Chapter 1

Introduction

I.1 Analysis and Synthesis of Signals

The classical analysis method in signal processing is Fourier Analysis. Typ-
ically one performs the following tasks:

A Analysis Problem: The original signal is analyzed by breaking down
the signal into elementary components, that describe the “characteristic
properties” of this particular signal.

B Synthesis Problem: If we know the elementary components of the sig-
nal, how do we reconstruct the signal from these elementary compo-
nents, or at least construct a reasonable approximation of the original
signal which is “close” to the given one in some sense.

Example 1.1 (Finite Fourier Transform). Let f(¢) be a piecewise continu-
ously differentiable function on the interval [0, 1].
Analysis Step: We compute the Fourier Coefficients of f:
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These coefficients tell us “how much of a given frequency n” is present in this
particular function f. A
Synthesis Step: If we know the “elementary components” f(n), n =

0,£1,4£2,..., then we can reconstruct f by means of the formula
N
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f(t) = lim _E_Ne T f(n)



Example 1.2 (Fourier Integral). Let f be a piecewise continuously differen-
tiable function on R = (—o0, 00), satisfying [~ _| f(t)]dt < oo.
Analysis Step: We now compute the Fourier transform of f:

flw) = /_ 2t £t w € R.

Again the value f(w) represents “the amount of oscillation with frequency w”
that is present in f.

Synthesis Step: If we know f(w) for all w € R, then we can (under suitable
assumptions) reconstruct f by means of the formula
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For example, this is true if ffooo|f(w)\dw < 0.

Example 1.3 (Fourier Series). The original signal is a discrete time signal
{a,}22 _ satisfying > > |a,| < oc.
Analysis Step: We compute the Fourier Transform of a as

[e.9]

a(w) = Z e2rivng,

n=—oo

This is a periodic function with period 1. It is still true that a(w) somehow
represents the amount of oscillation of {a,} of frequency w.

Synthesis Step: If we know a(w) then we can recover the original signal
by means of the formula

1
ap = / A G (W) dw.
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I.2 Compression of Signals

It is possible to add another step:

Compression Step: After performing the analysis we throw away “the least
significant part” of the elementary component. This reduces the amount of
data that needs to be stored. This makes the synthesis more difficult, and in
most cases it is no longer possible to synthesize the original signal from the
stored data. However, we may still obtain a reasonable approximation of the
original signal.



Example 2.1 (Finite Fourier Transform). Compression Step: Choose some
tolerance € > 0 and throw away all Fourier coefficients satisfying f(n) < e.
This leaves a finite number of coefficients f(n). The reconstruction formula

now becomes N
fy= Y T f(n),

where the sum is a finite sum.

Example 2.2 (Fourier Integrals). Compression Step: It can be shown that
f(w) — 0 as w — oo. Choose some number ¢ > 0 and some integer N, and
keep only the values

~

f(ek), —N <k <N, (k= integer),

and throw away the remaining values of f. We are then down to a finite set
of data. The reconstruction formula is obtained from the integral formula on
page 4 by approximating the integral e.g. by a Riemann sum:
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Example 2.3 (Fourier Series). Compression Step: We again discretize a: Fix
some N > 0 and keep the values a(k/N), k =0,1,2,..., N — 1, and throw
away the rest. Then the approximative reconstruction formula becomes (if
we use a Riemann sum approximation of the integral):
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1.3 Wavelets

The “compression” methods described above have several disadvantages:

e They are not very efficient. The amount of data that we need to store
is quite large compared to the achieved accuracy of approximation.



e If the original signal is defined on R, then we need an extra “cutoft”
approximation if we want to use a finite Fourier transform, or an extra
“discretization” step if we want to use a Fourier series. This introduces
additional errors and additional work.

All the Fourier examples that we have considered so far use an analy-
sis step where the elementary components consist of either a sequence or a
function of one variable (= frequency).

In wavelet analysis we use two variables: “time” and “scale”. The time
variable indicates which point in time we are interested in (= the original
argument of the given signal, sometimes interpreted as “place” instead of
time). The scale variable resembles the frequency variable in the sense that
it tells us “how fast things change”. It separates “slow changes” from “fast
changes”.

Like Fourier transforms wavelets come in many different settings:

1.3.1 Continuous Time and Scale

f is a given function of a continuous variable u € R.
Analysis Step: The wavelet transform of f is given by

F(s.t) = / " Fu) (), (1)

where 1), is the analyzing wavelet, which has been constructed from a single
mother wavelet 1 by translations (determined by the time variable ¢) and di-
lations (determined by the scale variable s), so that 1, ;(u) = s'/2¢(s(u — t)).
Dilation = “utt6jning”.

Synthesis Step:

= [ et s, 2)

where %! is the synthesizing wavelet constructed in a similar manner, as
P (u) = s (s(u — 1))
1.3.2 Continuous Time, Discrete Scale

f is still a continuous function of a continuous variable u € R, but now s is
discrete.



Analysis Step: The formula for f (s,t) remains the same, but the scale
variable only takes discrete values sg, s1, S92, . . ., instead of a continuous set
of values.

Synthesis Step: The integral with respect to ¢ remains the same, but the
integral with respect to the scale variable is replaced by a sum.

1.3.3 Discrete Time and Scale

The original function f is still defined on all of R (it is not a sequence but a
continuous time signal), but now, both ¢ and s are discrete. Both the integral
with respect to t and with respect to s are replaced by sums.

1.3.4 Discrete Time, Scale and Signal

Here the given signal is a sequence, not a function of a continuous time
variable. This means that now also the integral over the variable v in formula
(1) becomes a sum. (In I.3.1 - 1.3.3 we still used the integral in (1) to define

f(s,t), even if s and/or t was discrete.).

In this course we focus on cases where both the time and the scale is discrete,
and the original signal is either a function of continuous time, or a sequence
of discrete time. If the original signal time u is continuous, then we have to
start by computing a number of integrals of the type (1), but the rest of the
computations are purely algebraic. (We do, however, use Fourier Analysis in
many of the proofs of the main theorems.)

1.4 Generalized Fourier Series

The mathematical foundation of the theory consists of “generalized Fourier
series”. These are described in more detail in two other courses, namely
“Analysis IT” and “Hilbert Spaces”. Lecture notes for the course “Analysis IT”
are found on the course homepage:

http://www.abo.fi/fak/mnf/mate/kurser/analys2.



The idea is the following: We have a Hilbert space H (= a vector space
with a complete inner product (-,-)). In this space we have a complete
orthonormal basis {¢,}>2,.

“Orthonormal” means that

(P on) =1 VneZ,=0,1,2,...,
(Ony 1) =0 if n # k.

Analysis Step: Given a vector f € H, we compute the “generalized Fourier
coefficients”

f(n):<f7(;0n>a n€Z+.

Here f(n) is the projection of f in the direction ¢,,.
Synthesis Step: We reconstruct f from its Fourier coefficients by taking

f = Z f(n)gon

nely

Compression Step: Keep only the “large” coefficients f(n), and throw
away the small ones.

The Magic of Wavelets: 1t’s all about how to choose the basis vectors
v, In a clever way, so that the compression is as efficient as possible!



1.5 Notations
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Complex plane

0, 41,42, ...

0,1,2,...

See section 1.4 on page 14

Sequences {a, }nez satisfying ||al|n =) |a,| < oo

Sequences {ay }nez satisfying |lalle = (32, |an|?)/? < o
Bounded sequences {a,, }nez satisfying ||a||s~ = sup,|a,| < oo
Sequences a,, — 0 as n — Foo

all C-valued functions on X

all “measurable” functions ¢ satisfying [|¢||,: = [;|¢(x)]dz < oo

all “measurable” functions ¢ satisfying ||| 22 = ([|p(2)[*dz)*? <
00

all “measurable” and “essentially bounded” functions ¢, with
@l zoe = essup,er|e(z)| < 0o

Continuous functions on R
Continuous functions on R which tend to zero at oo

(p = 1,2 or 00). Periodic functions on R with period 1, which
belongs to LP([0,1]).

Continuous periodic functions on R with period 1
n times continuously differentiable functions on R
Functions in C™(R) which are periodic with period 1

Functions which are n — 1 times continuously differentiable, and
f®) e L*(R) for k = 0,1,2,...,n, where f(™ is the distribution
derivative of f™~V ie., ™ V(z) = f"71(0) + [ f™(y)dy

Functions which are locally in W™?(R) and which are periodic with
period one.
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