = the “kernel” of A
= the “null space” of A
= {ueH| Au =0},
it) #(A) = the “range” of A
= {y €K |y= Au for some u € H}.

Definition 3.6. An operator P : H — H is a projection on ‘H if P? = P
(that is, if we repeat P two times after each other, then the second time it
does nothing). It is orthogonal in A (P) L Z(P) i.e., every u € A (P) is
orthogonal to every y € Z(P).

Theorem 3.7. Let H be a closed subspace of K (both Hilbert spaces).
i) There is an orthogonal projection P which maps K onto H.

it) Given anyy € K, the vector u in H which lies closest to y (in the sense
that ||u — y|| is as small as possible) is w = Py (with P as in 1)).

iii) If H has an orthonormal basis {1, }5°, then w in i) is given by
w="> (Y, ).
n=1

Proof. Analysis II or Hilbert spaces. O

I1.4 Finite Fourier Transform

Definition 4.1. T stands for the real line, where we identify any two points
x and y which differ by an integer. Thus, “z is equivalent with y” if y = z+n
for some integer n € Z.

Definition 4.2. The function spaces C(T), LP(T) (p = 1,2, 00) consists of
functions which are periodic with period one (i.e., f(z) = f(y) if z — y is an
integer), and belong locally to C' or L?, etc.
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Definition 4.3 (The Finite Fourier Transform). For each f € L'(T) we
define the (finite) Fourier transform of f by

1
f(n) :/ e~ 2T f(x)dx, n € Z.
0
Theorem 4.4 (Riemann-Lebesgue Lemma). If f € L'(T) then f € ()
and || flle <[ fllzr i-e.,
i) |fm)] < [51£0ldt, n € Z, and
i) f(n) — 0 asn — +oo.

Theorem 4.5 (Inversion Theorem A). If f € L'(T) and

Y i)l <oo (= fea@)

n=—oo

then

e}

flay= Y & f(n)

n=—oo

for almost all x.

Theorem 4.6 (Inversion Theorem B). If f € L'(T) and if for some xo € R

we have ote
/ M‘dx<oo for some ¢ > 0,
To—¢€ T = $0

then
N
BT 2mine f
flzo) = lim _E_Ne f(n).
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Theorem 4.7 (Basic Properties). f € L*(T), T e R, k€ Z, k #0
(@) g(x)=flz—7) — gn) = f(n), nez
(b) g(x) =™ f(x) = g(n)=fn—k)
(c) g(x)=f(-=) = §(n) = f(-n)
(d) glx) = f(z) = §(n)=f(-n)
© aa) = kF(ka) e gy =g ) e
0, otherwise

(f) g€LNT) andh=fxg = §g(n)= f(n)h(n)

f abs. cont. and .
(9) —  g(n) =2minf(n)
f'=g¢€LYT)
Proof. Course on Fourier Analysis. Here
(£ %) / Fla = y)g(y)dy.

and “f absolutely continuous and f’ = ¢” means that

fla) = £(@)+ | gty
0
where g is locally integrable. O
Theorem 4.8 (Plancherel’s Formula). If f € L%(T) then f € (*(Z), and
o0 1
17y = D 1) :/0 |f (@) Pdz = || flI72r).

Moreover, every a, € (*(Z) is the Fourier transform of some function f €
LA(T).

Theorem 4.9 (Parseval’s Formula). If f, g € L*(T), then

Godew =S fmam) /f g@)dz = (f, g) zr).

n=—oo

Theorem 4.10 (L2-derivatives). (See page 9 for the definition of W*2(T)).
Forallk e Z,:

feWh(T) < (2rin)*f(n) € (*(Z).
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II.5 Fourier Integrals

Definition 5.1. If f € L!'(R), then the Fourier transform f of f is given by

flw) = /_ " gt f(x)de, weR

oo

Theorem 5.2 (Riemann-Lebesgue Lemma). If f € L'(R), then f e Cy(R)
and || fllsup < [ fllz1, e,

i) [fw) < [Z | f(2)|dz, w € R, and
i) flw)— 0 asw — +oo.

Theorem 5.3 (Inversion Theorem A). If both f € LY(R) and f € L'(R)
then

fa) = [ ene s

[e.9]

for almost all x.

Theorem 5.4 (Inversion Theorem B). If f € L'(R) and if fore some o € R

e fove 052 f(a) — f(xo)
/IO_€ x——yco’dx < oo for somee > 0,
then N
Flag) = lim [ ™% f(w)dw
- J_q
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Theorem 5.5 (Basic Properties). f € L*(T), 7, A€ R, A #0

(a) g(x) = flz—7) = W)= f(w)

(b) g(z) = e f(x) = W) =flw-7)

(¢) g(x) = f(=x) = W) =f-w)

(d) g(x) = f(z) = W) =f(-w)

(e) g(z) = Af(Az) = W)=

(f) g€ LX(T) andh=fxg = h(w) = fw3iw)

(9) g(x) = =2mizf(z) € L'(R) = feC(R)and j(w)= f'(w)

h) f absolutely continuous
and f' =g € L'(R)

Proof. From the course on Fourier Analysis. f absolutely continuous and
f" = g means that

(where ¢ is locally in L').
(f *9)( /f T — y)dy. O

Theorem 5.6 (Plancherel’s Formula). If f € LY(R)NL2(R), then f € L*(R),

and
IIfIIiQZ/_ If(w)IdeZ/_ |f(@)Pdx = || f]7-.

If we drop the condition f € L*(R) then we can still define
M

f(w) = lim e” 2T () da

M—o0 M

(where the convergence is in the L*-sense). After this extension the Fourier
transform maps L*(R) one-to-one onto L?*(R).

Theorem 5.7 (Parseval’s Formula). If f, g € L*(R), then

. 8w /f dw—/ F(@)g@ds = (f, 6) 2
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Theorem 5.8 (L>-derivatives). (See page 9 for the definition of W*2(R)).
For allk € Z*:

i) fe WH(R) < (2miw)¥f(w) € L2(R)
i) (—=2miz)*f(z) € LA(R) < f e Wr2(R).

I1.6 Fourier Series

Definition 6.1. If {a,}>>
given by

€ (Y(Z), then the Fourier transform of a,, is

—00

o0

= E e ?mng,  weR.

n=—oo

Lemma 6.2. If {a,}>>_ € (Y(Z), then a € C(T), and

[e.e]
lallsup = supla(@)] < D lan] = [lafla
w

n=—oo

Theorem 6.3 (Inversion Theorem). If {a,}>°__ € (*(Z) (or more gener-
ally, if a,, € (*(Z); see below), then

1
an :/ e o(w)dw, n € Z.
0

Theorem 6.4 (Basic Properties). a, € (*(Z), T € R, k € Z

(CL) bn = Qp—Fk — Z)(w) — e—27riwk&(w)

() b, = e¥i™g,, = bw)=alw-—r1)

@) b =a- = bw) = a(-w)

@ b= = bw)=a(-w)

(©) { an/k, n/k integer o bw) = kilk), (k € Z)
otherwise

(f) b,elZ)andc=ax*b =  w) = d(w)i)(w)

W)%=—%m%€ﬂ@) — G abs. cont. and b(w) = @/ (w).
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Here

CL*b Zan kbk

k=—o00
Theorem 6.5 (Plancherel’s Formula). If {a,}>° ___ € (Y(Z) then

e}

1
II&H%zm:/O a(@)Pdo = Y laal® = llalf.

n=—oo

If {a,} & ("(Z), but it is still true that {a,} € (*(Z), then we can still define

— lim § e27rzwn
N—>oo

(where the convergence is in L*-sense). After this extension the Fourier
transform maps (*(Z) one-to-one onto L*(T).

Theorem 6.6 (Parseval’s Formula). If {a,}, {b.} € (*(Z), then

[e.9]

(a,b) 2 = /0 a(w)b(w)dw = > apb, = (a,b)e

n=—oo

Theorem 6.7 ((2-moments). (See page 9 for the definition of W5%(T)). For
allk € Z+:
(—2min)*a, € (*(Z) <= a c WH*(T).

Note 6.8. The Fourier series defined above is almost the same thing as the
inverse of the Finite Fourier Transform. The only difference is that we have
replaced +27miwn by —2miwn.

11.7 Bandlimited Functions

Definition 7.1. A function f € L*(R) is bandlimited if (f is continuous and)
there is a number 2 > 0 such that f(w) = 0 for |w| > £. The smallest such
number () is called the bandlimit of f. Thus, the bandlimit of f is equal to

inf{Q > 0| f(w) = 0 for (almost) all w > Q}.
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Note 7.2. The continuity restriction of f is almost redundant: If f (w)=0
for |w| > % then f € L'(R), and the inverse Fourier transform of f is a con-
tinuous function (see Theorems 5.2-5.3 on page 17, interchanging the Fourier
transform with the inverse Fourier transform) which is almost everywhere
equal to f. Thus, if f is not continuous, then we can make f continuous by
redefining f on a set of measure zero. This function is actually C*° (=in-
finitely many times differentiable; see Theorem 5.8 on page 19).

Theorem 7.3 (The Shannon Sampling Theorem). If f € L*(R) is bandlim-
ited with bandlimit Q2 > 0, then f can be written as

B - . sin(rQ)(x — n/Q))

n=—oo

where the sum converges both uniformly and in L*(R).

Proof. By property (d) in Theorem 5.5, it suffices to prove this when 2 =1
(replace f(x) by g(x) = f(x/Q)). Thus, below we take 2 = 1. By the theory
in Section II.4, with the Fourier transform replaced by the inverse Fourier
transform, we have for almost all w € [—1/2,1/2]

flw)y= > o, (1)

n=—oo

where ¢, are the (inverse) Fourier coefficients of f, i.e.,

2
Cp = / XN f (W) dw.

1/2

The convergence of (1) is of L2-type, and the right-hand side of (1) is a
periodic function, whose restriction to [—1/2,1/2] coincides with the given
function f . However, by Note 7.2 above and by the inversion theorem A on
page 17, we have actually ¢, = f(n) (since f(w) = 0 for |w| > 1/2). Thus,

flw) = X[-1/2,1/2] Z fn)e?men, (2)
where the convergence is in L?[—1/2,1/2] = convergence in L*(R)NL'(R).
(Here x[_1/2,1/2) = 1 if |w] < 1/2, and zero otherwise). Multiply this by e*™?,
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and integrate over [—1/2,1/2]. This gives by the Fourier inversion formula
(for all z € R)

1/2 ' N
f(l') _ /; e2mwxf(w)dw

1/2

VR |
_ / e27rzwm Z f(n)e—%rzwndw
—1/2 n=-—00

(the convergence is absolute, so we may use Fubini’s theorem)
00 1/2

— Z f(n)/ 627riw(x—n)dw

1/2
27riw(x—n):|

I
=
2

| — |
Do
3
=
8|~
|
S
o

~1/2

— Z f(,,,L)ﬂ-( 1 l.[em'(x—n) _e—wi(x—n)]

sin(m(z —n))
The convergence is absolute because of the fact that the sequence on the right-
hand side of (2) converges in L'(R) (this is related to part i) of Theorem 5.2
on page 17, with the direct Fourier transform replaced by the inverse Fourier
transform). We also have convergence in L? because of the fact that the
right-hand side of (2) converges in L?(RR), and the (inverse) Fourier transform
preserves convergence in L?(R); see Theorem 5.6 on page 18. O

Note. This theorem is important in signal processing. It says that if f is
bandlimited with bandlimit €2, then the samples of f at the points {n/Q},cz
determine f uniquely, and f can be uniquely recreated by its samples.
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