
Chapter Ten

THE MATHEMATICAL MODEL
OF TRANSMISSION

The selection of a strategy of control
(or eradication) of malaria is, in principle, based on the expected effect
of technically feasible intervention methods and on their cost. A math-
ematical model of the epidemiology of malaria may rationalize this selec-
tion by allowing the quantitative comparison of the relative effects of
different intervention methods and their combinations, within the
expected range of underlying conditions. A fresh attempt to model the
epidemiology of malaria was undertaken mainly because previous
models do not take into account the effect of immunity on transmission;
this may be relatively unimportant for a theory of eradication, but is
crucial for a theory of control where the end-point is a new balance of the
host and parasite populations.

The model presented here was constructed as an integral part of the
project, and was developed in close interaction with the field work (46).
The specific objectives of the model are: (a) to describe the quantitative
relationship between the entomological variables and the incidence and
prevalence of microscopically detectable P. falciparum infections,
including their variation by age and season; and (b) to compare the ex-
pected parasitological effects of specified control measures (larvicides,
adulticides, drugs), alone or in combination, at specified expected levels
of coverage and effectiveness.

The model attempts to represent the natural history of the infection in
man, and its transmission, by a structure which can be manipulated
either analytically or by computer simulation. The model, even if it
appears complicated to the non-mathematician, is obviously much
simpler than malaria itself. Certain epidemiological features are selected
while others are neglected, and the selected features are translated into
simple and clear-cut assumptions. These assumptions define the struc-

a The work reported in this chapter w-as performed by Dr K. Dietz, Dr L. Molineaux and
Mr A. Thomas.  They used the data collected in Garki  under the direct ion of
Dr S.P. Ramakrjshnan and in Kisumu under the direction of Dr R.E. Fontaine.
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ture of a model. The model may be discussed apriori in terms of what is
known about malaria. The model may also be tested aposteriori with
respect to its capacity to simulate the actual epidemiology of malaria.
This discussion and testing of the model was performed in 3 stages. In a
first stage, both the structure (the assumptions) and the numerical values
of the parameters were varied by informal trial and error until a structure
(a set of assumptions) was found which was qualitatively satisfactory in
terms of epidemiological behaviour. This was done by a continuous
interaction between study of the literature, field observations in Garki
(see Chapter 5, in particular pp. 159-162),  model building, and
computer simulations. The first section below describes the outcome of
that first stage. In a second stage, the model was fitted formally to a
particular epidemiological situation, namely, the Garki baseline
situation, by letting the computer find, for some parameters, the
numerical values producing the best fit between model simulations and
actual observations; this second stage is described in the section that
follows. In a third stage, the entomological observations from different
epidemiological situations (e.g., Garki or Kisumu after application of a
residual insecticide) were used as input into the model, without change in
the other parameters, and the resulting parasitological output was com-
pared to actual observations; this stage is described in the third of the fol-
lowing sections. Once the model has been tested, it may be used as a tool
to understand and teach the epidemiology of malaria (see pp. 281-282
and 287) and to plan its control (see p. 286).

The Assumptions of the Model

Epidemiological states and transitions

The epidemiological states (or classes) and the transitions between
classes by which the model simulates the natural history of P. falciparum
in man are shown in Fig. 76. The symbols used in the model are listed and
defined in Table 30. The letters  , . . . ,  and  , . . .,  are used both
to denote classes and the proportions of the population occupying the
classes. The population size is thus set to 1:

4 3

= 1
i=l i = l

Man is born into the nonimmune negative statex, ; i.e., passive immun-
ity is ignored. Nonimmune negatives are effectively inoculated at a rate 
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Fig. 76. States and transitions of the model
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(see p. 267) and transferred to the incubating class  in which they stay
for a fixed incubation period of N days. After that, they become positive
and infectious, in classy, . While in  the person is infective to mosquitos
(see pp. 267-268) and is positive, with a probability , by a standard
blood examination, e.g., by the examination of 200 fields of a thick film.
Infectivity is lost at a constant rate  , at which persons move to the state

 in which they are noninfectious but still positive, with a probability 
by microscopic examination. Once in state  a person may either
recover from infection and return to the nonimmune negative state  at a
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Table 30

Symbols and definitions used in the model

S y m b o l Name Definition and/or comments

m a n - b i t i n g  h a b i t

vectorial capacity
s u s c e p t i b i l i t y

effective inoculation rate

re la t ive  densi tv  o f  vectors

e x t r i n s i c  i n c u b a t i o n  p e r i o d
i n t r i n s i c  i n c u b a t i o n  p e r i o d
p r o b a b i l i t y  o f  s u r v i v i n g  1  d a y

No. of bloodmeals taken on man by 1 vector in
1  d a y

C = p) ; seep. 267
p r o b a b i l i t y  t h a t  a n  i n f e c t i o n  r e s u l t s ,  g i v e n  t h a t  a t
least 1 contact has occurred, in 1 time-unit
probability that a negative acquires the infection
(becomes incubating), in 1 time-unit;  =
g { I-exp  see p. 267

No. of vectors per man, i.e., ratio between the
size of the vector population and the size of the
h u m a n  p o p u l a t i o n

i n c u b a t i o n  i n  t h e  v e c t o r
i n c u b a t i o n  p e r i o d  i n  m a n
probab i l i ty  tha t  the  vec tor  surv ives  1  day

R,(h),

t

p r o b a b i l i t y  o f  d e t e c t i o n

basic recovery rates of non-
immunes, immunes
actual  recovery rates of  non-
immunes, immunes

expected duration of states

nonimmune, immune
negat ives
nonimmune, immune
i n c u b a t i n g
3  k i n d s  o f  p o s i t i v e s

t r u e  p r o p o r t i o n  p o s i t i v e

observed proportion posi-
tive

probabilities that the 3 kinds of positives 
 are detected by a standard parasitologic

examination

recovery rate from 1 infection of the  res-
pectively
actual rate at which the  recover, taking
into account the superinfections resulting from

=
pp. 265-266

(t)  designatesx, at time  x, (t-N) designates
x, at time  etc.

 1  = 1,2

see pp. 262-265

see pp. 262-265

see pp. 262-265

 +  + or

 +  + or
i=l

ra te  o f  loss  o f  in fec t i v i t y see  263
r a t e  o f  a c q u i s i t i o n  o f  a  h i g h see below
recovery  rate
death rate also  b i r th  ra te ,  see  p .  266

rate  or become an “immune positive”  see below) at a constant
rate a,. The actual recovery rate R, (h) is a function of a constant,  ,
which is the basic recovery rate of nonimmunes and of  the effective
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inoculation rate: as the inoculation rate increases, the actual recovery rate
decreases, i.e., superinfection prevents recovery (see following subsec-
tion) and an increasing proportion of  move to  i.e., become
“immune positives”. Persons in  are still positive, with a probability

by microscopic examination, and noninfectious; is smaller than 
and i.e., the probability of diagnosis by a standard blood examination
decreases as immunity increases. The “immune positives” in  recover
from infection at a rate R,(h), which is a function of  the basic recovery
rate of immunes, and of h;  is larger than  i.e., immunes tend to
recover faster than nonimmunes, but here also superinfection reduces the
recovery rate R,(h) (see following subsection). If an immune positive 
recovers from infection he becomes an immune negative  Immune
negatives are successfully inoculated at the same rate (h) as the non-
immune negatives, and incubate the infection for the same period of N
days, after which they are again “immune positives”  i.e., detectable
with probability noninfectious, and with the “high” basic recovery
rate

A person may go through several cycles  etc.
before moving  A person may also go through several cycles 

 etc. As the inoculation rate  increases, the recovery rates R,
and decrease and an increasing proportion of persons travel the route

 without returning to  , and, once in  , either
stay there or, if they recover, are quickly reinoculated and so return,
through  to 

Superinfection

The effect of h on R, (h), i.e., the effect of superinfection on
recovery, is handled as follows. We accept Macdonald’s assumption:
“The existence of infection is no barrier to superinfection, so that two or
more broods of organisms may flourish side by side, the duration of
infection due to one being unaltered by the others” (96). His formula
however-i.e., R = - h, for h<r; and R = 0, for  a
quite different assumption, namely, that the durations of the individual
inoculations received during one episode are additive, as if an individual
could only recover from one inoculation at a time. A new formula was
therefore derived for the actual recovery rate in the presence of super-
infection, as follows. Inoculations “arrive” according to a Poisson
process with rate h. The infection resulting from each inoculation is ter-
minated at a rate r, and has therefore an expected duration of 1 /r. Then,
in equilibrium, the number of infections present at any time in a person is
a Poisson variable with mean h/r. Hence the probability that an
individual has no infection is given by exp(-h/r). The correct formula
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for this probability has been given by Walton (161). At equilibrium, this
probability is equal to the proportion of infection-free time in any given
period. Consider in particular the period between the onsets of 2 consecu-
tive positive episodes; the period is the sum of T, the duration of a positive
episode, plus l/h, the infection-free waiting time for a new episode.
Therefore:

exp(-h/r) = (l/h)/{ T + (l/h)},

which leads to:
T = 

The actual recovery rate is the inverse of the expected duration of a
positive episode T, i.e.:

R(h) = h/{exp(h/r)-1)
Substituting the basic recovery rates  ,  (see previous subsection)

into the formula, we get the actual recovery rates R,  R,(h). For low
values of  this recovery rate is close to the one calculated by
Macdonald’s formula. But for  =  for instance, the present formula
reduces  only by a factor of about 1.7,” whereas Macdonald’s actual
recovery rate would already be 0-i.e., the expected duration of a
positive episode would be infinite.

The problem of the mathematical formulation of superinfection has
been reviewed by Fine (58).

Dynamics of the human population

A very simple demographic model is included in the transmission
model. Births are added to class  deaths occur in all classes. There
could be as many death rates as there are classes, i.e., mortality could vary
with parasitological status or immunity status or both. Age is implicit in
the model (see p. 269) and mortality cannot be varied by age per se with-
out change in the model structure.

In the simulations described in this chapter, a single death rate has been
adopted, i.e., the death rate is independent of age, parasitological status
and immune status. The birth rate has been made equal to the death rate
(in Fig. 76, both rates are represented by  This results in a stable popu-
lation with an exponential age-distribution.

These very simple demographic assumptions considerably simplify the
computations. Note that they are made for the purpose of simulations
which explore questions of transmission. For simulations exploring the

 = -  if  = r, this becomes r/R = e - 1 = 2.72 - 1 = 1.72.
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demographic effects of malaria and its control, changes would obviously
be required.

Vectorial capacity and inoculation rate

All the information about the vector populations is incorporated into
one time-dependent variable, the vectorial capacity C. As in Garrett-
Jones (66),  C(t) is defined here as the number of bites on man that those
vectors having bitten an individual on day t distribute after the extrinsic
cycle of duration n during the rest of their life. In other words, C is the
number of potentially infective contacts an individual person makes,
through the vector population, per unit time. For one vector population
with density m (i.e., number of vectors alive per human individual), man-
biting habit a and daily survival probability p, the formula given by
Garrett- Jones is / (-ln p).

The formula of the vectorial capacity may be derived as follows: a
person is bitten by ma vectors in 1 day; a  of the vectors survive
the extrinsic cycle (incubation period); they still have an expectation of
life of 1 /-ln p (the expectation of life is assumed to be independent of
age); each of the surviving vectors bites a persons per day.

If there are several, say J, vector populations, either different species or
subpopulations with different characteristics, with man-biting habits 
daily survival probabilities and possibly time-dependent densities

then the total vectorial capacity C(t) is the sum of the vectorial
capacities of the individual populations:

=  t) / (-ln
j=l

If and  are also time-dependent the formula is slightly more
complicated. The definition of Cdepends on entomological variables and
on the duration of the extrinsic cycle, which is specific for the parasite
considered. It has a meaning independent of the parasite rate, of the
sporozoite rate, and of the presence or absence of parasites in a particular
population.

The inoculation rate  (effective inoculation rate or incidence rate) is
defined as the rate at which negatives are transferred to positive via the
incubating state. We assume the following formula for the inoculation
rate on day t :

= g{ 1-exp(-C(t-n)y, (t-n)},

which is based on the following interpretation. In a stable situation,
where C and  are constant, each member of the population receives C



268 THE GARKI PROJECT

potentially infective contacts per day; a  of these contacts orig-
inates from infectives and represents inoculations; therefore the average
number of inoculations per person per day is  ; assuming a Poisson
distribution, the probability of receiving no inoculation is exp(-Cy,),
and the probability of receiving at least one is  The para-
meter g is then defined as the conditional probability that an infection
results, given that at least one inoculation has occurred. We shall call g
the susceptibility. If the situation is not stable, C,  and  all vary over
time, and we have to take into account that the inoculations received on
day t originated on day (t-n), or before; it is assumed, however, that they
all originated on day (t-n), hence the above formula for h(t). This as-
sumption that all the inoculations originated on day (t-n) considerably
simplifies the structure of the model and should be close enough to reality
for a relatively short-lived vector. The formula for the inoculation rate
implies a strong density-dependent regulation of transmission: the inocu-
lation rate increases linearly with vectorial capacity only for small values
of C. For high vectorial capacities the inoculation rate reaches a satu-
ration level. We assume uniform exposure to the inoculation rate.

Equations of the model

The assumptions listed above lead to a set of 7 difference equations,
each one expressing the change in the proportion of the population
occupying one of the 7 states of the model. The difference equations can
easily be derived from Fig. 76 and the assumptions. Considering  for
instance during 1 unit of time, i.e., the interval (t, t + 1): (1)  births are
added (the birth rate is applied to the whole population, set to 1, asx, , 
etc. are proportions, see above); (2) a  ofy, recover and are
also added to  ; (3) a fraction  of  are effectively inoculated and are
subtracted (moved to  (4) a fraction  of  die and are also sub-
tracted. Hence the first difference equation:

Ax, =  + (h  + 

For simplicity, the difference equations will be written here for an
iteration interval of 1 day (in the computer version the iteration interval is
variable; for most of the calculations described below, a 5-day iteration
interval has been used). As usual, the symbol A denotes the difference
operator, e.g., Ax, = + 1) - x, (t) The time variable will be omitted
except where reference is made to a time different from t.

Considering during the interval (t, t + 1) : (1)  are added;
(2) (1 - t - (t - N) are subtracted by moving to  i.e., from
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incubating to positive; the expression may be understood as follows:
those completing their incubation period at time t entered the incubating
state at time (t - N); at that time, (t - (t - N ) entered the
incubating state  (1 -  them have survived their incubating state;
(3)  are subtracted by death. Hence the second difference equation:

 = - (1 - - - N )-

The 5 remaining difference equations are similarly derived, giving:

= -  + 
 = - (1 - - - -

Ay, = (1 - - - N) - (a, + 
 = -  +  + and
=  + (1

In order to stimulate the transmission in a particular population, one
has to provide only the yearly pattern of the vectorial capacity C(t). The
computer programme reproduces, after a suitable running-in period dur-
ing which equilibrium is reached, the seasonal changes of any output vari-
able one might wish to study. Among those are the daily inoculation rate

 the observable proportion positive:

3

z=

1

the true proportion positive:

Y=
i= 1

the proportion of infectious among the positive  etc.
One can also use these equations in a simple way to calculate the a g e -

specific values of these variables under the assumption that a yearly pat-
tern of vectorial capacity is repeating itself. After one has obtained the
stable oscillation for the total population according to the equations
above, one applies the yearly pattern of the inoculation rate to a cohort
formed by 1 individual initially inx, representing a newborn child. Time
is now interpreted as age of the cohort. The above equations are used as
before except that the death (and birth) rate  is put at 0 and that now the
inoculation rate is used as an input parameter instead of the vectorial
capacity.
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Fitting of the Model

Model simulations have been compared to field observations in order
to estimate the parameter values giving the best fit possible, and to
evaluate the model by analysing the discrepancies between observed and
expected values.

Data selected for fitting

As stated, the first specific objective of the model is to predict the pre-
valence and incidence of P. falciparum from entomological observations.
The 2 villages with extreme vectorial densities were selected, and we set
ourselves the task of simulating the 2 epidemiological situations as
observed during the first year of the project with the same model and the
same parameters, with the exception of 2 entomological input parameters
(m and a).

Entomological data

Figure 77 shows the observed man-biting rates in the 2 villages; cap-
tures were made every 5 weeks in the dry season, every 2 weeks in the wet
season; each data point is based on the average of 8 man-nights. From
these man-biting rates, from other observations (age composition of the
night-bite collection, distribution by abdominal stages, identification of
blood meals of pyrethrum spray collections, and temperatures), and
from certain assumptions, the vectorial capacities to be used as input were

Fig. 77. Observed man-biting rates (asterisks and circles) and estimated vectorial
capacities (solid and broken lines) for A. gambiae and A. funestus combined
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Fig. 78. Comparison of observed (asterisks and circles) and simulated (solid and broken
lines) apparent proportions positive

calculated (see pp. 74-75); they are also shown in Fig. 77. It is assumed
that this pattern of vectorial capacities was repeating itself year after year.

Parasitological data

Figure 78 shows the observed prevalence of P.falciparum in the
2 villages by age and season; here also we assume that the first year of the
project was representative of the past; the first survey has been plotted
after the fifth for convenience, i.e., in order to show the 5 surveys within a
single calendar year. The data show the general pattern already described
(see pp. 116-l 17),  with some irregular fluctuation owing to relatively
small numbers. The ranges of the numbers examined among the 5 surveys
are given (within parentheses) in Fig. 78. The 2 villages have practically
the same crude average prevalence; the age of maximum prevalence is
lower in Sugungum, which must be the result of a higher average inocu-
lation rate; the seasonal fluctuations are somewhat larger in Rafin
Marke, possibly owing to a combination of shorter transmission season
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and lower immunity. In addition to these prevalence data (50 data
points), the infant conversion rates in the interval between surveys 4 and 5
were also used for fitting (2 data points).

Estimation of model parameters

In order to reduce, as far as possible, the number of parameters to be
fitted, we assumed certain values for some of them, on the basis of data
from the literature, findings in Garki, and preliminary simulations. These
assumed values are listed in Table 3 1.

Table 31

Parameters corresponding to the fit shown by Fig. 78

Assumed

B i r t h  a n d  d e a t h  r a t e s  o f  t h e  h u m a n  p o p u l a t i o n
V e c t o r i a l  c a p a c i t y

36.5 per 1000 per year
C

R a t i o  b e t w e e n  h i g h  a n d  l o w  r e c o v e r y
see  F ig .  77
1 0

D e t e c t a b i l i t y  o f  p o s i t i v e s 1
0.7

I n c u b a t i o n  p e r i o d  i n  m a n N 15 days
I n c u b a t i o n  p e r i o d  i n  v e c t o r 1 0  d a y s
R a t e  o f  l o s i n g  i n f e c t i v i t y a ,

(b) Estimated by  fitting

Dailyrateof acquiring high recovery rate 0.00019  0.00001
Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  g 0.097  0.017
Low daily recovery rate 0.0023  0.0005

For the estimation of  we calculated the average age of the human
population, which was approximately 27 years. On the assumption of an
exponential stable age-distribution this corresponds to a daily death rate
of about 0.0001 per person.

The ratio between high and low recovery rates  was set at 10 on the
basis of the effect of immunity on the clearance rate of parasitaemia (see
p.  128 and Ref. 7)

The estimates for the 3 fitted parameters were obtained by minimizing
a  function that measured the discrepancy between the observed and
predicted values. The age-specific apparent parasite rates are calculated,
according to the method described above, for the ages of 3,7,12,19  and
32 years; these are the average ages of the observed age-groups l-4,5-9,
10-14, 15-24 and 25-44 years, respectively. The age-group245 has been
omitted to save computer time, since for every trial-set-of parameters the
computer has first to simulate on the average 30 years of transmission
until equilibrium is reached and then apply the inoculation rate thus ob-
tained to a cohort for another 32 years to get the age-specific parasite rates
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corresponding to the age-group 25-44 years. Because of the small differ-
ences in the parasite rates between the age-groups 25-44 and  years
there was no great loss of information. The  function minimization was
done by the CERN (Centre  pour la Recherche
computer programme MINROS. The minimum value obtained on 52 data
points is 53.5, 3 parameters being estimated. Their values, together with
their standard deviations, are given in Table 3 1.

As can be seen from Fig. 78, the age-distribution predicted by the
model approaches somewhat too rapidly the equilibrium for the adult
population, owing to our simple assumption of a constant rate a, for
acquiring the high recovery rate. The estimate for a, implies that it takes
an average of about 14.3 years for a positive person to acquire the high
level of recovery rate, given that he does not recover before and that he
does not die.

Testing of the Model

The malaria model, previously fitted to 1 year of baseline data from the
Garki District in the Sudan savanna of northern Nigeria, was tested
against data collected in the same area over a period of 3 years, including

 years under intradomiciliary propoxur (a carbamate) in certain
villages, and against data collected in Kisumu, Kenya, also over a period
of 3 years, including 20 months under intradomiciliary fenitrothion (an
organophosphorus compound) in part of the area (64). The test consisted
in using the vectorial capacity, calculated from the entomological
observations made in the above places and periods, as input in the Garki
model, while keeping the other parameters as fitted to the Garki baseline
data, and in comparing the prevalence of P. falciparum parasitaemia, as
put out by the model, to the one actually observed (118).

Method of evaluation

The model calculates the expected proportion of persons found
positive, for P. falciparum, by the examination of 200 fields of a standard
thick blood film, as a function of age and time, given the vectorial
capacity and the birth and death rates of the human population. The
input parameters of the model fall into 2 categories: (1) constants which
govern the interaction between P. falciparum and man, e.g., the rate at
which a nonimmune person loses infectivity and gains immunity and the
recovery rates of nonimmune and immune persons; these parameters
were estimated in the process of fitting the model to the Garki baseline
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data; they are not expected to vary between epidemiological situations,
except if there are relevant genetic differences in either parasite or man;
(2) the variables which distinguish one epidemiological situation from
another, i.e., the vectorial capacity and to some extent the demographic
variables. With respect to the latter, the assumption of equal and constant
birth and death rates of 36.5 per 1000 per year reproduces approximately
the age-distribution actually observed in Garki. The age-distribution
observed in Kisumu was similar and no major change was expected, in the
short run, from the application of insecticides. The demographic vari-
ables were therefore treated as constants and only the vectorial capacity
was varied between the simulation giving the best fit to the Garki baseline
data and the simulations described below.

These simulations test, simultaneously: (1) the model’s structure; (2)
the Garki parameters (except the vectorial capacity); and (3) the possi-
bility of standardizing the estimation of the vectorial capacity in different
situations. The criterion of evaluation is the comparison between the
parasite rates put out by the model and those actually observed.

Testing of the model against observations made in Garki
before and during the application of propoxur

The test is based on the longitudinal study of 4 villages, each one
followed as an epidemiological unit, for the 3-year period 1971-1973; 2 of
the villages were left untreated throughout; in the 2 other villages, as well
as in the villages surrounding them, human dwellings were sprayed in-
doors with propoxur before and during the wet seasons of 1972 and 1973.

The input vectorial capacity was calculated as follows (see also pp. 74
and 86) : (1) ma was estimated by night-bite collections on human baits,
taking the average between indoors and outdoors, and over whole
seasons (wet and dry), in each of the 4 villages; for the seasons of low
density, the average was treated as a constant; for the seasons of high
density, the actual seasonal variation was closely approximated by
assuming equal periods of linear increase and decrease, while keeping the
seasonal average equal to the estimate; (2) a was estimated as on p. 74;
(3) n was set to 10 days in the wet season or 17 days in the dry season
according to the formula of Moskovskij (in 42),  and the average outdoor
temperature in the project villages; (4) the expectation of life l/(-ln p )
was set at 5 days (p  = 0.819) for both species, in the wet season; in the dry
season was assumed to be the same as in the wet season, and the
expectation of life was increased accordingly to 8.5 days (p = 0.889) ; it
was also assumed that the man-biting rate estimated after spraying was
due to unaffected mosquitos, and the same expectation of life was used as
before (see pp. 86-88).
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Table 32

Vectorial capacities in Garki project, as calculated from field observations,
and used as model inputs

P e r i o d S e a s o n
K w a r u

V i l l a g e

Ajura Sugungum Ungwar Bako

1 Jan. 7 1 to 20 Jun. 71 dry 0.25 0.084 1.52 0.23

2 1 J u n . 7 1 to 7 Nov. 71 wet 3.52 3.34 21.74 3.43

8 N o v . 7 1 to 21 May 72 dry 0.19 0.13 1.63 0.49

22 May 72 to 22 Oct. 72 wet 1.08 1 . 5 7

23 Oct. 72 to 17 Jun. 73 dry 0.084 0.008 0.044 0.0

1 8 J u n . 7 3 to 4 Nov. 73 wet 4.20 3.40

5 N o v . 73 to 31 Dec. dry 0.084 0.008 0.044 0.0

a U n d e r  p r o p o x u r .
b  Va lues  f rom the  p rev ious  dry  season .

In summary, the input vectorial capacity, C, was computed by multi-
plying the estimated man-biting rates by the factor  this
varied, according to the above, by species, season and place, as follows:

A. gambiae A . funestus
S u g u n g u m Other villages A l l  v i l l a g e s

Wet season 0.206 0.308 0.328
Dry season 0.351 0.523 0.558

e.g., in Sugungum, in the wet season, given the estimated man-biting
rates, (A. gambiae) and  (A. funesus) :

C = 0.206  (A. gambiae)  + 0.328

Table 32 shows the vectorial capacity computed in this way and used as
input into the model, all other parameter values being identical to those
obtained previously in the fitting process. For each village the first year’s
vectorial capacity was used until a stable pattern of malaria was pro-
duced, after which the subsequent 2 years of vectorial capacity were used;
the same was done with vectorial capacities 10 times larger and 10 times
smaller than the estimated. Fig. 79 and 80 show the prevalence of P. f a l c i -
parum put out by the model, at the 3 levels of vectorial capacity, and also

u The “dry season factors” are smaller than on p. 75, and they are not applied over exactly the
same period; the effect of the change is negligible, due to low vector densities.
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the prevalence actually observed by the examination of 200 fields of a
thick-blood film at successive surveys in the 4 villages. Given the esti-
mated vectorial capacity, the model output agrees fairly well with the
observations, except for 1972 in the 2 untreated villages. Multiplying or
dividing the input vectorial capacity by 10 affected the output relatively
little, but the actually estimated vectorial capacity  an output
which was more realistic than the one produced either by 10 C (see
Ungwar Bako in 1973, Sugungum in 1972 and 1973) or 0.1 C (see Sugun-
gum in 1973).

Fig. 79. Prevalence of P . fa lc iparum in 2 control villages, as observed (x) and as calculated
from the estimated vectorial capacity, C, and from 10 C and 0.1 C
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Fig. 80. Prevalence of P .falciparum in 2 villages sprayed with propoxur in 1972-1973, as
observed (x) and as calculated from theestimated vectorial capacity, C, and from
10 C and 0.1 C

Testing of the model against observations made in Kisumu
before and after the application of fenitrothion

The test is based on the longitudinal study of the evaluation area and
comparison area from March 1972 to September 1975. Starting in August
1973, the human dwellings of the evaluation area were sprayed indoors
with fenitrothion.

The input vectorial capacity was calculated as follows: (1) ma was esti-
mated by night-biting collection on human baits indoors, taking monthly
averages; (2) a was estimated by dividing the human blood index by the
interval between blood meals; the human blood index in the baseline
pyrethrum spray collections was 0.946 for A. gambiae, 0.991 for A.fun-
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estus; the interval between blood meals was set to 2 days for A. gambiae
and 3 days for A.funestus, based on the local temperature and the find-
ings of  (68); (3)  was set to 16 days, according to the formula of
Moskovskij and the average outdoor temperature at Kisumu airport; the
seasonal variation in temperature was very small; (4) the expectation of
life was set at 6 days (p  = 0.846) for both species, based on the findings of
Gilles & Wilkes (71) in a relatively similar environment, namely Gonja,
United Republic of Tanzania; as in Garki, it was assumed that the man-
biting rate estimated after spraying was due to unaffected mosquitos, and
the same expectation of life was used as before (see pp. 86-88).

In summary, the factor  p) was, according to the above, equal
to 0.197 for A. gambiae and 0.138 for A.funestus; and the input vectorial
capacity C was computed as follows, given the estimated man-biting
rates,  (A. gambiae) and (A.funestus)  :

C = 0.197  (A. gambiae) + 0.138 (A.funestus).

Table 33

Vectorial capacities in Kisumu project, as calculated from field observations,
and used as model inputs

Month
1972 1973 1974 1975

Jan.

Feb.

Mar.

Apr.

May

Jun.

Jul.

Aug.

Sep.

Oct.

Nov.

Dec.

1.78 1.73

1.71 1.16

8.19 3.12

7.57 6.23

3.28 1.54

0.64 1.81

1.36 1.10

0.38 2.00

4.37 10.87

4.93 3.79

2.57 2.04 0.0 0.60 0.0 0.16

1.70 2.73 0.0 0.36 0.0 0.36

1.12 0.71 0.0 1.20 0.0 1.22

1.06 0.50 0.017 22.25

4.15 3.68 0.16 8.34

2.62 3.76 0.016 0.96

1.01 0.61 0.003 0.66

0.014 0.93 0.0 0.60

0.0 0.74  0.0 0.33

0.0 0.85 0.0 0.21

0.004 1.81 0.0 0.070

0.0 2.90 0.0 0.016

a E: evaluation area, underfenitrothion, starting in August1973
b C: comparisonarea.
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Table 33 shows the vectorial capacity, computed in this way, for each
of the 2 areas and used as input; the first year’s vectorial capacity was used
until a stable pattern of malaria was produced. Fig. 81 shows the a g e -
specific prevalence of P. falciparum calculated by the model from the
baseline vectorial capacity in the evaluation area, and also the a g e -
specific prevalence actually observed by the examination of 200 fields of a
thick blood film at 2 surveys with an interval of 6 months. There is again a
fairly good agreement between the model and the observations. The
agreement was not quite as good in the comparison area. Fig. 82 shows

Fig. 81. Baseline age-specific prevalence of P. falciparum in Kisumu evaluation area, as
observed (estimate and 95% confidence limits) and as calculated from the esti-
mated vectorial capacity
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Fig. 02.
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Prevalence of P. falciparum in Kisumu  and control areas, as observed
(x)  and as calculated from the estimated vectorial capacity,C, and from 10 C and
0.1 c

0.20

KISUMU  -Control area

0.00’ 1972 1973 1974

KISUMU - Evaluation area

a Fenitrothion was applied in the evaluation area in 1973-1974.

the prevalence of P. falciparum, put out by the model and also the preva-
lence actually observed at successive surveys in both the evaluation and
control areas. Once more there is a fairly good agreement between the
model and the observations.
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Determination of the Endemic Level by the
Vectorial Capacity

According to this model (46) there exists a critical vectorial capacity C*
below which malaria cannot maintain itself at an endemic level. The value
of C* is determined by the condition that the number of secondary cases
generated by one infectious case (the basic reproduction rate) equals one.
Since a case is infectious for the average period of (a, +  during
which he makes, for small vectorial capacities, approximately
effective contacts per unit of time, we get

c* = (a, + 

For the parameters obtained in the previous section this gives a value of
0.022 contact per day as the critical vectorial capacity (see Fig. 77).

The model makes it possible to describe the yearly average crude para-
site rate for any level and any seasonal pattern of vectorial capacity.
Fig. 83 shows this average for vectorial capacities without seasonal
variation. According to this curve, an initial vectorial capacity of 8
(approximately equal to the yearly average vectorial capacity in Sugun-
gum) would have to be reduced by a factor of more than 170 to reduce the
yearly average crude parasite rate to half its original value. Propoxur
reduced the vectorial capacity by a factor of about 10 only (see Chapter 4)

Fig. 83. Yearly average crude parasite rate as a function of yearly average vectorial
capacity

1.0

a ) p r e s e n tmodel
b) Macdonald’s model for stability factor 0.4
C) Macdonald’s model  for stability factor 4.0
d) model

0.4 0.6 0.8 1 2 4 6810 $ 0
Vectorial capacity
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and the prevalence of P. falciparum in Sugungum was only slightly
reduced (see Chapter 5).

To demonstrate the difference between certain previous models and
the present one, Fig. 83 shows the endemic level as a function of vectorial
capacity for the models of Macdonald (98) and MoSkovskij (121) as well
as the present model. For Macdonald’s model we use his formula (5)

 =  (-ln p)/a.

If we take into account that the basic reproduction rate  equals C/r, it
follows that the endemic level is a linear function of the vectorial ca-
pacity, starting at 0 for C = rand reaching the level 100% for { 1 + a/
(-ln p)}r. This shows that according to Macdonald the endemic level is
not uniquely determined by the vectorial capacity but depends also on his
“stability factor” a/(-ln p). In Fig. 83 the endemic level according to
Macdonald was calculated for his value of the duration of infective g a m e -
tocytaemia  in nonimmune persons (80 days) and for stability factors
0.4 and 4 (lines b and c, respectively). His endemic level is zero for

= 1, or C = r. (His critical basic reproduction rate of 1 corresponds
to a critical vectorial capacity of 0.0125, which is very similar to the value
we have obtained. Within a narrow range of vectorial capacity above the
critical value, his endemic level is higher for a lower stability factor. The
reason for this dependence lies in his assumption that superinfections in
the mosquito are wasted, i.e., a mosquito once infected cannot increase
its infectivity by further infections. This implies that for a given vectorial
capacity the inoculation rate is higher for vectors with fewer superinfec-
tions, i.e., with a lower average number of human blood meals.

The endemic level according to MoSkovskij was calculated using his
formula A4 = 1 - T/a, and equating his “communicability” a with vec-
torial capacity, and setting his “exhaustibility” T to 0.0125 (Macdonald’s
daily recovery rate from infective gametocytaemia).

The 3 models agree with respect to the existence of a critical level of
vectorial capacity below which P. falciparum cannot maintain itself in a
human population; the actual estimates of this critical level, made
according to 2 of the models (Macdonald’s and the present one), are also
in close agreement. Above the critical level of vectorial capacity, how-
ever, the endemic level rapidly reaches 100% according to Macdonald or
close to 100% according to MoSkovskij, whereas according to the present
model the observable endemic level (the yearly average parasite rate)
increases less rapidly and only up to a plateau of approximately 60%; the
present model also calculates a “true” endemic level (not shown in
Fig. 83),  which is however not directly comparable to any available
observations.
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Variants of the Model

The model described above is the basic model, describing the preva-
lence of P. falciparum as a function of vectorial capacity and age in a
human population, for a given birth (and death) rate.

The simulations described above were done with a deterministic
version of the model, i.e., h(t),  6,  are used as determined
proportions. The model can be made stochastic by using h(t), 

 as probabilities.
For the simulation of mass drug administration (MDA), 2 additional

states are used: successful treatment transfers the  ,  ,  to the
nonimmune protected state, while  are transferred to the
immune protected state. While in the protected state, persons are nega-
tive and refractory to inoculation. Protection is lost at a constant rate and
protected nonimmunes and immunes are returned to  and  , respec-
tively. Any pattern of mass drug administration can be put in. It is as-
sumed that a fixed fraction of the population does not participate at all in
the MDA and that, in addition, each MDA misses a random fraction of
the participators. The assumption of nonrandom participation reduces
the expected effect of MDA; it is also more realistic (see Chapter 3).

Note on the Computer Programmes

The programming of the malaria model was done in the computer
language FORTRAN IV. The computer used has changed over the years;
early work was performed on an IBM 360/40,  while the most recent
work has been done on an IBM 370/158.  Also, a version of the programme
in the computer language BASIC has been written for the Hewlett-Packard
9830 minicomputer.

One year of simulation requires about 0.1 second of computer time on
the IBM 370/l 58, or about 70 seconds on the HP 9830. Simulations of drug
interventions, in which there is a parallel, nonparticipating population,
require about twice as long. For the study of interventions in a particular
situation, the required equilibrium can be found in a preliminary simu-
lation and does not have to be repeated for every simulation.

In the case of fitting the model to the field data, 4 factors complicated
the programming. The first was that 3 different types of results were
required, namely, (1) the age-specific prevalence, (2) the infant conver-
sion rate over a specified time interval, and (3) the crude prevalence 2
years after interruption of transmission. This last result was ultimately
not used owing to the lack of observations for comparison. The second
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complication was that the model was being fitted to data from 2 places
simultaneously. The third difficulty was that the programme was being
frequently modified in order to test various structures with differing
numbers of parameters. Finally, since the equilibrium of the model is a
function of its parameters, it was necessary to provide a period of
running-in, to reach equilibrium, for each trial set of parameters. A
special subroutine was written to monitor and assist the running-in. Thus
the fitting was accomplished with a rather complicated and cumbersome
programme. The programme which is used to study alternative interven-
tions is much simpler and quite easy to use.

Discussion

The model and reality

The model, a s  fitted to 1 year of baseline data from 2 villages in Garki
and given the relevant entomological data, simulated fairly realistically
the prevalence of P. falciparum in 4 villages in Garki, for 3 years including

 years under propoxur in 2 of the villages, and also in 2 areas of Kisumu
for’3 years including 20 months under fenitrothion in 1 area. Some dis-
crepancies remain; this is not surprising, considering the simplifying
assumptions included in the model, and the sampling and measurement
errors involved in the estimation of the input vectorial capacity and of the
parasite rates to which the model outputs are compared. In particular, the
baseline parasitology may reflect unknown changes in vectorial capacity
over the preceding years.

Unbiased estimates are and may remain impossible to obtain, but a
model is epidemiologically satisfactory if it predicts reliably the relation-
ship between variables estimated in a standardized way, even if this way is
biased; the present model did this fairly well. A better fit could probably
be obtained only at the cost of an increase in the number of parameters.
On the other hand, in the process of fitting the model to the baseline data,
it was found that any further simplification of the model structure
decreased significantly the quality of the fit.

It is obvious that in fitting a model to reality, certain aspects of the
latter are selected. We selected primarily the observed prevalence by age,
time and place (times and places differing in vectorial capacity), and
secondarily the incidence in infants in the transmission season. This selec-
tion was not arbitrary: we considered that if the model was realistic in the
aspects selected, it would constitute a useful planning tool.

The model’s performance was about equal in 2 rather different
environments. It may be expected to simulate the epidemiology of
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P. falciparum in other situations as well, but not necessarily in all, as there
may be genetically determined differences between geographical strains
of P. falciparum, e.g., with respect to duration of parasitaemia or
infectivity to the vector (85,147).

To adapt the model to the epidemiology of other human malarias,
some structural changes would probably be required, The Garki project
produced good epidemiological information on P. malariae and P. ovale,
but it is probable that at least P. malariae is significantly affected by the
presence of P. falciparum in the same host; the reverse is probably not
true (see Chapter 5). It is probably acceptable to model the transmission
of P. falciparum as if no P. malariae were present, as was done here, while
it would not be acceptable to do the reverse.

The present model and others
The application of mathematics to the problem of malaria transmis-

sion was initiated by Ross (see 59) and pursued by many others. A recent
review (18)  lists most relevant references, to which the following could be
added: Dutertre (51),  Olaofe & Olaofe (129), Radcliffe (135),  and Rao et
al. (136).  The subject was also reviewed by Bailey (5). Such a review is
outside the scope of the present work. Selected comparisons with the
models of Macdonald and Moskovskij were made above (pp. 281-282).
One of the main reasons for constructing a new malaria model is that the
previous models did not take into account the known characteristics of
immunity to malaria. This is what the present model attempts to do;
Dutertre (51)  has since made an independent attempt.

When Macdonald (98) applied his model to data from East Africa he
discussed the role of immunity as the regulating mechanism of trans-
mission. He found that as a result of immunity the infectivity of positive
mosquitos is reduced and that the recovery rate is increased. He stressed
the importance of this regulation for the strategy of control (“control
which is only partially effective can only reduce the stimulus to immunity
and by adjustment the reproduction rate will remain unaltered”) and
concluded that “the only escape is by control . . . without the incidental
help of immunity”. His theory of control (reduction of the basic repro-
duction rate for nonimmune persons to less than 1) is in fact a theory of
eradication, which is a particular case of control. The present model,
however, attempts to describe the actually observable endemic levels for
the whole range of vectorial capacities in a dynamic way, i.e., taking into
account the regulation of the endemic level through the immune mech-
anism. Formulation of a general theory of control, including eradication,
requires such a model.
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The present model enables one to compare, for example, the reduction
in vectorial capacity necessary to go from a hyperendemic level to a
mesoendemic level with the reduction necessary to go from mesoendemic
to eradication. The conclusions obtained by the present model coincide
qualitatively with those obtained by  namely that a higher
reduction in the vectorial capacity (or “communicability” in
MoSkovskij’s terminology) is required in the first case. But the quanti-
tative statement of that conclusion would be different.

No other model has probably been tested to the same extent with actual
data (5). This was possible essentially because the development of the
model was an integral part of a relatively comprehensive field project.
There was a continual interchange between field work and theoretical
work: actual observations imposed changes in the model, work with
preliminary versions of the model influenced the study design and the
collection of data.

In comparing their models to reality, other aspects of the latter have
been selected by other authors; e.g., Dutertre (51) concentrates exclus-
ively on the infant conversion rate and its evolution throughout the year.

The model and the planning of malaria control
To what extent can this or any other transmission model predict the

future? It predicts the parasitological consequences of a change in
vectorial capacity. No model predicts the spontaneous changes in
vectorial capacity, incidentally illustrated in this chapter, nor the extent
to which the application of a specified control measure will change the
vectorial capacity. With respect to the latter, it was shown in Garki that
the prespraying ratio between the man-biting density and the indoor-
resting density has some predictive value regarding the entomological
effect of a residual insecticide (115),  but to know the actual effect of a
control measure in a specified situation and in specified hands an ad hoc
empirical trial is required.

How much information is required for using the model in a particular
situation? The Kisumu simulations used only 2 estimates made by the
project itself, namely the man-biting rate and the human blood index; all
other inputs were available independently of the project. In many
situations, the information already available is sufficient to conduct
preliminary simulations; they may identify which additional data, if any,
are required for selecting a plan of action.

Considering the long-term objectives of the Garki project, what is the
use of an “epidemiologically satisfactory” model for the planning of
malaria control? Simulations should, in defined situations, assist
decisions, by exploring questions such as: (1) to what extent can the
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infection be controlled by available measures? (2) within stated
resources, what is the best strategy? (3) what baseline information, or
what pilot trial, is necessary for decision? (4) what could be expected from
a new tool (e.g., a long-acting drug or a vaccine)?

The simulations should be conducted under a range of assumptions
regarding spontaneous changes in the underlying situation and regarding
the effect of control measures on their direct targets. Other things being
equal, the use of an epidemiologically reliable model should, on the
average, increase the reliability of the answers to the above questions. The
epidemiological benefits to be expected from a P . falciparum vaccine
(with hypothetical characteristics) have been the object of a simulation
exercise (183).

The investigation of specific questions may require some changes in the
computer programmes. This would be the case, for instance, for the
simulation of age-specific interventions.

The model was developed with the transmission and control of the
infection in mind. Stimulation of the effect of malaria and its control on
morbidity or mortality would obviously require structural changes; it
might be possible to develop a morbidity or a mortality index giving
different weights to the different kinds of positives  ,  the
data to validate such an index may, however, be inadequate.

The model and the teaching of the epidemiology of malaria

Simulation exercises with the model may illustrate in a didactically
effective way several important features of the epidemiology and control
of malaria, such as the following: the interaction between vectorial
capacity, endemic level, age-specific prevalence and immunity; the
effect of vector control as a function of initial and final vectorial
capacities; the effect of nonrandom participation of the population in
MDA; the existence of critical levels, e.g., of vectorial capacity, MDA
frequency or coverage; the cumulative effect of combining various
control measures as a function of the initial vectorial capacity, etc. A
teaching version of the model and teaching exercises based on its use have
been developed and are available upon request. They will be revised on
the basis of the feedback from their actual use in teaching.

Summary

A new model of the transmission of P. falciparum has been developed,
taking into account the special characteristics of immunity to malaria.
The model calculates the prevalence of P. falciparum as a function of the
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vectorial capacity and of its spontaneous and man-made changes. The
model also calculates the effect of mass drug administration on
prevalence.

The model was fitted to the baseline data from the Garki project.
This involved the selection of a model structure by trial and error, and
the estimation of certain model parameters, which were not directly
measurable, by minimization, i.e., by letting the computer find the values
which gave the best fit. An acceptable fit was obtained.

The model thus fitted was further tested as follows: 3 years of  entomo-
logical observations from Garki before and after spraying with propoxur,
and also from Kisumu, Kenya, before and after spraying with  fenitro-
thion, were used to calculate vectorial capacities, which wereiused as
input in the model; and the patterns of prevalence of P. falciparum put
out by the model were compared to the actual observations. The fit was
quite good on the whole.

It is concluded that the model simulates the epidemiology of P . falci-
parum infections with acceptable realism and can be used both for
planning malaria control and for teaching the epidemiology and control
of malaria.


