Hello do you see what is happening here in wxMaxima?
Try to do them yourself and similar things on similar examples?
(\%i1) $\mathrm{v}:[\mathrm{x}, \mathrm{y}]$;
(\%○1) $[x, y]$
(\%i2) $f:\left[r 1 * T 1^{*} y^{*}(1-x)-r 1 * x, r 2 * T 2 * x^{*}(1-y)-r 2 * y\right]$;
(\% \circ 2) [r1(1-x)yT1-r1x,r2x(1-y)T2-r2y]
(\%i3) h[i,j]:=diff(f[i],v[j])\$
(\%i4) jacobiana:genmatrix(h,2,2);
$(\% \circ 4)\left[\begin{array}{cc}-r 1 Y T 1-r 1 & r 1(1-x) T 1 \\ r 2(1-y) T 2 & -r 2 X T 2-r 2\end{array}\right]$
(\%i7) equil:solve(f,v);
(\% $\circ 7$) $\quad\left[\left[x=\frac{T 1 T 2-1}{(T 1+1) T 2}, y=\frac{T 1 T 2-1}{T 1 T 2+T 1}\right],[x=0, y=0]\right]$
(\%i10) j1:ratsimp(subst(equil[1],jacobiana));
$(\% \circ 10)\left[\begin{array}{cc}-\frac{(r 1 T 1+r 1) T 2}{T 2+1} & \frac{r 1 T 1 T 2+r 1 T 1}{(T 1+1) T 2} \\ \frac{(r 2 T 1+r 2) T 2}{T 1 T 2+T 1} & -\frac{r 2 T 1 T 2+r 2 T 1}{T 1+1}\end{array}\right]$
(\%i14) detj1:factor(ratsimp(determinant(j1)));
(\%。14) r1r2(T1 T2-1)

```
(%i11) jk:subst([T1=6,T2=3,r1=0.01,r2=0.1],j1);
(%011)}[\begin{array}{cc}{-0.0525}&{0.011428571428571}\\{0.0875}&{-0.34285714285714}\end{array}
(%i12) determinant(jk);
(%०12) 0.017
(%i13) equilk:subst([T1=6,T2=3,r1=0.01,r2=0.1],equil);
(%o13) [ [ }\textrm{x}=\frac{17}{21},y=\frac{17}{24}],[\textrm{x}=0,y=0]
Try also these:
(\%i15) fk:subst([T1=6,T2=3,r1=0.01,r2=0.1],f);
(\%०15) \([0.06(1-x) y-0.01 x, 0.3 x(1-y)-0.1 y]\)
and then plotting:
load("plotdf")
plotdf(fk, [xradius, 0.5],[yradius, 0.5],[xcenter,0.5], [ycenter, 0.5])
```

And do you see what is happening here in OCTAVE, try and try also with similar problems you have ...

Write this into file mala.m
function $\mathrm{xdot}=$ mala (x, t)
r1=0.01;
r2=0.1;
T1 $=6$;
$\mathrm{T} 2=3$;
$\mathrm{xdot}(1)=\mathrm{r} 1 * \mathrm{~T} 1 * \mathrm{x}(2) *(1-\mathrm{x}(1))-\mathrm{r} 1 * \mathrm{x}(1) ;$
$\mathrm{xdot}(2)=\mathrm{r} 2 * \mathrm{~T} 2 * \mathrm{x}(1) *(1-\mathrm{x}(2))-\mathrm{r} 2 * \mathrm{x}(2) ;$
endfunction
and then this into file runmala.m
$\mathrm{T} 1=6 ; \mathrm{T} 2=3 ;$
$\mathrm{x} 0=[0.5 ; 1]$;
$\mathrm{t}=$ linspace $(0,50,200)^{\prime}$;
x=lsode("mala",x0,t);
$\operatorname{plot}(x(:, 1), x(:, 2))$
hold on
$\mathrm{x} 0=[0.8 ; 1]$;
$\mathrm{t}=$ linspace $(0,50,200)$ ';
$\mathrm{x}=\operatorname{lsode}($ "mala",x0,t);
$\operatorname{plot}(\mathrm{x}(:, 1), \mathrm{x}(, 2))$
$\mathrm{x} 0=[1 ; 0.8]$;
$\mathrm{t}=$ linspace $(0,50,200)^{\prime}$;
$\mathrm{x}=1$ sode("mala",x0,t);
$\operatorname{plot}(x(:, 1), x(:, 2))$
$\mathrm{x} 0=[0.2 ; 1]$;
$\mathrm{t}=$ linspace $(0,50,200)$ ';
x=lsode("mala",x0,t);
$\operatorname{plot}(x(:, 1), x(:, 2))$
$\mathrm{x} 0=[1 ; 0.2]$;
$\mathrm{t}=$ linspace $(0,50,200)$ ';
$\mathrm{x}=\operatorname{lsode}($ "mala", $\mathrm{x} 0, \mathrm{t})$;
$\operatorname{plot}(x(:, 1), x(:, 2))$
$\mathrm{x} 0=[0 ; 0.4]$;
$\mathrm{t}=$ linspace $(0,50,200)^{\prime}$;
x=lsode("mala",x0,t);
$\operatorname{plot}(\mathrm{x}(:, 1), \mathrm{x}(:, 2))$
$\mathrm{x} 0=[0.4 ; 0]$;
$\mathrm{t}=\operatorname{linspace}(0,50,200)$ ';
x=lsode("mala",x0,t);
$\operatorname{plot}(x(:, 1), x(:, 2))$
$\mathrm{u}=$ linspace $(0,0.9,100)$;
$\mathrm{v}=\mathrm{u} . /(\mathrm{T} 1 *(1-\mathrm{u}))$;
plot(u,v,'r');
$\mathrm{u}=$ linspace $(0,0.9,100)$;
$\mathrm{v}=\mathrm{u} . /(\mathrm{T} 2 *(1-\mathrm{u}))$;
plot(v,u,'r');
axis([0,1,0,1]);

Put the files into the directory Octave reads and type runmala.
Do you remember this? Explain whats happening.

