Chapter II

Preliminaries

II.1 Hilbert Spaces

Definition 1.1 (Function Spaces). We denote the set of all functions $X \mapsto \mathbb{C}$ by \mathbb{C}^X . Here X is an arbitrary set. We define

$$\begin{array}{ll} f+g: & x\mapsto f(x)+g(x), & (=\text{``sum''} \text{ of } f \text{ and } g), \\ & cf: & x\mapsto cf(x), & (=\text{``product''} \text{ of } f \text{ and a constant } c\in\mathbb{C}). \end{array}$$

This makes \mathbb{C}^X a vector space.

Example 1.2. $\ell^2(\mathbb{Z})$ consists of all functions (= sequences in this case) $f: \mathbb{Z} \mapsto \mathbb{C}$ which satisfy the condition

$$||f||^2 = \sum_{n=-\infty}^{\infty} |f(n)|^2 < \infty.$$

Alternative notation (sequence): $\{f(n)\}_{n=-\infty}^{\infty}$. In this space we define the *inner product*

$$\langle f, g \rangle = \sum_{n=-\infty}^{\infty} f(n) \overline{g(n)},$$

and the norm

$$||f|| = \sqrt{\langle f, f \rangle} = \left(\sum_{n=-\infty}^{\infty} f(n)\overline{g(n)}\right)^{1/2}.$$

These satisfy:

- (P) Positivity: ||f|| > 0 if $f \neq 0$, ||0|| = 0,
- (H) Hermitian: $\langle f, g \rangle = \overline{\langle g, f \rangle}$,
- (L) Linearity: $\langle \alpha f + \beta q, h \rangle = \alpha \langle f, h \rangle + \beta \langle q, h \rangle$.

Definition 1.3. An inner product is a function which maps the pair (f, g) into a number $\langle f, g \rangle$ which has properties (P), (H) and (L) above. A vector space which has an inner product is called a *unitary space* (or inner product space). It is a Hilbert space if it is, in addition complete.

Complete means: $\lim_{n,m\to\infty} ||f_n - f_m|| = 0 \implies$ the limit $\lim_{n\to\infty} f_n = f$ exists.

Lemma 1.4. $\ell^2(\mathbb{Z})$ is a Hilbert space

Example 1.5. $\ell^2(\mathbb{N})$ is the same as $\ell^2(\mathbb{Z})$, but the "index set" is $\mathbb{N} = \{1, 2, 3, \ldots\}$. The inner product is now

$$\langle f, g \rangle = \sum_{n=1}^{\infty} f(n) \overline{g(n)}.$$

Example 1.6. $L^2(\mathbb{R})$ consists of all measurable functions $\mathbb{R} \to \mathbb{C}$ which satisfy

$$||f||_{L^2}^2 = \int_{-\infty}^{\infty} |f(x)|^2 dx < \infty.$$

The inner product is

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx.$$

Two functions are considered to be "equal" if they are equal "almost everywhere" (= ignore the values in a set of measure zero).

Definition 1.7. $f \perp g \iff \langle f, g \rangle = 0$.

Example 1.8. $f = xe^{-x^2}$ is orthogonal to $e^{-x^2} = g$, since

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx = \int_{-\infty}^{\infty} \underbrace{x e^{-x^2}}_{\text{odd}} \underbrace{e^{-x^2}}_{\text{even}} dx = 0.$$

II.2 Orthonormal Bases

Definition 2.1. A sequence $\{\psi_n\}_{n=1}^{\infty}$ of vectors in a Hilbert space \mathcal{H} is orthonormal if

$$\langle \psi_n, \psi_m \rangle = \delta_n^m = \begin{cases} 1, & n = m, \\ 0, & n \neq m. \end{cases}$$

It is an orthonormal basis if, in addition

$$\langle \psi_n, f \rangle = 0 \implies f = 0.$$

Thus, orthonormal means $\|\psi_n\|^2 = 1$, $\forall n$, and $\psi_n \perp \psi_m$ for $n \neq m$. Basis means: only f = 0 is orthogonal to every ψ_n .

Definition 2.2. A Hilbert space is *separable* if it has an orthonormal basis.

Theorem 2.3. The following conditions are equivalent:

- (i) $\{\psi_n\}_{n=1}^{\infty}$ is an orthonormal basis in \mathcal{H} .
- (ii) No f is orthogonal to every ψ_n , and

$$\sum_{n=1}^{k} |c_k|^2 = \|\sum_{n=1}^{k} c_n \psi_n\|_{\mathcal{H}}^2$$

for all k and all $c_1, c_2, \ldots, c_k \in \mathbb{C}$. (This is "Pythagoras theorem".)

(iii) $\|\psi_n\| = 1$ for all n, and

$$||f||_{\mathcal{H}}^2 = \sum_{n=1}^{\infty} |\langle \psi_n, f \rangle|^2, \quad f \in \mathcal{H}$$

("Bessel's equality".)

(iv) $\{\psi_n\}_{n=1}^{\infty}$ is orthonormal, and

$$f = \sum_{n=1}^{\infty} \psi_n \langle \psi_n, f \rangle, \quad f \in \mathcal{H}.$$

Proof. "Analysis II" or "Hilbert spaces".

Example 2.4.

- A) $\psi_n = \frac{1}{\sqrt{T}} e^{2\pi i n t/T}$, $n = 0, \pm 1, \pm 2, ...$ is an orthonormal basis in $L^2(0, T)$. See Example 1.1 on page 3.
- B) $\psi_n = \frac{1}{\sqrt{N}} e^{2\pi i n k/N}$, n = 0, 1, 2, ..., N 1 is an orthonormal basis in \mathbb{C}^N . See FFT (course on Fourier Analysis).

Note 2.5. The formulas which involve *sums* in the intro can be interpreted as "expansions with respect to an orthonormal basis". Those involving *integrals* have a different name: They are "resolutions of the identity" which are based on "unitary mappings between two Hilbert spaces".

II.3 Orthogonal Projections

Definition 3.1. Let \mathcal{H} and \mathcal{K} be two Hilbert spaces. A function $A: \mathcal{H} \mapsto \mathcal{K}$ is a *linear operator* if

a)
$$A(\alpha u) = \alpha A(u), \quad u \in \mathcal{H}, \ \alpha \in \mathbb{C}$$

b)
$$A(u+v) = A(u) + A(v), \quad u, v \in \mathcal{H}.$$

This operator is bounded if there is some constant $M \in \mathbb{R}_+$ so that

$$||Au||_{\mathcal{K}} < M||u||_{\mathcal{H}}, \quad u \in \mathcal{H}.$$

Definition 3.2. A (bounded) linear functional on \mathcal{H} is the same as a (bounded) linear operator from \mathcal{H} to \mathbb{C} (i.e., $\mathcal{K} = \mathbb{C}$).

Example 3.3. Let $h \in \mathcal{H}$. Then the mapping $F(u) = \langle u, h \rangle$ (= h^*u) is a bounded linear functional on \mathcal{H} .

Proof. Linearity easy. Boundedness follows from Schwartz inequality (see below). \Box

Theorem 3.4 (Schwartz inequality). In every Hilbert space \mathcal{H} we have

$$|\langle f, g \rangle_{\mathcal{H}}| \le ||f||_{\mathcal{H}} ||g||_{\mathcal{H}}$$

where $||f||_{\mathcal{H}} = \sqrt{\langle f, f \rangle}$ and $||g||_{\mathcal{H}} = \sqrt{\langle g, g \rangle}$.

Proof. Analysis II.

Definition 3.5. Let \mathcal{H} and \mathcal{K} be Hilbert spaces, and let A be a bounded linear operator $\mathcal{H} \mapsto \mathcal{K}$. Then

$$i) \quad \mathscr{N}(A) = \text{ the "kernel" of } A$$

$$= \text{ the "null space" of } A$$

$$= \{u \in \mathcal{H} \mid Au = 0\},$$

$$ii) \quad \mathscr{R}(A) = \text{ the "range" of } A$$

$$= \{y \in \mathcal{K} \mid y = Au \text{ for some } u \in \mathcal{H}\}.$$

Definition 3.6. An operator $P: \mathcal{H} \mapsto \mathcal{H}$ is a projection on \mathcal{H} if $P^2 = P$ (that is, if we repeat P two times after each other, then the second time it does nothing). It is orthogonal in $\mathcal{N}(P) \perp \mathcal{R}(P)$ i.e., every $u \in \mathcal{N}(P)$ is orthogonal to every $y \in \mathcal{R}(P)$.

Theorem 3.7. Let \mathcal{H} be a closed subspace of \mathcal{K} (both Hilbert spaces).

- i) There is an orthogonal projection P which maps K onto \mathcal{H} .
- ii) Given any $y \in \mathcal{K}$, the vector u in \mathcal{H} which lies closest to y (in the sense that ||u y|| is as small as possible) is u = Py (with P as in i)).
- iii) If \mathcal{H} has an orthonormal basis $\{\psi_n\}_{n=1}^{\infty}$, then u in ii) is given by

$$u = \sum_{n=1}^{\infty} \langle y, \psi_n \rangle \psi_n.$$

Proof. Analysis II or Hilbert spaces.

II.4 Finite Fourier Transform

Definition 4.1. \mathbb{T} stands for the real line, where we identify any two points x and y which differ by an integer. Thus, "x is equivalent with y" if y = x + n for some integer $n \in \mathbb{Z}$.

Definition 4.2. The function spaces $C(\mathbb{T})$, $L^p(\mathbb{T})$ $(p = 1, 2, \infty)$ consists of functions which are *periodic* with period one (i.e., f(x) = f(y) if x - y is an integer), and belong locally to C or L^p , etc.

Definition 4.3 (The Finite Fourier Transform). For each $f \in L^1(\mathbb{T})$ we define the (finite) Fourier transform of f by

$$\hat{f}(n) = \int_0^1 e^{-2\pi i nx} f(x) dx, \quad n \in \mathbb{Z}.$$

Theorem 4.4 (Riemann-Lebesgue Lemma). If $f \in L^1(\mathbb{T})$ then $\hat{f} \in c_0(\mathbb{Z})$ and $\|\hat{f}\|_{\ell^{\infty}} \leq \|f\|_{L^1}$, i.e.,

- $|\hat{f}(n)| \leq \int_0^1 |f(t)| dt, n \in \mathbb{Z}, and$
- ii) $\hat{f}(n) \to 0$ as $n \to \pm \infty$.

Theorem 4.5 (Inversion Theorem A). If $f \in L^1(\mathbb{T})$ and

$$\sum_{n=-\infty}^{\infty} |\hat{f}(n)| < \infty \quad (\iff \hat{f} \in c_0(\mathbb{Z})),$$

then

$$f(x) = \sum_{n = -\infty}^{\infty} e^{2\pi i n x} \hat{f}(n)$$

for almost all x.

Theorem 4.6 (Inversion Theorem B). If $f \in L^1(\mathbb{T})$ and if for some $x_0 \in \mathbb{R}$ we have

$$\int_{x_0-\varepsilon}^{x_0+\varepsilon} \left| \frac{f(x)-f(x_0)}{x-x_0} \right| dx < \infty \quad \text{for some } \varepsilon > 0,$$

then

$$f(x_0) = \lim_{N \to \infty} \sum_{n=-N}^{N} e^{2\pi i n x} \hat{f}(n).$$

Theorem 4.7 (Basic Properties). $f \in L^2(\mathbb{T}), \ \tau \in \mathbb{R}, \ k \in \mathbb{Z}, \ k \neq 0$

$$(a) \quad g(x) = f(x - \tau) \qquad \iff \hat{g}(n) = e^{-2\pi i n \tau} \hat{f}(n), \ n \in \mathbb{Z}$$

$$(b) \quad g(x) = e^{2\pi i k x} f(x) \qquad \iff \hat{g}(n) = \hat{f}(n - k)$$

$$(c) \quad g(x) = f(-x) \qquad \iff \hat{g}(n) = \hat{f}(-n)$$

$$(d) \quad g(x) = \overline{f(x)} \qquad \iff \hat{g}(n) = \overline{\hat{f}(-n)}$$

(b)
$$g(x) = e^{2\pi i k x} f(x)$$
 \iff $\hat{g}(n) = \hat{f}(n-k)$

(c)
$$g(x) = f(-x)$$
 \iff $\hat{g}(n) = \hat{f}(-n)$

$$(d) \quad g(x) = \overline{f(x)} \qquad \iff \hat{g}(n) = \overline{\hat{f}(-n)}$$

(e)
$$g(x) = kf(kx)$$
 $\iff \hat{g}(n) = \begin{cases} \hat{f}(\frac{n}{k}), & \text{if } \frac{n}{k} \text{ integer,} \\ 0, & \text{otherwise} \end{cases}$

$$(f) \quad g \in L^1(\mathbb{T}) \ \ and \ h = f * g \quad \Longrightarrow \quad \hat{g}(n) = \hat{f}(n) \hat{h}(n)$$

$$(g) \quad \begin{cases} f \text{ abs. cont. and} \\ f' = g \in L^1(\mathbb{T}) \end{cases} \implies \hat{g}(n) = 2\pi i n \hat{f}(n).$$

Proof. Course on Fourier Analysis. Here

$$(f * g)(x) = \int_0^1 f(x - y)g(y)dy,$$

and "f absolutely continuous and f' = g" means that

$$f(x) = f(a) + \int_0^x g(y)dy,$$

where q is locally integrable.

Theorem 4.8 (Plancherel's Formula). If $f \in L^2(\mathbb{T})$ then $\hat{f} \in \ell^2(\mathbb{Z})$, and

$$\|\hat{f}\|_{\ell^2(\mathbb{Z})}^2 = \sum_{n=-\infty}^{\infty} |\hat{f}(n)|^2 = \int_0^1 |f(x)|^2 dx = \|f\|_{L^2(\mathbb{T})}^2.$$

Moreover, every $a_n \in \ell^2(\mathbb{Z})$ is the Fourier transform of some function $f \in$ $L^2(\mathbb{T})$.

Theorem 4.9 (Parseval's Formula). If $f, g \in L^2(\mathbb{T})$, then

$$\langle \hat{f}, \hat{g} \rangle_{\ell^2(\mathbb{Z})} = \sum_{n=-\infty}^{\infty} \hat{f}(n) \overline{\hat{g}(n)} = \int_0^1 f(x) \overline{g(x)} dx = \langle f, g \rangle_{L^2(\mathbb{T})}.$$

Theorem 4.10 (L²-derivatives). (See page 9 for the definition of $W^{k,2}(\mathbb{T})$). For all $k \in \mathbb{Z}_+$:

$$f \in W^{k,2}(\mathbb{T}) \iff (2\pi i n)^k \hat{f}(n) \in \ell^2(\mathbb{Z}).$$

II.5 Fourier Integrals

Definition 5.1. If $f \in L^1(\mathbb{R})$, then the Fourier transform \hat{f} of f is given by

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-2\pi i \omega x} f(x) dx, \quad \omega \in \mathbb{R}$$

Theorem 5.2 (Riemann-Lebesgue Lemma). If $f \in L^1(\mathbb{R})$, then $\hat{f} \in C_0(\mathbb{R})$ and $\|\hat{f}\|_{sup} \leq \|f\|_{L^1}$, i.e.,

i)
$$|\hat{f}(\omega)| \leq \int_{-\infty}^{\infty} |f(x)| dx$$
, $\omega \in \mathbb{R}$, and

ii)
$$\hat{f}(\omega) \to 0$$
 as $\omega \to \pm \infty$.

Theorem 5.3 (Inversion Theorem A). If both $f \in L^1(\mathbb{R})$ and $\hat{f} \in L^1(\mathbb{R})$ then

$$f(x) = \int_{-\infty}^{\infty} e^{2\pi i \omega x} \hat{f}(\omega) d\omega$$

for almost all x.

Theorem 5.4 (Inversion Theorem B). If $f \in L^1(\mathbb{R})$ and if fore some $x_0 \in \mathbb{R}$ we have

$$\int_{x_0-\varepsilon}^{x_0+\varepsilon} \left| \frac{f(x)-f(x_0)}{x-x_0} \right| dx \le \infty \quad \text{for some } \varepsilon > 0,$$

then

$$f(x_0) = \lim_{\Omega \to \infty} \int_{0}^{\Omega} e^{2\pi i \omega x_0} \hat{f}(\omega) d\omega$$

Theorem 5.5 (Basic Properties). $f \in L^2(\mathbb{T}), \ \tau, \lambda \in \mathbb{R}, \ \lambda \neq 0$

(a)
$$g(x) = f(x - \tau)$$
 \iff $\hat{g}(\omega) = e^{-2\pi i \omega \tau} \hat{f}(\omega)$

(b)
$$g(x) = e^{2\pi i \tau x} f(x)$$
 $\iff \hat{g}(\omega) = \hat{f}(\omega - \tau)$

$$(c) \quad g(x) = f(-x) \\ (d) \quad g(x) = \overline{f(x)} \\ (e) \quad g(x) = \lambda f(\lambda x) \\ (f) \quad g \in L^{1}(\mathbb{T}) \text{ and } h = f * g$$

$$\iff \hat{g}(\omega) = \hat{f}(-\omega) \\ \iff \hat{g}(\omega) = \hat{f}(\frac{\omega}{\lambda}) \\ \iff \hat{g}(\omega) = \hat{f}(\frac{\omega}{\lambda}) \\ \iff \hat{g}(\omega) = \hat{f}(\frac{\omega}{\lambda}) \\ \iff \hat{g}(\omega) = \hat{f}(\omega) \hat{g}(\omega)$$

$$(d) \quad g(x) = \overline{f(x)} \qquad \iff \hat{g}(\omega) = \overline{\hat{f}(-\omega)}$$

(e)
$$g(x) = \lambda f(\lambda x)$$
 $\iff \hat{g}(\omega) = \hat{f}(\frac{\omega}{\lambda})$

$$(f)$$
 $g \in L^1(\mathbb{T})$ and $h = f * g$ \Longrightarrow $\hat{h}(\omega) = \hat{f}(\omega)\hat{g}(\omega)$

$$(g) \quad g(x) = -2\pi i x f(x) \in L^1(\mathbb{R}) \quad \Longrightarrow \quad \hat{f} \in C^1(\mathbb{R}) \ \ and \ \hat{g}(\omega) = \hat{f}'(\omega)$$

$$(h) \quad \left. \begin{array}{ll} f \ absolutely \ continuous \\ and \ f' = g \in L^1(\mathbb{R}) \end{array} \right\} \quad \Longrightarrow \quad \hat{g}(\omega) = 2\pi i \omega \hat{f}(\omega).$$

Proof. From the course on Fourier Analysis. f absolutely continuous and f' = g means that

$$f(x) = f(a) + \int_0^x g(y)dy$$

(where g is locally in L^1).

$$(f * g)(x) = \int_{\mathbb{D}} f(x - y)g(y)dy. \quad \Box$$

Theorem 5.6 (Plancherel's Formula). If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, then $\hat{f} \in L^2(\mathbb{R})$, and

$$\|\hat{f}\|_{L^{2}}^{2} = \int_{-\infty}^{\infty} |\hat{f}(\omega)|^{2} d\omega = \int_{-\infty}^{\infty} |f(x)|^{2} dx = \|f\|_{L^{2}}^{2}.$$

If we drop the condition $f \in L^1(\mathbb{R})$ then we can still define

$$\hat{f}(\omega) = \lim_{M \to \infty} \int_{-M}^{M} e^{-2\pi i \omega x} f(x) dx$$

(where the convergence is in the L^2 -sense). After this extension the Fourier transform maps $L^2(\mathbb{R})$ one-to-one onto $L^2(\mathbb{R})$.

Theorem 5.7 (Parseval's Formula). If $f, g \in L^2(\mathbb{R})$, then

$$\langle \hat{f}, \hat{g} \rangle_{L^2(\mathbb{R})} = \int_{-\infty}^{\infty} \hat{f}(\omega) \overline{\hat{g}(\omega)} d\omega = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx = \langle f, g \rangle_{L^2(\mathbb{R})}.$$

Theorem 5.8 (L²-derivatives). (See page 9 for the definition of $W^{k,2}(\mathbb{R})$). For all $k \in \mathbb{Z}^+$:

$$i) \ f \in W^{k,2}(\mathbb{R}) \iff (2\pi i\omega)^k \hat{f}(\omega) \in L^2(\mathbb{R})$$

$$ii) (-2\pi ix)^k f(x) \in L^2(\mathbb{R}) \iff \hat{f} \in W^{k,2}(\mathbb{R}).$$

II.6 Fourier Series

Definition 6.1. If $\{a_n\}_{n=-\infty}^{\infty} \in \ell^1(\mathbb{Z})$, then the Fourier transform of a_n is given by

$$\hat{a}(\omega) = \sum_{n=-\infty}^{\infty} e^{-2\pi i \omega n} a_n, \quad \omega \in \mathbb{R}.$$

Lemma 6.2. If $\{a_n\}_{n=-\infty}^{\infty} \in \ell^1(\mathbb{Z})$, then $\hat{a} \in C(\mathbb{T})$, and

$$\|\hat{a}\|_{\sup} = \sup_{\omega} |\hat{a}(\omega)| \le \sum_{n=-\infty}^{\infty} |a_n| = \|a\|_{\ell^1}.$$

Theorem 6.3 (Inversion Theorem). If $\{a_n\}_{n=-\infty}^{\infty} \in \ell^1(\mathbb{Z})$ (or more generally, if $a_n \in \ell^2(\mathbb{Z})$; see below), then

$$a_n = \int_0^1 e^{2\pi i \omega n} \hat{a}(\omega) d\omega, \quad n \in \mathbb{Z}.$$

Theorem 6.4 (Basic Properties). $a_n \in \ell^1(\mathbb{Z}), \ \tau \in \mathbb{R}, \ k \in \mathbb{Z}$

(a)
$$b_n = a_{n-k}$$
 $\iff \hat{b}(\omega) = e^{-2\pi i \omega k} \hat{a}(\omega)$

(b)
$$b_n = e^{2\pi i \tau n} a_n$$
 $\iff \hat{b}(\omega) = \hat{a}(\omega - \tau)$

(c)
$$b_n = a_{-n}$$
 $\iff \hat{b}(\omega) = \hat{a}(-\omega)$

$$(d) \quad b_n = \overline{a_n} \qquad \iff \hat{b}(\omega) = \overline{\hat{a}(-\omega)}$$

(e)
$$b_n = \begin{cases} a_{n/k}, & n/k \text{ integer} \\ 0, & \text{otherwise} \end{cases} \iff \hat{b}(\omega) = k\hat{a}(k\omega), (k \in \mathbb{Z}_+)$$

(f)
$$b_n \in \ell^1(\mathbb{Z}) \text{ and } c = a * b \implies \hat{c}(\omega) = \hat{a}(\omega)\hat{b}(\omega)$$

$$(g)$$
 $b_n = -2\pi i n a_n \in \ell^1(\mathbb{Z})$ \Longrightarrow \hat{a} abs. cont. and $\hat{b}(\omega) = \hat{a}'(\omega)$.

Here

$$(a*b)_n = \sum_{k=-\infty}^{\infty} a_{n-k} b_k$$

Theorem 6.5 (Plancherel's Formula). If $\{a_n\}_{n=-\infty}^{\infty} \in \ell^1(\mathbb{Z})$ then

$$\|\hat{a}\|_{L^2(\mathbb{T})}^2 = \int_0^1 |\hat{a}(\omega)|^2 d\omega = \sum_{n=-\infty}^\infty |a_n|^2 = \|a\|_{\ell^2}^2.$$

If $\{a_n\} \notin \ell^1(\mathbb{Z})$, but it is still true that $\{a_n\} \in \ell^2(\mathbb{Z})$, then we can still define

$$\hat{a}(\omega) = \lim_{N \to \infty} \sum_{n = -N}^{N} e^{2\pi i \omega n} a_n$$

(where the convergence is in L^2 -sense). After this extension the Fourier transform maps $\ell^2(\mathbb{Z})$ one-to-one onto $L^2(\mathbb{T})$.

Theorem 6.6 (Parseval's Formula). If $\{a_n\}, \{b_n\} \in \ell^2(\mathbb{Z})$, then

$$\langle \hat{a}, \hat{b} \rangle_{L^2} = \int_0^1 \hat{a}(\omega) \overline{\hat{b}(\omega)} d\omega = \sum_{n=-\infty}^{\infty} a_n \overline{b_n} = \langle a, b \rangle_{\ell^2}$$

Theorem 6.7 (ℓ^2 -moments). (See page 9 for the definition of $W^{k,2}(\mathbb{T})$). For all $k \in \mathbb{Z}^+$:

$$(-2\pi i n)^k a_n \in \ell^2(\mathbb{Z}) \iff \hat{a} \in W^{k,2}(\mathbb{T}).$$

Note 6.8. The Fourier series defined above is almost the same thing as the *inverse* of the Finite Fourier Transform. The only difference is that we have replaced $+2\pi i\omega n$ by $-2\pi i\omega n$.

II.7 Bandlimited Functions

Definition 7.1. A function $f \in L^2(\mathbb{R})$ is bandlimited if (f is continuous and) there is a number $\Omega > 0$ such that $\hat{f}(\omega) = 0$ for $|\omega| > \frac{\Omega}{2}$. The smallest such number Ω is called the bandlimit of f. Thus, the bandlimit of f is equal to

$$\inf\{\Omega > 0 \mid \hat{f}(\omega) = 0 \text{ for (almost) all } \omega > \Omega\}.$$

Note 7.2. The continuity restriction of f is almost redundant: If $\hat{f}(\omega) = 0$ for $|\omega| > \frac{\Omega}{2}$ then $\hat{f} \in L^1(\mathbb{R})$, and the inverse Fourier transform of \hat{f} is a continuous function (see Theorems 5.2-5.3 on page 17, interchanging the Fourier transform with the inverse Fourier transform) which is almost everywhere equal to f. Thus, if f is not continuous, then we can make f continuous by redefining f on a set of measure zero. This function is actually C^{∞} (=infinitely many times differentiable; see Theorem 5.8 on page 19).

Theorem 7.3 (The Shannon Sampling Theorem). If $f \in L^2(\mathbb{R})$ is bandlimited with bandlimit $\Omega > 0$, then f can be written as

$$f(x) = \sum_{n=-\infty}^{\infty} f(n/\Omega) \frac{\sin(\pi\Omega(x - n/\Omega))}{\pi\Omega(x - n/\Omega)}$$

where the sum converges both uniformly and in $L^2(\mathbb{R})$.

Proof. By property (d) in Theorem 5.5, it suffices to prove this when $\Omega = 1$ (replace f(x) by $g(x) = f(x/\Omega)$). Thus, below we take $\Omega = 1$. By the theory in Section II.4, with the Fourier transform replaced by the inverse Fourier transform, we have for almost all $\omega \in [-1/2, 1/2]$

$$\hat{f}(\omega) = \sum_{n = -\infty}^{\infty} c_n e^{-2\pi i \omega n},\tag{1}$$

where c_n are the (inverse) Fourier coefficients of \hat{f} , i.e.,

$$c_n = \int_{-1/2}^{1/2} e^{2\pi i \omega n} \hat{f}(\omega) d\omega.$$

The convergence of (1) is of L^2 -type, and the right-hand side of (1) is a periodic function, whose restriction to [-1/2, 1/2] coincides with the given function \hat{f} . However, by Note 7.2 above and by the inversion theorem A on page 17, we have actually $c_n = f(n)$ (since $\hat{f}(\omega) = 0$ for $|\omega| > 1/2$). Thus,

$$\hat{f}(\omega) = \chi_{[-1/2,1/2]} \sum_{n=-\infty}^{\infty} f(n)e^{-2\pi i \omega n}, \qquad (2)$$

where the convergence is in $L^2[-1/2,1/2] \implies$ convergence in $L^2(\mathbb{R}) \cap L^1(\mathbb{R})$. (Here $\chi_{[-1/2,1/2]} = 1$ if $|\omega| \le 1/2$, and zero otherwise). Multiply this by $e^{2\pi i \omega x}$,

and integrate over [-1/2, 1/2]. This gives by the Fourier inversion formula (for all $x \in \mathbb{R}$)

$$f(x) = \int_{-1/2}^{1/2} e^{2\pi i \omega x} \hat{f}(\omega) d\omega$$

$$= \int_{-1/2}^{1/2} e^{2\pi i \omega x} \sum_{n=-\infty}^{\infty} f(n) e^{-2\pi i \omega n} d\omega$$
(the convergence is absolute, so we may use Fubini's theorem)
$$= \sum_{n=-\infty}^{\infty} f(n) \int_{-1/2}^{1/2} e^{2\pi i \omega (x-n)} d\omega$$

$$= \sum_{n=-\infty}^{\infty} f(n) \left[\frac{1}{2\pi i (x-n)} e^{2\pi i \omega (x-n)} \right]_{-1/2}^{1/2}$$

$$= \sum_{n=-\infty}^{\infty} f(n) \frac{1}{\pi (x-n)} \frac{1}{2i} [e^{\pi i (x-n)} - e^{-\pi i (x-n)}]$$

$$= \sum_{n=-\infty}^{\infty} f(n) \frac{\sin(\pi (x-n))}{\pi (x-n)}.$$

The convergence is absolute because of the fact that the sequence on the right-hand side of (2) converges in $L^1(\mathbb{R})$ (this is related to part i) of Theorem 5.2 on page 17, with the direct Fourier transform replaced by the inverse Fourier transform). We also have convergence in L^2 because of the fact that the right-hand side of (2) converges in $L^2(\mathbb{R})$, and the (inverse) Fourier transform preserves convergence in $L^2(\mathbb{R})$; see Theorem 5.6 on page 18.

Note. This theorem is important in signal processing. It says that if f is bandlimited with bandlimit Ω , then the samples of f at the points $\{n/\Omega\}_{n\in\mathbb{Z}}$ determine f uniquely, and f can be uniquely recreated by its samples.