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ABSTRACT

Malaria is an infectious disease, transmitted between humans through mosquito

bites, that kills about two million people a year. We derive and analyze a math-

ematical model to better understand the transmission and spread of this disease.

Our main goal is to use this model to compare intervention strategies for malaria

control for two representative areas of high and low transmission.

We model malaria using ordinary differential equations. We analyze the exis-

tence and stability of disease-free and endemic (malaria persisting in the population)

equilibria. Key to our analysis is the definition of a reproductive number, R0 (the

number of new infections caused by one individual in an otherwise fully susceptible

population through the duration of the infectious period). We prove the loss of sta-

bility of the disease-free equilibrium as R0 increases through R0 = 1. Using global

bifurcation theory developed by Rabinowitz, we show the bifurcation of endemic

equilibria at R0 = 1. This bifurcation can be either supercritical (leading to stable

endemic equilibria for R0 > 1) or subcritical (leading to stable endemic equilibria

for R0 < 1 in the presence of hysteresis).

We compile two reasonable sets of values for the parameters in the model: for

areas of high and low transmission. We compute sensitivity indices of R0 and the en-

demic equilibrium to the parameters around the baseline values. R0 is most sensitive

to the mosquito biting rate in both high and low transmission areas. The fraction

of infectious humans at the endemic equilibrium is most sensitive to the mosquito

biting rate in low transmission areas, and to the human recovery rate in high trans-

mission areas. This sensitivity analysis allows us to compare the effectiveness of

different control strategies. According to our model, the most effective methods for

malaria control are the use of insecticide-treated bed nets and the prompt diagnosis

and treatment of infected individuals.
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CHAPTER 1

INTRODUCTION

Malaria is an infectious disease caused by the Plasmodium parasite and transmitted

between humans through the bite of the female Anopheles mosquito. An estimated

40% of the world’s population live in malaria endemic areas. It kills about 700, 000

to 2.7 million people a year, 75% of whom are African children. The incidence of

malaria has been growing recently due to increasing parasite drug-resistance and

mosquito insecticide-resistance. Therefore, it is important to understand the im-

portant parameters in the transmission of the disease and develop effective solution

strategies for its prevention and control.

We develop a mathematical model to better understand the transmission and

spread of malaria. We model the disease through ordinary differential equations

(ODEs) where humans and mosquitoes interact and infect each other. This model

is used to determine which factors are most responsible for the spread of malaria.

The model divides the human population into four classes: susceptible, ex-

posed, infectious, and recovered (immune). Humans enter the susceptible popu-

lation through birth or immigration. Susceptible humans get infected at a certain

probability when they are bitten by infectious mosquitoes. They then progress

through the exposed, infectious, and recovered classes, before reentering the sus-

ceptible class. Humans leave the population through death and emigration out of

all classes, and through additional disease-induced death out of the infectious class.

There are three classes for the mosquito population: susceptible, exposed, and infec-

tious. Mosquitoes enter the susceptible class through birth. Susceptible mosquitoes

get infected at a certain probability when they bite infectious or recovered humans

(at a lower probability) and then move through the exposed and infectious classes.

Both species follow a logistic model for their population growth, with humans having

additional immigration and disease-induced death.
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The model contains a system of seven coupled nonlinear ODEs with one depen-

dent variable representing each population class. For ease of analysis, we convert

the population variables to fractional quantities to create a new system of seven

ODEs with three variables representing the fractions of the “diseased” human pop-

ulation (exposed, infectious and recovered), two variables representing the fractions

of the “diseased” mosquito population (exposed and infectious) and two variables

representing the total sizes of human and mosquito populations.

We first show that there exists a domain, D, in the positive cone of R7 where the

model is epidemiologically and mathematically well-posed. Disease-free equilibrium

points are steady state solutions where there is no malaria in either the human or

mosquito populations. There are two disease-free equilibrium points in D on the

boundary of the positive cone: one with only humans and no mosquitoes, xmfe, and

one with humans and mosquitoes, xdfe.

We also define a reproductive number, R0 (the number of new infections caused

by one individual in an otherwise fully susceptible population through the duration

of the infectious period), for the model using the next generation operator approach,

as described by Diekmann et al. in [17]. The definition of R0 makes epidemiological

sense and can be formulated in the manner described by Hyman and Li [35] as the

product of the number of contacts per unit time, the probability of transmission

per contact and the duration of the infectious period. When R0 < 1, xdfe is locally

asymptotically stable and the introduction of a small number of infected individuals

would not lead to an epidemic. When R0 > 1, xdfe is unstable and the introduction

of any infected individual would lead to an epidemic and malaria persisting in the

population.

Endemic equilibrium points are steady state solutions where the disease persists

in the population. Using a corollary by Rabinowitz [60] (Corollary 1.12), we prove

that a positive endemic equilibrium exists for all R0 > 1. Numerical simulations

suggest that the endemic equilibrium is stable for R0 > 1 and there is a transcrit-

ical bifurcation at R0 = 1 where two branches of equilibrium points intersect and

exchange stability. For the special case with no disease-induced death we prove that
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the bifurcation at R0 = 1 is supercritical (forward) and stable endemic equilibrium

points exist for R0 > 1. For some large (though still realistically feasible) values of

the disease-induced death rate, there exists a subcritical (backward) bifurcation at

R0 = 1 where stable positive endemic equilibrium points exist for R0 < 1. Thus

even when R0 < 1, malaria can persist in the population in the presence of a locally

asymptotically stable disease-free equilibrium point.

We compile two reasonable sets of baseline values for the parameters in the

model: one for areas of high transmission (R0 = 7.0) and one for areas of low trans-

mission (R0 = 1.1). We compute the sensitivity indices of the reproductive number

and the endemic equilibrium to the parameters around the baseline values. In both

high and low transmission areas, R0 is most sensitive to the number of bites on hu-

mans per mosquito per day. In areas of low transmission, the fraction of infectious

humans at the endemic equilibrium, ih, is also most sensitive to the mosquito biting

rate. In areas of high transmission, as most people are either infectious or recovered,

the most sensitive parameters for ih are the rates of movement out of the infectious

and recovered classes.

The sensitivity indices allow us to compare the effectiveness of different control

strategies, as each strategy affects different parameters to different degrees. Our re-

sults agree with field studies that suggest that methods that reduce human-mosquito

contact, such as the use of insecticide-treated bed nets, are effective in controlling

the spread of malaria [30]. They also suggest that quickly identifying and treating

infected individuals would be effective in reducing disease prevalence.

We describe the biological and medical background of malaria in Appendix A.

Section 1.1 surveys some of the literature in the mathematical modeling of malaria.

Chapter 2 describes the formulation and analysis of the mathematical model for

malaria transmission. Section 2.1 describes the model, the state variables, and the

parameters. In section 2.2, we derive the reproductive number, R0, and show the

existence and stability of the equilibrium points without disease, xmfe and xdfe. In

section 2.3, we prove the existence of endemic equilibrium points, xee, and describe

analysis and numerical simulations showing the direction of bifurcation at R0 = 1.
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Section 2.4 provides some concluding remarks to the chapter.

In chapter 3, we compare different strategies for malaria control by evaluating the

sensitivity indices of R0 and xee to the parameters at baseline values representative of

areas of high and low malaria transmission. Section 3.1 lists the baseline parameter

values, including their references and the reasoning behind them. In section 3.2,

we calculate R0 and xee at the baseline parameter values and show some numerical

simulations. In section 3.3, we describe the idea and methodology of sensitivity

analysis, and calculate the sensitivity indices for R0 and xee. Section 3.4 describes

some of the possible control strategies and their effects on disease transmission and

spread. Section 3.5 provides concluding remarks on the comparison of the control

strategies. In chapter 4, we summarize our results and discuss possibilities for future

work and improvements to the model.

1.1 Survey of mathematical modeling of malaria

Mathematical modeling of malaria began in 1911 with Ross’ model [62] and ma-

jor extensions are described in Macdonald’s 1957 book [49]. This Ross-Macdonald

model is defined as

dx

dt
= (abM/N)y(1− x)− rx (1.1a)

dy

dt
= ax(1− y)− µy (1.1b)

where x is the fraction of infectious humans; y is the fraction of infectious female

mosquitoes; a is the number of bites on humans by a single female mosquito per unit

time (usually day); b is the probability of transmission of infection from an infected

mosquito to a susceptible human per bite; M is the size of the total female mosquito

population; N is the size of the total human population; r is the rate of recovery

for infectious humans (1/r is the average duration of the infectious period); and µ

is the death rate of the female mosquito population (1/µ is the average lifespan of

an adult mosquito). In a survey, Aron and May [3] describe the properties of this
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model, including the derivation of the reproductive number, R0, as

R0 =
M

N

a2b

µr
. (1.2)

The reproductive number, R0, is defined as the number of secondary infections

that one infectious person would produce in a fully susceptible population through

the entire duration of the infectious period. The idea is derived from the idea of

a reproductive number in population dynamics which is defined as the expected

number of offspring that one organism will produce over its lifespan. Heesterbeek

in [32] conducts a review on the history of R0. Numerous other articles, [17], [18],

[31], [33], [61], [64] and [68] are devoted to the calculation of R0 for different models

of various diseases, including malaria.

For simple homogeneous models, the reproductive number can be defined as

the product of the number of contacts that one individual has per unit time, the

probability of transmission per contact and the duration of the infectious period. For

(1.1), R0 is defined as the product of the number of mosquitoes that one infectious

human infects and the number of humans that one infectious mosquito infects,

through the duration of their infectious periods. (aM/N) is the number of contacts

with mosquitoes that one human has per unit time; the probability of transmission

from an infectious human to a susceptible mosquito is assumed to be 1; and 1/r is

the average duration of the infectious period of the human. Thus, (M/N)(a/r) is

the number of mosquitoes that one human infects over the entire infectious period.

Similarly, a is the number of contacts with humans that one mosquito has per

unit time; b is the probability of transmission from an infectious mosquito to a

susceptible human; and 1/µ is the average duration of the infectious period of the

mosquito (female mosquitoes are infectious till death). Thus, (ab/µ) is the number

of humans that one mosquito infects through its infectious lifetime. The product

of the two, (M/N)(a2b/(rµ)), thus forms the reproductive number: the number of

humans that one infectious human will infect, through a generation of infectious

mosquitoes.

Aron and May [3] continue their review by adding various characteristics of
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malaria to the model, such as an incubation period in the mosquito, a periodically

fluctuating density of mosquitoes, superinfection and a period of immunity in hu-

mans. They also include a continuum model for immunity where the dynamical

variables are the population of asexual blood stages of Plasmodium in humans, the

population of gametocytes (sexual stages of Plasmodium in humans), and the level

of human immunity. In this system of partial differential equations, the variables

depend on both time and age. The mosquitoes are modeled through V , the vectorial

capacity, which is proportional to the mosquito density. This model is a significant

deviation from the Ross-Macdonald model (1.1) as it does not keep track of the

number of infected humans and mosquitoes. Instead, this continuum model mea-

sures the number of parasites and level of immunity in the average human. This is

useful for malaria because there can be a large difference in the parasitemia load in

different humans, that the Ross-Macdonald model ignores.

In a later review, Anderson and May [1] revisit many of the ideas discussed

by Aron and May. Additionally, Anderson and May compile numerous data sets

for parameter values, including the latent period in mosquitoes and humans, the

rate of recovery for humans, the expected adult lifespan of mosquitoes and malaria

prevalence data across age distributions for humans. Anderson and May also study

the effect of adding age structure to the basic Ross-Macdonald model (1.1). Finally,

they look at different control strategies, discussing the effects of a vaccine and the

reduction of transmission rates on the malaria age-prevalence profile of the human

population.

Other reviews on mathematical modeling in malaria include Nedelman [54] and

Koella [39]. Nedelman surveys various data sets to statistically approximate param-

eters such as inoculation rates, rates of recovery and loss of immunity in humans,

human-biting rates of mosquitoes and infectivity and susceptibility of humans and

mosquitoes. Koella also begins with the Ross-Macdonald model (1.1) with an addi-

tional latent stage for the mosquitoes. He then studies the effect of variability of the

parameters and adds an infection-rate dependent period of immunity. Using this

model with immunity, he studies the effects of vaccines, comparing those that act
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on asexual blood stages and those that block transmission, to show that the asexual

blood stage vaccines are more effective.

An important advance for the mathematical modeling of malaria was the inclu-

sion of acquired immunity in the model proposed by Dietz, Molineaux and Thomas

in 1974 [19]. Dietz et al. proposed a model with two different classes of humans:

one without immunity to malaria and one class with some immunity. As the non-

immune class falls sick, some people recover with immunity. The immune class can

get infected, but does not fall clinically ill and cannot be infectious.

The model by Dietz et al. also included superinfection, a phenomenon usually

associated with macroparasites. As also described by Aron and May [3] and Ander-

son and May [1], superinfection is a significant increase of the parasite load, when

an infected person is reinfected from the outside. This is usually modeled by making

the recovery rate (r in the above equation (1.1)) a (usually monotonically nonin-

creasing) function of the inoculation rate . Various models, with superinfection, for

the recovery rate, r, include:

Ross [62]: r = γ (1.3a)

Dietz [19]: r = λ/[exp(λ/γ)− 1] (1.3b)

Macdonald [49]: r =

{
γ − λ γ > λ
0 γ ≤ λ

(1.3c)

where λ is the inoculation rate (defined in (1.1) as λ = (abM/N)y) and γ is the

reinfection-free rate of recovery, i.e. 1/γ is the average duration of the infectious

period in the absence of further infection. The model for superinfection by Dietz is

also described by Bailey [6].

Another important feature of malaria is the transient nature of acquired im-

munity. Aron [2] reviews the compartmental and continuous models for tempo-

rary immunity in humans. In compartmental models, an additional recovered

class is added. In the usual Susceptible-Infectious-Recovered-Susceptible (SIRS)

or Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model1, the rate

1A good review of standard epidemiological models can be found in Hethcote [34].
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of loss of immunity, ρ, is a constant parameter. However, sustained immunity to

malaria requires continuous reinfection; thus in the absence of reinfection, immunity

is lost quickly, while in the presence of a high infection rate, immunity is long-lived.

This nonconstant period of immunity can be modeled by making the rate of loss of

immunity, ρ, a function of the inoculation rate as in (1.4)

ρ(λ) =
λe−λτ

1− e−λτ
(1.4)

where λ is again the inoculation rate and τ is the average duration of the immune

period in the absence of infection.

Some of the more recent papers on the mathematical modeling of malaria have

included environmental effects [48], [70] and [71]. Yang [70] describes a compart-

mental model where humans follow an SEIRS-type (with more than one immune

class for humans) pattern and mosquitoes follow a Susceptible-Exposed-Infectious

(SEI) pattern. Additionally, some of the parameters related to mosquitoes are now

a function of temperature. These include the time taken for mosquito eggs to de-

velop into adults and the time taken for Plasmodium gametocytes ingested by the

mosquito to develop into sporozoites and migrate to the salivary glands (the in-

cubation time in the mosquito). Yang defines a reproductive number, R0 for this

model and shows, through linear stability analysis, that the disease-free equilibrium

is stable for R0 < 1. He also derives an expression for an endemic equilibrium that

is biologically relevant only when R0 > 1. He uses numerical simulations to support

his proposition that for R0 > 1, the disease-free equilibrium is unstable and the

endemic equilibrium is stable.

Yang and Ferreira [71] use the model by Yang [70] to study the effects of global

warming. Using the estimated increase in temperature of 1.0◦C – 3.5◦C by the year

2100, they show that it is possible in some areas of the world for R0 to increase above

1; for areas to change from a stable disease-free endemic state to one with low levels

of endemicity and for other areas to change from low levels of endemicity to high

levels. They do, however, conclude by saying that economic and social effects are

still more important than temperature effects and a good health care system with
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good malaria control techniques can overcome the negative effects of an increase in

temperature.

Li et al. [48] derive a model where humans move through multiple Susceptible-

Exposed-Infectious-Recovered (SEIR) stages, where a history is kept of previous

infections. They include a submodel for the mosquito population with subdivisions

for juveniles and adults. They use the steady state value for the adult mosquito

population, from this submodel, as the input into their model for malaria transmis-

sion. They introduce dependence of the parameters for the mosquito population

submodel on an environmental parameter (eg. temperature or rainfall) and calcu-

late the dependence of the reproductive number, for the full malaria model, on this

environmental parameter.

Other recent models have included the spread of drug-resistant Plasmodium [40]

and of the evolution of immunity [41]. Koella and Antia [40] discuss a model where,

starting with the Ross-Macdonald model (1.1) and moving to more complicated

models, they include a strain of disease that is resistant to treatment. Their results

show that in their simplest models, there is a threshold value of fraction of infectious

humans treated, below which there is no resistance to drugs, and above which, resis-

tance to treatment spreads. In the more complicated models, this kind of resistance

is usually not fixed, but there is some level of sensitivity to drugs that is maintained

in the population. Koella and Boëte [41] study a host-parasite evolution model of

malaria where the host invests in its immune system over time and the parasite

invests in its ability to evade the host’s immune response.

The model for malaria transmission that we analyze, is an extension of the equa-

tions introduced by Ngwa and Shu [56]. In the Ngwa and Shu model, humans follow

an SEIRS-like pattern and mosquitoes follow a SEI pattern, similar to that described

by Yang [70] but with only one immune class for humans. Humans move from the

susceptible to the exposed class at some probability when they come into contact

with an infectious mosquito, and then to the infectious class, as in conventional

SEIRS models. However, infectious people can then recover with, or without, a gain

in immunity; and either return to the susceptible class, or move to the recovered
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class. A new feature of this model is that although individuals in the recovered

class are assumed to be “immune”, in the sense that they do not suffer from serious

illness and do not contract clinical malaria, they still have low levels of Plasmodium

in their blood stream and can pass the infection to susceptible mosquitoes. After

some period of time these recovered individuals return to the susceptible class.

Susceptible mosquitoes get infected and move to the exposed class, at some

probability when they come into contact with either infectious humans or recovered

humans (albeit at a much lower probability). They then pass on to the infectious

class.

Both humans and mosquitoes leave the population through a density depen-

dent natural death rate. This allows the model to account for changing human

and mosquito populations. Variations in mosquito populations are crucial to the

dynamics of malaria, and constant population models do not account for this. The

model also includes human disease-induced death as mortality for malaria in areas

of high transmission can be high, especially in infants.

Ngwa and Shu analyze this model assuming a linear per capita death rate. They

convert the system to dimensionless quantities and in these new variables, define a

reproductive number, R0.

They show that when R0 > 1, there exists an endemic equilibrium (non-

negative solution distinct from the disease-free equilibrium), and furthermore, with

no disease-induced death, this endemic equilibrium is unique. Using linear analy-

sis, they also show that the disease-free equilibrium is locally asymptotically stable

when R0 ≤ 1 and the unique endemic equilibrium (for no disease-induced death)

is locally asymptotically stable when R0 > 1. They conclude by using numerical

simulations to support their proposition that the endemic equilibrium is stable for

R0 > 1.

In a second paper [55], Ngwa rewrites the reproductive number in terms of the

original (with dimension) parameters. He also includes a small disease induced

death rate, using perturbation analysis to evaluate a first order approximation to

the endemic equilibrium with disease induced death. Finally, he conducts some
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numerical simulations on a stochastic expansion of the model.

This profusion of models has been driven by the need to understand different

aspects of the complex malaria epidemiology. In the model we analyze, we aim to

capture some of the more important aspects of this epidemiology while still keeping

it mathematically tractable. Some of the important factors that we include are the

presence of an exposed state in mosquitoes and dynamically changing human and

mosquito populations, including human immigration and disease-induced death.
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CHAPTER 2

DESCRIPTION AND ANALYSIS OF MATHEMATICAL MODEL

2.1 Malaria model

We analyze a model, similar to that by Ngwa and Shu [56], describing the trans-

mission of malaria. The new model (Figure 2.1) divides the human population into

4 classes: susceptible, Sh, exposed, Eh, infectious, Ih, and recovered (immune), Rh.

People enter the susceptible class, either through birth (at a constant per capita

rate) or through immigration (at a constant rate). When an infectious mosquito

bites a susceptible human, there is some finite probability that the parasite (in the

form of sporozoites) will be passed on to the human and the person will move to

the exposed class. The parasite then travels to the liver where it develops into its

next life stage. After a certain period of time, the parasite (in the form of mero-

zoites) enters the blood stream, usually signaling the clinical onset of malaria. In

our model, people from the exposed class enter the infectious class at a rate that is

the reciprocal of the duration of the latent period. After some time, the infectious

humans recover and move to the recovered class. The recovered humans have some

immunity to the disease and do not get clinically ill, but they still harbour low levels

of parasite in their blood stream and can pass the infection to mosquitoes. After

some period of time, they lose their immunity and return to the susceptible class.

Humans leave the population through a density-dependent per capita emigration

and natural death rate, and through a per capita disease-induced death rate.

We divide the mosquito population into 3 classes: susceptible, Sv, exposed,

Ev, and infectious, Iv. Female mosquitoes (we do not include male mosquitoes in

our model because only female mosquitoes bite animals for blood meals) enter the

susceptible class through birth. The parasite (in the form of gametocytes) enters

the mosquito, with some probability, when the mosquito bites an infectious human
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or a recovered human (the probability of transmission of infection from a recovered

human is much lower than that from an infectious human); and the mosquito moves

from the susceptible to the exposed class. After some period of time, dependent on

the ambient temperature and humidity, the parasite develops into sporozoites and

enters the mosquito’s salivary glands; and the mosquito moves from the exposed

class to the infectious class. The mosquito remains infectious for life. Mosquitoes

leave the population through a per capita density-dependent natural death rate.

Figure 2.1: A schematic of the mathematical model for malaria transmission. Sus-
ceptible humans, Sh, get infected at a certain probability when they contact in-
fectious mosquitoes. They then progress through the exposed, Eh, infectious, Ih,
and recovered, Rh, classes, before reentering the susceptible class. Susceptible
mosquitoes, Sv, get infected at a certain probability when they contact infectious
or recovered humans and then move through the exposed, Ev, and infectious, Iv,
classes. Both species follow a logistic model for their population growth, with hu-
mans having additional immigration and disease-induced death. Birth, death and
migration into and out of the population are not shown in the figure.

The main differences of our model, from that of Ngwa and Shu [56], is that we
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have included human immigration and have excluded direct human recovery from the

infectious to the susceptible class. Human migration is present throughout the world

and plays a large role in the epidemiology of diseases, including malaria. In many

parts of the developing world, there is rapid urbanization as many people leave rural

areas and migrate to cities in search of employment. We include this movement as a

constant immigration rate into the susceptible class. We do not include immigration

of infectious humans as we assume that most people who are sick will not travel. We

also exclude the movement of exposed humans because, given the short time of the

exposed stage, the number of exposed people is small. We do make a simplifying

assumption in excluding the immigration of recovered humans. We also exclude

the direct infectious-to-susceptible recovery that the model of Ngwa and Shu [56]

contains. This is a realistic simplifying assumption because most people show some

period of immunity before becoming susceptible again. As our model includes an

exponential distribution of movement from the recovered to the susceptible class, it

will include the quick return to susceptibility of some individuals. Our model is not

a generalization of that of Ngwa and Shu [56]; nor is it a special case of that model.

The equations for the malaria model (Figure 2.1) are shown in (2.1). The state

variables of the model are shown in Table 2.1 and the parameters used in the model

are shown in Table 2.2. All parameters are assumed to be strictly positive with the

exception of the disease-induced death rate, δh, which we assume to be nonnegative.
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dSh

dt
= Λh + ψhNh + ρhRh − λh(t)Sh − fh(Nh)Sh (2.1a)

dEh

dt
= λh(t)Sh − νhEh − fh(Nh)Eh (2.1b)

dIh

dt
= νhEh − γhIh − fh(Nh)Ih − δhIh (2.1c)

dRh

dt
= γhIh − ρhRh − fh(Nh)Rh (2.1d)

dSv

dt
= ψvNv − λv(t)Sv − fv(Nv)Sv (2.1e)

dEv

dt
= λv(t)Sv − νvEv − fv(Nv)Ev (2.1f)

dIv

dt
= νvEv − fv(Nv)Iv (2.1g)

The total population sizes are Nh = Sh + Eh + Ih + Rh and Nv = Sv + Ev + Iv with

dNh

dt
= Λh + ψhNh − fh(Nh)Nh − δhIh (2.2a)

dNv

dt
= ψvNv − fv(Nv)Nv (2.2b)

and the inoculation rates are

λh =
βhvσvhIv

Nh

(2.3a)

λv =
βvhσvhIh

Nh

+
β̃vhσvhRh

Nh

. (2.3b)

Table 2.1: The state variables for the malaria model
(2.1).

Sh: The number of susceptible humans.
Eh: The number of exposed humans.
Ih: The number of infectious humans.
Rh: The number of recovered (immune and asymptomatic, but slightly

infectious) humans.
Sv: The number of susceptible mosquitoes.
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Ev: The number of exposed mosquitoes.
Iv: The number of infectious mosquitoes.
Nh: The total human population.
Nv: The total mosquito population.

Table 2.2: The parameters for the malaria model (2.1).

Λh: The immigration rate of humans. Dimensions: Humans × Time−1.
ψh: The per capita birth rate of humans. Dimensions: Time−1.
ψv: The per capita birth rate of mosquitoes. Dimensions: Time−1.
σvh: The number of bites on humans per mosquito per unit time. Di-

mensions: Time−1.
βhv: The probability of transmission of infection from an infectious

mosquito to a susceptible human given that a contact between the
two occurs. Dimensionless.

βvh: The probability of transmission of infection from an infectious hu-
man to a susceptible mosquito given that a contact between the
two occurs. Dimensionless.

β̃vh: The probability of transmission of infection from a recovered
(asymptomatic carrier) human to a susceptible mosquito given that
a contact between the two occurs. Dimensionless.

νh: The per capita rate of progression of humans from the exposed state
to the infectious state. 1/νh is the average duration of the latent
period. Dimensions: Time−1.

νv: The per capita rate of progression of mosquitoes from the exposed
state to the infectious state. 1/νv is the average duration of the
latent period. Dimensions: Time−1.

γh: The per capita recovery rate for humans from the infectious state to
the recovered state. 1/γh is the average duration of the infectious
period. Dimensions: Time−1.

δh: The per capita disease-induced death rate for humans. Dimensions:
Time−1.

ρh: The per capita rate of loss of immunity for humans. 1/ρh is the
average duration of the immune period. Dimensions: Time−1.

fh(Nh): = µ1h + µ2hNh. The per capita density-dependent death and emi-
gration rate for humans. Dimensions: Time−1.

fv(Nv): = µ1v + µ2vNv. The per capita density-dependent death rate for
mosquitoes. Dimensions: Time−1.

µ1h: The density independent part of the death (and emigration) rate
for humans. Dimensions: Time−1.
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µ2h: The density dependent part of the death (and emigration) rate for
humans. Dimensions: Humans−1 × Time−1.

µ1v: The density independent part of the death rate for mosquitoes.
Dimensions: Time−1.

µ2v: The density dependent part of the death rate for mosquitoes. Di-
mensions: Mosquitoes−1 × Time−1.

To analyze the malaria model (2.1) more easily, we work with fractional quan-

tities instead of actual populations by scaling the population of each class by the

total species population. We let:

eh =
Eh

Nh

and ih =
Ih

Nh

and rh =
Rh

Nh

(2.4)

with

Sh = shNh = (1− eh − ih − rh)Nh (2.5)

and

ev =
Ev

Nv

and iv =
Iv

Nv

(2.6)

with

Sv = svNv = (1− ev − iv)Nv. (2.7)

Differentiation of the scaling equations (2.4) and (2.6) gives us

dEh

dt
=

deh

dt
Nh + eh

dNh

dt
(2.8)

and

dEv

dt
=

dev

dt
Nv + ev

dNv

dt
(2.9)

and so on for the rest of the variables.

Solving for the derivatives of the scaled variables we obtain

deh

dt
=

1

Nh

[
dEh

dt
− eh

dNh

dt

]
(2.10)
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and

dev

dt
=

1

Nv

[
dEv

dt
− ev

dNv

dt

]
(2.11)

and so on for the other variables.

This creates a new 7-dimensional system of equations with two dimensions for

the two total population variables, Nh and Nv, and five dimensions for the fractional

population variables with disease, eh, ih, rh, ev and iv:

deh

dt
= σvhβhv

Nv

Nh

iv (1− eh − ih − rh)−
(

νh + ψh +
Λh

Nh

)
eh + (2.12a)

δhiheh

dih
dt

= νheh −
(

γh + δh + ψh +
Λh

Nh

)
ih + δhi

2
h (2.12b)

drh

dt
= γhih −

(
ρh + ψh +

Λh

Nh

)
rh + δhihrh (2.12c)

dNh

dt
= Λh + ψhNh − (µ1h + µ2hNh)Nh − δhihNh (2.12d)

dev

dt
= σvh

(
βvhih + β̃vhrh

)
(1− ev − iv)− (νv + ψv)ev (2.12e)

div
dt

= νvev − ψviv (2.12f)

dNv

dt
= ψvNv − (µ1v + µ2vNv)Nv (2.12g)

Note that ev and iv do not have any meaning when Nv = 0, and eh, ih and rh do

not have any meaning when Nh = 0.

For this model (2.12), there exists a domain where the system of equations is

epidemiologically and mathematically well-posed. We define this domain, D, as:
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D =








eh

ih
rh

Nh

ev

iv
Nv




∈ R7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eh ≥ 0,
ih ≥ 0,
rh ≥ 0,

eh + ih + rh ≤ 1,
Nh ≥ MNh

> 0,
ev ≥ 0,
iv ≥ 0,

ev + iv ≤ 1,
Nv > 0





∪








0
0
0

Nh

0
0
0




∈ R7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nh ≥ MNh
> 0





(2.13)

for some positive MNh
that depends on the parameter values. This domain, D, is

valid epidemiologically as the fractionally populations, eh, ih, rh, ev and iv are all

nonnegative and have sums over their species type that are less than or equal to

1. The human population, Nh, is positive, while the mosquito population, Nv, is

nonnegative. However, if the mosquito population is zero, there is no disease. We

require an artificial positive lower bound, MNh
, on the human population because

e′h, i′h and r′h are not defined at Nh = 0. We use the notation f ′ to denote df/dt.

Theorem 2.1.1 Assuming that the initial conditions lie in D, the system of equa-

tions for the malaria model (2.12) has a unique solution that exists and remains in

D for all time t ≥ 0.

Proof The right hand side of the system of equations (2.12) is continuous with

continuous partial derivatives in D. It remains to show that D is forward-invariant.

We can see from (2.12) that if eh = 0, then e′h ≥ 0; if ih = 0, then i′h ≥ 0; if rh = 0,

then r′h ≥ 0; if ev = 0, then e′v ≥ 0; and if iv = 0, then i′v ≥ 0. It is also true that if

eh + ih + rh = 1 then e′h + i′h + r′h < 0; and if ev + iv = 1 then e′v + i′v < 0. Finally,

we note that if Nv = 0, then N ′
v = 0; and if Nh = MNh

, then

N ′
h = Λh + ψhMNh

− µ1hMNh
− µ2hM

2
Nh
− δhihMNh

> Λh + ψhMNh
− µ1hMNh

− µ2hM
2
Nh
− δhMNh

.
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Thus, N ′
h > 0 for some MNh

small enough1. Therefore, none of the orbits can leave

D and a unique solution exists for all time. ¤

We denote points in D by x, where

x = (eh, ih, rh, Nh, ev, iv, Nv).

2.2 Equilibrium points without disease and reproductive number

2.2.1 Existence of equilibrium points without disease

We first look at equilibrium points where there is no disease. We define the “dis-

eased” classes as the human or mosquito populations that are either exposed, infec-

tious or recovered; that is, eh, ih, rh, ev and iv. We denote the positive cone in R7

by R7
+ and the boundary of R7

+ by ∂R7
+.

Lemma 2.2.1 For all equilibrium points on D ∩ ∂R7
+, eh = ih = rh = ev = iv = 0.

Proof We need to show that for an equilibrium point in D, if any one of diseased

classes is zero, all the rest are also equal to zero. We first define the conditions:

(H1): eh = 0

(H2): ih = 0

(H3): rh = 0

(H4): ev = 0

(H5): iv = 0

(H6): (H1) and (H2) and (H3)

(H7): (H4) and (H5).

We show by setting the right hand side of (2.12) equal to 0, that if any one of

the above statements is true, all the others are true. For i′h = 0, (H1) is true if and

1If we were to allow the case Λh = 0, then we would require ψh > (µ1h + δh) for a different
appropriate MNh

small enough.
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only if (H2) is true2. Similarly, for r′h = 0, (H2) is true if and only if (H3) is true.

Thus, if any one of (H1), (H2) or (H3) is true, (H6) is true. From e′h = 0, we see

that if (H6) is true, then (H5) is true. Also, for i′v = 0, (H4) is true if and only if

(H5) is true. Thus, if either one of (H4) or (H5) is true, then (H7) is true. Finally,

for e′v = 0, if (H7) is true, then both (H2) and (H3) are true. ¤

Theorem 2.2.2 The malaria model (2.12) has exactly two equilibrium points with

no disease in the population (on D ∩ ∂R7
+). One equilibrium point contains only

humans without disease (and no mosquitoes) and we label that as the mosquito-free

equilibrium, xmfe:

xmfe =

(
0, 0, 0,

(ψh − µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

2µ2h

, 0, 0, 0

)
. (2.14)

The second point contains humans and mosquitoes but no disease, which we label as

the disease-free equilibrium, xdfe:

xdfe =

(
0, 0, 0,

(ψh − µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

2µ2h

, 0, 0,
ψv − µ1v

µ2v

)
. (2.15)

Proof We need to show that xmfe and xdfe are equilibrium points of (2.12); and

that there are no other equilibrium points on D ∩ ∂R7
+. The first can be seen by

substituting the equilibrium points, (2.14) and (2.15), into the system of equations

(2.12).

We know from Lemma 2.2.1 that on D ∩ ∂R7
+, eh = ih = rh = ev = iv = 0. For

ih = 0, the only equilibrium point for Nh from (2.12d) is

Nh = ((ψh − µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh)/(2µ2h); and the only two equilibrium

points for Nv from (2.12g) are Nv = 0 and Nv = (ψv−µ1v)/µ2v. Thus, the only two

equilibrium points on D ∩ ∂R7
+ are xmfe and xdfe. ¤

2As the right-hand side of (2.12b) is a quadratic function of ih, there are 2 possible solutions
of ih when i′h = 0 and eh = 0. However, the nonzero solution of ih is greater than 1 and is thus
outside of D.
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For ease of notation, we label the positive equilibrium human and mosquito

population values (in the absence of disease) by N∗
h and N∗

v , respectively.

N∗
h =

(ψh − µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

2µ2h

(2.16a)

N∗
v =

ψv − µ1v

µ2v

(2.16b)

2.2.2 Reproductive number

We use the next generation operator approach, as described by Diekmann et al. in

[17] to define the reproductive number, R0, as the number of secondary infections

that one infectious individual would create over the duration of the infectious period

provided that everyone else is susceptible. We define the next generation operator,

K, which provides the number of secondary infections in humans and mosquitoes

caused by one generation of infectious humans and mosquitoes, as

K =

(
0 Khv

Kvh 0

)
(2.17)

where

Khv: The number of humans that one mosquito infects through its infectious

lifetime, assuming all humans are susceptible.

Kvh: The number of mosquitoes that one human infects through the duration of

the infectious period, assuming all mosquitoes are susceptible.

Using the ideas of Hyman and Li [35], we define Khv and Kvh as a product of

the probability of surviving till the infectious state, the number of contacts per unit

time, the probability of transmission per contact and the duration of the infectious

period:
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Khv =
νv

νv + µ1v + µ2vN∗
v

· σvh · βhv · 1

µ1v + µ2vN∗
v

(2.18a)

Kvh =
νh

νh + µ1h + µ2hN∗
h

· σvhN
∗
v

N∗
h

· βvh · 1

γh + δh + µ1h + µ2hN∗
h

(2.18b)

+
νh

νh + µ1h + µ2hN∗
h

· γh

γh + δh + µ1h + µ2hN∗
h

·σvhN
∗
v

N∗
h

· β̃vh · 1

ρh + µ1h + µ2hN∗
h

.

In (2.18a), νv/(νv + µ1v + µ2vN
∗
v ) is the probability that a mosquito will survive

the exposed state to become infectious3; σvh is the number of contacts that one

mosquito has with humans per unit time; βhv is the probability of transmission of

infection from an infectious mosquito to a susceptible human; and 1/(µ1v + µ2vN
∗
v )

is the average duration of the infectious lifetime of the mosquito. In (2.18b), the

total number of mosquitoes infected by one human is the sum of the new infections

from the infectious and from the recovered states of the human. In the first term of

Kvh, νh/(νh +µ1h +µ2hN
∗
h) is the probability that a human will survive the exposed

state to become infectious; σvh(N
∗
v /N∗

h) is the number of contacts that one human

has with mosquitoes per unit time; βvh is the probability of transmission of infection

from an infectious human to a susceptible mosquito; and 1/(γh + δh + µ1h + µ2hN
∗
h)

is the average duration of the infectious period of a human. In the second term,

νh/(νh +µ1h +µ2hN
∗
h) is the probability that a human will survive the exposed state

to become infectious; γh/(γh + δh + µ1h + µ2hN
∗
h) is the probability that the human

will then survive the infectious state to move to the recovered state; σvh(N
∗
v /N∗

h) is

the number of contacts that one human has with mosquitoes per unit time; β̃vh is

the probability of transmission of infection from a recovered human to a susceptible

mosquito; and 1/(ρh + µ1h + µ2hN
∗
h) is the average duration of the recovered period

of a human.

3In defining periods of time and probabilities for R0, we use the original system of equations
(2.1) and not the scaled equations (2.12). As the two models are equivalent, the reproductive
number is the same with either definition: µ1h + µ2hN∗

h is equal to ψh + Λh/N∗
h and µ1v + µ2vN∗

v

is equal to ψv.
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R0 is defined as the spectral radius of the next generation operator, i.e.,

R2
0 = KvhKhv (2.19)

Then, R2
0 is the number of humans that one infectious human will infect, through a

generation of infections in mosquitoes, assuming that previously all other humans

and mosquitoes were susceptible.

Definition We define the reproductive number, R0, as

R0 =
√

KvhKhv (2.20)

where Kvh and Khv are defined in (2.18).

The original definition of R0 (1.2) of the Ross-Macdonald model (1.1), as de-

scribed by Aron and May [3] and Anderson and May [1], like the definition of R0

given by Ngwa and Shu [56], is equivalent to our definition for R2
0 (2.19), not R0

(2.20). They ([1], [3] and [56]) use the traditional definition of R0 which approxi-

mates the number of secondary infections in humans caused by one infected human,

while we stay consistent with the definition given by the next generation operator

approach [17] which approximates the number of secondary infections due to one

infected individual (be it human or mosquito). Our definition of R0 (2.20) includes

the generation of infections in mosquitoes, so is the square root of the original defini-

tion (1.2). However, the threshold condition for both definitions is the same. Since

R0 is positive, R0 < 1 is equivalent to R2
0 < 1; R0 = 1 is equivalent to R2

0 = 1; and

R0 > 1 is equivalent to R2
0 > 1.

2.2.3 Stability of equilibrium points without disease

We conduct linear stability on the two equilibrium points without disease, xmfe

(2.14) and xdfe (2.15). The Jacobian of the malaria model (2.12) is:
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J =




J11 J12 J13 J14 0 J16 J17

J21 J22 0 J24 0 0 0
0 J32 J33 J34 0 0 0
0 J42 0 J44 0 0 0
0 J52 J53 0 J55 J56 0
0 0 0 0 J65 J66 0
0 0 0 0 0 0 J77




(2.21)

with

J11 = −σvhβhvNviv/Nh − (νh + ψh + Λh/Nh) + δhih

J12 = −σvhβhvNviv/Nh + δheh

J13 = −σvhβhvNviv/Nh

J14 = −(σvhβhvNviv/N
2
h)(1− eh − ih − rh) + Λheh/N

2
h

J16 = (σvhβhvNv/Nh)(1− eh − ih − rh)

J17 = (σvhβhviv/Nh)(1− eh − ih − rh)

J21 = νh

J22 = −(γh + δh + ψh + Λh/Nh) + 2δhih

J24 = Λhih/N
2
h

J32 = γh + δhrh

J33 = −(ρh + ψh + Λh/Nh) + δhih

J34 = Λhrh/N
2
h

J42 = −δhNh

J44 = ψh − µ1h − 2µ2hNh − δhih

J52 = σvhβvh(1− ev − iv)

J53 = σvhβ̃vh(1− ev − iv)

J55 = −σvh(βvhih + β̃vhrh)− (νv + ψv)

J56 = −σvh(βvhih + β̃vhrh)

J65 = νv

J66 = −ψv

J77 = ψv − µ1v − 2µ2vNv

Theorem 2.2.3 The mosquito-free equilibrium point, xmfe, is locally asymptotically

stable if the mosquito birth rate is less than the mosquito death rate (ψv < µ1v) and

unstable if the mosquito birth rate is greater than the mosquito death rate (ψv > µ1v).
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Proof The Jacobian evaluated at xmfe (2.14) is a lower triangular matrix of the

form:

J =




J11 0 0 0 0 0 0
J21 J22 0 0 0 0 0
0 J32 J33 0 0 0 0
0 J42 0 J44 0 0 0
0 J52 J53 0 J55 0 0
0 0 0 0 J65 J66 0
0 0 0 0 0 0 J77




. (2.22)

The eigenvalues are the diagonal entries of the Jacobian:

η1 = −(νh + ψh + Λh/N
∗
h)

η2 = −(γh + δh + ψh + Λh/N
∗
h)

η3 = −(ρh + ψh + Λh/N
∗
h)

η4 = ψh − µ1h − 2µ2hN
∗
h

= −
√

(ψh − µ1h)2 + 4µ2hΛh

η5 = −(νv + ψv)

η6 = −ψv

η7 = ψv − µ1v

We see that all eigenvalues are negative for ψv < µ1v and one eigenvalue, η7, is

positive for ψv > µ1v. ¤

It makes perfect sense that the mosquito free equilibrium point is locally asymp-

totically stable if the mosquito death rate is greater than the mosquito birth rate,

and unstable if the mosquito birth rate is greater than the mosquito death rate.

Theorem 2.2.4 The disease-free equilibrium point, xdfe, is locally asymptotically

stable if R0 < 1 and the mosquito birth rate is greater than the mosquito death rate

(ψv > µ1v); and is unstable if either R0 > 1 or the mosquito birth rate is less than

the mosquito death rate (ψv < µ1v).

Proof The Jacobian evaluated at xdfe (2.15) is of the form:
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J =




J11 0 0 0 0 J16 0
J21 J22 0 0 0 0 0
0 J32 J33 0 0 0 0
0 J42 0 J44 0 0 0
0 J52 J53 0 J55 0 0
0 0 0 0 J65 J66 0
0 0 0 0 0 0 J77




. (2.23)

As the fourth and seventh columns (corresponding to the total human and mosquito

populations) contain only the diagonal terms, these diagonal terms form two eigen-

values of the Jacobian:

η6 = ψh − µ1h − 2µ2hN
∗
h (2.24a)

= −
√

(ψh − µ1h)2 + 4µ2hΛh

η7 = ψv − µ1v − 2µ2vN
∗
v (2.24b)

= −(ψv − µ1v).

The other 5 eigenvalues are the roots of the characteristic equation of the matrix

formed by excluding the 4th and 7th rows and columns of the Jacobian (2.23):

A5η
5 + A4η

4 + A3η
3 + A2η

2 + A1η + A0 = 0 (2.25)

with

A5 = 1

A4 = B1 + B2 + B3 + B4 + B5

A3 = B1B2 + B1B3 + B1B4 + B1B5 + B2B3 + B2B4 + B2B5

+B3B4 + B3B5 + B4B5

A2 = B1B2B3 + B1B2B4 + B1B2B5 + B1B3B4 + B1B3B5 +

B1B4B5 + B2B3B4 + B2B3B5 + B2B4B5 + B3B4B5

A1 = B1B2B3B4 + B1B2B3B5 + B1B2B4B5 + B1B3B4B5 +

B2B3B4B5 −B6B7B8B9

A0 = B1B2B3B4B5 − (B3B6B7B8B9 + B6B7B9B10B11)

and
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B1 = νh + ψh + Λh/N
∗
h

= νh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

B2 = γh + δh + ψh + Λh/N
∗
h

= γh + δh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

B3 = ρh + ψh + Λh/N
∗
h

= ρh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

B4 = νv + ψv

B5 = ψv

B6 = σvhβhvN
∗
v /N∗

h

B7 = νh

B8 = σvhβvh

B9 = νv

B10 = γh

B11 = σvhβ̃vh.

From (2.24b) we can see that if ψv < µ1v, xdfe is unstable; and ψv must be

greater than µ1v for xdfe to be locally asymptotically stable. To evaluate the signs

of the roots of (2.25), we use the Routh-Hurwitz criterion and Descartes’ Rule of

Sign. Using the Routh-Hurwitz criterion, we prove that when R0 < 1, all roots

of (2.25) have negative real part; and using Descartes’ Rule of Sign, we prove that

when R0 > 1, there is one positive real root.

Korn and Korn [42] in §1.6-6(b) state the Routh-Hurwitz criterion as: the num-

ber of roots with positive real parts of a real algebraic equation

anxn + an−1x
n−1 + . . . + a1x + a0 = 0 (2.26)

is equal to the number of sign changes (disregard vanishing terms) in either of the

sequences

T0, T1,
T2

T1

,
T3

T2

, . . . ,
Tn

Tn−1

or
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T0, T1, T1T2, T2T3, . . . , Tn−2Tn−1, a0

where

T0 = an

T1 = an−1

T2 =

∣∣∣∣
an−1 an

an−3 an−2

∣∣∣∣

T3 =

∣∣∣∣∣∣

an−1 an 0
an−3 an−2 an−1

an−5 an−4 an−3

∣∣∣∣∣∣

T4 =

∣∣∣∣∣∣∣∣

an−1 an 0 0
an−3 an−2 an−1 an

an−5 an−4 an−3 an−2

an−7 an−6 an−5 an−4

∣∣∣∣∣∣∣∣
. . . = . . .

and ai = 0 for i < 0. Given an > 0, all roots have negative real parts if and only

if T0, T1, T2, . . . , Tn are all positive. This is true if and only if all ai and either all

even-numbered Tk or all odd-numbered Tk are positive (Liénard-Chipart Test).

Korn and Korn [42] in §1.6-6(c) state Descartes’ Rule of Sign as: the number of

positive real roots of a real algebraic equation (2.26) is equal to the number, Na,

of sign changes in the sequence, an, an−1, . . . , a0, of coefficients, where the vanishing

terms are disregarded, or it is less than Na by a positive even integer.

We show that when R0 < 1, all the coefficients, Ai, of the characteristic equation

(2.25), and T0, T2, and T4, are positive, so by the Routh-Hurwitz criterion, all the

eigenvalues of the Jacobian (2.23) have negative real part. We then show that when

R0 > 1, there is one and only one sign change in the sequence A5, A4, . . . , A0, so

by Descartes’ Rule of Sign, there is one eigenvalue with positive real part and the

disease-free equilibrium point is unstable.

When R0 is less (greater) than 1, R2
0 is also less (greater) than 1 since R0 is

strictly positive. The expression for R2
0 (2.20) can be written, in terms of Bi, as
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R2
0 =

B3B6B7B8B9 + B6B7B9B10B11

B1B2B3B4B5

. (2.27)

For R0 < 1, by (2.27),

B3B6B7B8B9 + B6B7B9B10B11 < B1B2B3B4B5 (2.28)

and

B3B6B7B8B9 < B1B2B3B4B5 (2.29)

B6B7B8B9 < B1B2B4B5. (2.30)

As all the Bi are positive, A5, A4, A3 and A2 are always positive. From (2.30), we

see that A1 > 0 and from (2.28), we see that A0 > 0. Thus, for R0 < 1, all Ai are

positive. We now show that the even-numbered Tk are positive for R0 < 1.

For the fifth-degree polynomial (2.25),

T0 = A5 (2.31)

which is always positive.

T2 = A3A4 − A2A5 (2.32)

which we can show4 to be a positive sum of products of Bi’s so T2 > 0. Lastly,

T4 = A1[A2A3A4 − (A1A
2
4 + A2

2A5)]− A0[A3(A3A4 − A2A5)− (2A1A4A5 − A2A
2
5)]

(2.33)

For ease of notation, we introduce

C1 = A2A3A4 − (A1A
2
4 + A2

2A5)

C2 = A3(A3A4 − A2A5)− (2A1A4A5 − A2A
2
5),

where can show that C1 > 0 and C2 > 0, so that

4To evaluate the Tk’s, we expand the expressions in Mathematica.
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T4 = A1C1 − A0C2.

We define

C
(1)
2 = C2 + B6B7B9B10B11.

As C
(1)
2 > C2 and A0 > 0, for

T
(1)
4 = A1C1 − A0C

(1)
2 ,

T4 > T
(1)
4 . Similarly, we define

A
(1)
0 = A0 + (B3B6B7B8B9 + B6B7B9B10B11).

As A
(1)
0 > A0 and C

(1)
2 > 0, for

T
(2)
4 = A1C1 − A

(1)
0 C

(1)
2 ,

T
(1)
4 > T

(2)
4 . Finally, we define

A
(1)
1 = A1 − (B1B2B4B5 −B6B7B8B9).

As A
(1)
1 < A1 (for R0 < 1) and C1 > 0, for

T
(3)
4 = A

(1)
1 C1 − A

(1)
0 C

(1)
2 ,

T
(2)
4 > T

(3)
4 . We can show, using Mathematica, that T

(3)
4 is a sum of positive terms,

so T
(3)
4 > 0. As T4 > T

(1)
4 > T

(2)
4 > T

(3)
4 , T4 > 0. Thus, for R0 < 1, all roots of

(2.25) have negative real parts.

When R0 > 1

B3B6B7B8B9 + B6B7B9B10B11 > B1B2B3B4B5

so A0 < 0. As A5, A4, A3, and A2 are positive, the sequence, A5, A4, A3, A2, A1, A0

has exactly one sign change. Thus, by Descartes’ Rule of Sign, (2.25) has one

positive real root when R0 > 1.

Thus, the disease-free equilibrium point, xdfe, is locally asymptotically stable if
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R0 < 1 (the disease will not spread) and ψv > µ1v (the mosquitoes will not become

extinct); and unstable if R0 > 1, or if ψv < µ1v. Note that the Jacobian of the

disease-free equilibrium (2.15) has one eigenvalue equal to 0 at R0 = 1. This result

makes sense intuitively because if R0 < 1, on average each infected individual infects

less than other individual so we would expect the disease to die out. If R0 > 1, on

average each infected individual infects more than other individual so we would

expect the disease to spread.

¤

2.3 Endemic equilibrium points

Endemic equilibrium points are steady state solutions where the disease persists

in the population (all state variables are positive). The complexity of the system

of equations (2.12) has prevented us from finding an explicit representation of the

endemic equilibrium point(s). We use general bifurcation theory to prove the ex-

istence of at least one endemic equilibrium point for all R0 > 1. We prove that

the transcritical bifurcation at R0 = 1 is supercritical when δh = 0 (there is no

disease-induced death). However, numerical results show that the bifurcation can

be subcritical for some positive values of δh, giving rise to endemic equilibria for

R0 < 1.

We first rewrite the equilibrium equations for (2.12) in the form of a nonlinear

eigenvalue problem:

u = G(ζ, u)

= ζLu + h(ζ, u) (2.34)

where u ∈ Y ⊂ R2, with Euclidean norm, ‖ · ‖; ζ ∈ Z ⊂ R is the bifurcation

parameter; L is a compact linear map on Y ; and h(ζ, u) is O(‖u‖2) uniformly on

bounded ζ intervals. We require that both Y and Z be open and bounded sets,

and that Y contains the point, 0. Z is the open and bounded set, Z = {ζ ∈
R| − MZ < ζ < MZ}. Z must include the characteristic values of L so there is
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minimum value that MZ can have, but MZ may be arbitrarily large. We take the

equilibrium equations (the right hand side of (2.12)), reduce the dimension through

some algebraic manipulations, and rewrite them in the form of (2.34) with

u =

(
eh

ev

)

where eh and ev are equilibrium values. We use ζ = σvh for the bifurcation parame-

ter. We also define Ω = Z×Y so that the pair (ζ, u) ∈ Ω. We denote the boundary

of Ω by ∂Ω.

A corollary by Rabinowitz [60] (Corollary 1.12) states that if ζ0 ∈ Z is a charac-

teristic value (reciprocal of an eigenvalue) of L of odd multiplicity, then there exists

a continuum of nontrivial solution-pairs, (ζ, u) of (2.34) that intersects the trivial

solution (that is, (ζ, 0) for any ζ) at (ζ0, 0) and either meets ∂Ω or meets (ζ̂0, 0)

where ζ̂0 is also a characteristic value of L of odd multiplicity.

We use this corollary to show that there exists a continuum of solution-pairs

(ζ, u) ∈ Ω for the eigenvalue equation (2.34). To each of these solution-pairs, there

corresponds an equilibrium-pair (ζ, x∗) of the malaria model (2.12), where ζ is a

parameter value and x∗ ∈ R7 is an equilibrium point of the malaria model (2.12).

We define the equilibrium-pair, (ζ, x∗) ∈ Z × R7, as the collection of a parameter

value, ζ, and the corresponding equilibrium point, x∗, for that parameter value.

Theorem 2.3.1 Assuming that the mosquito birth rate is greater than the mosquito

death rate (ψv > µ1v), the malaria model (2.12) has a continuum of equilibrium-

pairs, (ζ, x∗) ∈ Z × R7, that connects the point (ξ1, xdfe) to the hyperplane ζ = MZ

in R× R7 on the boundary of Z × R7 for any MZ > ξ1, where x∗ is in the positive

cone of R7. The number ξ1 = 1/
√

AB where A and B are defined in (2.55).

Proof The equilibrium equations for (2.12) are shown below in (2.35). For the

remainder of this proof and §2.3, we will use the terms, eh, ih, rh, Nh, ev, iv and

Nv to represent their respective equilibrium values and not their actual values at a

given time, t.
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σvhβhv
Nv

Nh

iv(1− eh − ih − rh)− (νh + ψh + Λh/Nh)eh + δhiheh = 0 (2.35a)

νheh − (γh + δh + ψh + Λh/Nh)ih + δhi
2
h = 0(2.35b)

γhih − (ρh + ψh + Λh/Nh)rh + δhihrh = 0 (2.35c)

Λh + ψhNh − (µ1h + µ2hNh)Nh − δhihNh = 0(2.35d)

σvh

(
βvhih + β̃vhrh

)
(1− ev − iv)− (νv + ψv)ev = 0 (2.35e)

νvev − ψviv = 0 (2.35f)

ψvNv − (µ1v + µ2vNv)Nv = 0(2.35g)

We do not attempt to rewrite the entire system (2.35) in the form of (2.34), but

reduce the equilibrium equations to a two-dimensional system for eh and ev. We do

so by solving for the other variables, either explicitly as functions of the parameters,

or in terms of eh and ev.

We solve (2.35g) for Nv, explicitly expressing the positive equilibrium for the

total mosquito population in terms of parameters (exactly as in the disease-free

case (2.16b)).

Nv =
ψv − µ1v

µ2v

(2.36)

Solving for iv in (2.35f) in terms of ev we find:

iv =
νv

ψv

ev. (2.37)

Similarly, we write the positive equilibrium for the total human population, Nh, in

terms of ih from (2.35d) as

Nh =
(ψh − µ1h − δhih) +

√
(ψh − µ1h − δhih)2 + 4µ2hΛh

2µ2h

. (2.38)

Using (2.38) in (2.35c), we solve for rh in terms of ih.

rh =
2γhih

2ρh + (ψh + µ1h − δhih) +
√

(ψh − µ1h − δhih)2 + 4µ2hΛh

(2.39)
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Given the nonlinear nature of (2.35b), it is not feasible (or useful) to solve for ih in

terms of eh explicitly. We therefore use (2.38) to rewrite (2.35b) as

eh =
γh + δh + 1

2

(
(ψh + µ1h − δhih) +

√
(ψh − µ1h − δhih)2 + 4µ2hΛh

)

νh

ih

= g(ih) (2.40)

We note that

g(0) = 0

and

emax
h = g(1) =

γh + δh + 1
2

(
(ψh + µ1h − δh) +

√
(ψh − µ1h − δh)2 + 4µ2hΛh

)

νh

.

(2.41)

The right-hand side of (2.40) is a smooth function of ih with range [0,∞). We can

show (using Mathematica) that g′(ih) > 0 for ih ∈ [0, 1] so g(ih) is monotonically

increasing for ih between 0 and 1. Thus for eh ∈ [0, emax
h ], there exists a smooth

function,

ih = y(eh) (2.42)

with domain, [0, emax
h ], and range, [0, 1]. As g′(0) > 0, the smooth function, y(eh)

would extend to some small eh < 0. Using (2.38) and (2.39), we can also express

Nh and rh as functions of eh. We now introduce the bounded open subset of R2,

Y =

{(
eh

ev

)
∈ R2

∣∣∣∣
−εh < eh < emax

h

−εv < ev < 1

}
(2.43)

for some εv > 0 and some εh > 0. By substituting (2.36), (2.37), (2.38), (2.39),

and (2.42) into (2.35a) and (2.35e), we reformulate the seven equilibrium equations

(2.35) equivalently as two equations for the components (eh, ev) ∈ Y . In order to

place these two equations into the Rabinowitz form (2.34), we need to determine
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lower order terms. Towards this end, we rewrite (2.35b) as

f(eh, ih) = 0 (2.44)

where

f(eh, ih) = νheh − (2.45)[
γh + δh + 1

2

(
(ψh + µ1h − δhih) +

√
(ψh − µ1h − δhih)2 + 4µ2hΛh

)]
ih.

and use implicit differentiation to write ih = y(eh) as a Taylor polynomial of the

form

ih = y1eh + y2e
2
h + . . . (2.46)

where

y1 = −
∂f
∂eh

∂f
∂ih

∣∣∣∣∣
ih=eh=0

.

The partial derivatives of f(eh, ih) are

∂f

∂eh

(eh, ih) = νh (2.47)

∂f

∂ih
(eh, ih) =

1

2
δh

[
ih +

ψh − µ1h − δhih√
(ψh − µ1h − δhih)2 + 4Λhµ2h

]
ih (2.48)

−
[
γh + δh + 1

2

(
(ψh + µ1h − δhih) +

√
(ψh − µ1h − δhih)2 + 4µ2hΛh

)]

and

y1 =
νh

γh + δh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

) . (2.49)

Finally, we substitute the Taylor approximation for ih (2.46) into rh (2.39) and

Nh (2.38), and then all three, along with iv (2.37) and Nv (2.36) into the equilibrium

equations for eh (2.35a) and ev (2.35e), to provide first order approximations to the
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equilibrium equations

0 = f1 10eh + f1 01ev +O(u2) (2.50a)

0 = f2 10eh + f2 01ev +O(u2) (2.50b)

where

u =

(
eh

ev

)
(2.51)

and

f1 10 = −
[
νh + 1

2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)]
(2.52a)

f1 01 = σvh
2µ2hνvβhv(ψv − µ1v)

ψvµ2v

(
(ψh − µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

) (2.52b)

f2 10 = σvh
νh

γh + δh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

) (2.52c)

×

βvh +

γhβ̃vh

ρh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)



f2 01 = − (ψv + νv) . (2.52d)

Although we have calculated y2 in (2.46) and have expressions for the coefficients

of the second order terms in (2.50), we do not explicitly show them here as they are

lengthy and not needed for our purposes.

To apply Corollary 1.12 of Rabinowitz [60], we factor out ζ = σvh, after some

algebraic manipulations on (2.50), to produce

(
eh

ev

)
= ζ

(
0 A
B 0

)(
eh

ev

)
+O

((
eh

ev

)2
)

(2.53)

or

u = ζLu + h(ζ, u) (2.54)
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where

L =

(
0 A
B 0

)

with

A =
1

νh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

) × (2.55a)

2µ2hνvβhv(ψv − µ1v)

ψvµ2v

(
(ψh − µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

B =


βvh +

γhβ̃vh

ρh + 1
2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)

× (2.55b)

νh

(ψv + νv)
(
γh + δh + 1

2

(
(ψh + µ1h) +

√
(ψh − µ1h)2 + 4µ2hΛh

)) .

The matrix, L, has 2 distinct eigenvalues: ±√AB. Characteristic values of a ma-

trix are the reciprocals of its eigenvalues. For the matrix, L, we denote the two

characteristic values by ξ1 = 1/
√

AB and ξ2 = −1/
√

AB. The right eigenvector

corresponding to the characteristic value, ξ1 is

v =

( √
A√
B

)
. (2.56)

We note here that B is always positive and A is positive if and only if ψv > µ1v. Thus

ξ1 is real and corresponds to the dominant eigenvalue of L if and only if ψv > µ1v.

We require this condition for the existence of the endemic equilibrium because if

the mosquito death rate were greater than the mosquito birth rate, the positive

equilibrium for the total mosquito population would be unstable; and the mosquito

population would die out.

As MZ > ξ1 and 0 ∈ Y , (ξ1, 0) ∈ Ω. By Corollary 1.12 of Rabinowitz [60], we

know that there is a continuum of solution-pairs (ζ, u) ∈ Ω, whose closure contains

the point (ξ1, 0), that either meets the boundary of Ω, ∂Ω, or the point (ξ2, 0). We
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denote the continuum of solution pairs emanating from (ξ1, 0) by C1 where C1 ⊂ Ω;

and from (ξ2, 0) by C2 where C2 ⊂ Ω. We introduce the sets

Z1 = {ζ ∈ Z| ∃u such that (ζ, u) ∈ C1} (2.57a)

U1 = {u ∈ Y | ∃ζ such that (ζ, u) ∈ C1} (2.57b)

Z2 = {ζ ∈ Z| ∃u such that (ζ, u) ∈ C2} (2.57c)

U2 = {u ∈ Y | ∃ζ such that (ζ, u) ∈ C2} . (2.57d)

We denote part of Y in the positive cone of, R2, by

Y + = {(eh, ev) ∈ Y |0 < eh and 0 < ev}

and the boundary of Y + by,

∂Y + =





(
eh

ev

)
∈ Y

∣∣∣∣∣∣




eh > 0
and

ev = 0


 or




eh = 0
and

ev > 0


 or




eh = 0
and

ev = 0








From Lemma 2.2.1, we know that there are no equilibrium points on ∂Y + other

than eh = ev = 0, so U1 ∩ ∂Y + = 0 and U2 ∩ ∂Y + = 0. Additionally, as shown

in Lemma 2.3.5 below, the initial direction of Ui, the projection of the continuum

of solution pairs Ci in Y , near the bifurcation point (ξi, 0) , is given by the eigen-

vector corresponding to the characteristic value, ξi — where i is either 1 or 2. The

eigenvector, v (2.56), corresponding to ξ1 contains only positive terms, while the

eigenvector corresponding to ξ2 is ( −√A
√

B )T. Thus U1 is entirely contained

in Y + and U2 is entirely outside of Y +. Therefore, C1 and C2 do not intersect and

by Corollary 1.12 of Rabinowitz [60], C1 meets ∂Ω. By Lemma 2.3.3 below, the set

U1 does not meet the boundary of Y , so C1 only meets ∂Ω at ζ = MZ .

By Lemma 2.3.2 below, for every u ∈ U1, there corresponds an x∗ in the positive

cone of R7, except for u = 0 which corresponds to xdfe (on the boundary of the



53

positive cone of R7). Thus, there exists a continuum of equilibrium-pairs (ζ, x∗) ∈
Z × R7 that connects the point (ξ1, xdfe) to the hyperplane ζ = MZ in R× R7. ¤

Lemma 2.3.2 The point, u = 0 ∈ Y corresponds to xdfe ∈ R7 (on the boundary of

the positive cone of R7). For every other solution-pair (ζ, u) ∈ C1, there corresponds

one equilibrium-pair (ζ, x∗) ∈ Z × R7 where x∗ is in the positive cone of R7.

Proof We first show that u = (0, 0) corresponds to xdfe. As eh = ev = 0, by

Theorem 2.2.2 we know that the only 2 possible equilibrium points are xmfe and

xdfe. As we picked the positive mosquito equilibrium population in solving for Nv

(2.36), the equilibrium point that we bifurcate from is xdfe.

We now show that for every ζ ∈ Z1 there exists at least one x∗ in the positive cone

of R7 for the corresponding u ∈ U1. For this, we need to show that for every positive

and bounded eh and ev, there exist positive and bounded ih, rh, iv, Nh and Nv. By

looking at the equilibrium equation for iv (2.37), we see that for every positive and

bounded ev there exists a positive and bounded iv. The equilibrium equation for

Nv has a positive and bounded solution depending only on parameter values (2.36).

From (2.42), we see that for every positive and bounded eh, there exists a positive

and bounded ih. The equilibrium equations for rh (2.39) and Nh (2.38) show that

for every positive and bounded ih there exists a positive and bounded rh and Nh,

respectively. ¤

Lemma 2.3.3 The set, U1, does not meet the boundary of Y .

Proof We have already shown that for u ∈ U1, eh > 0 and ev > 0. We need to show

that eh < emax
h and ev < 1. By Lemma 2.3.2, we know that all state variables are

positive. Therefore, for (2.35e) to have a solution, ev + iv < 1 so ev < 1. From (2.40)

we know that as ih increases, eh increases monotonically, reaching emax
h at ih = 1.

However, we have already shown that when eh + ih + rh = 1, e′h + i′h + r′h < 0, thus

there can be no equilibrium point at eh + ih + rh = 1. Therefore, ih is always less

than 1 and eh is always less than emax
h . ¤
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Theorem 2.3.4 Assume ψv > µ1v. The transcritical bifurcation point at ζ = ξ1

corresponds to R0 = 1. For the set of ζ for which there exists an equilibrium-pair

(ζ, x∗), the corresponding set of values for R0 includes, but is not necessarily identical

to the interval, 1 < R0 < ∞. Thus, there exists at least one endemic equilibrium

point of the malaria model (2.12) for all R0 > 1.

Proof As ζ = σvh, some algebraic manipulations of R0 (2.20) produces

R0 = ζ
√

AB. (2.58)

Thus, R0 is linearly related to ζ; and when ζ = ξ1, R0 = 1. For any R0 > 1, (2.58)

gives us a corresponding ζ. We pick an MZ larger than this ζ. Then, Theorem 2.3.1

guarantees the existence of an endemic equilibrium point for ζ, and thereby for the

corresponding value of R0. Note that it is possible, though not necessary, for the

continuum of equilibrium-pairs to include values of ζ < ξ1 (R0 < 1). ¤

Typically in epidemiological models, bifurcations at R0 = 1 tend to be supercrit-

ical (i.e., positive endemic equilibria exist for R0 > 1 near the bifurcation point). In

the absence of disease-induced death (δh = 0), the bifurcation is supercritical (for-

ward) in this model (2.12). However for the general case, a subcritical (backward)

bifurcation can occur for some parameter values.

For the case with no disease-induced death, we analytically determine the di-

rection of the bifurcation using the Lyapunov-Schmidt expansion as described by

Cushing (1998) [14]. We begin by expanding the terms of the nonlinear eigenvalue

equation (2.34) about the bifurcation point, (ξ1, 0). The expanded variables are

u = 0 + εu(1) + ε2u(2) + . . . (2.59a)

ζ = ξ1 + εζ1 + ε2ζ2 + . . . (2.59b)

L = L (2.59c)

h(ζ, u) = h(ξ1 + εζ1 + ε2ζ2 + . . . , εu(1) + ε2u(2) + . . .) (2.59d)

= ε2h2(ξ1, u
(1)) + . . .
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We substitute the expansions (2.59) into the eigenvalue equation (2.34) and evaluate

at different orders of ε.

Evaluating the substitution of the expansions (2.59) into the eigenvalue equation

(2.54) at O(ε0) produces 0 = 0 which gives us no information. We need to calculate

the O(ε1) terms.

Lemma 2.3.5 The initial direction of the branch of equilibrium points, u(1) near

the bifurcation point (ξ1, 0), is equal to the right eigenvector of L corresponding to

the characteristic value, ξ1.

Proof Evaluating the substitution of the expansions (2.59) into the eigenvalue equa-

tion (2.54) at O(ε1) we obtain:

u(1) = ξ1Lu(1).

This implies that u(1) is the right eigenvector of L corresponding to the eigenvalue

1/ξ1, v (2.56). Thus, close to the bifurcation point, the equilibrium point can be

approximated by eh = ε
√

A and ev = ε
√

B. ¤

Lemma 2.3.6 The bifurcation at ζ = ξ1 of the nonlinear eigenvalue equation (2.54)

is supercritical if ζ1 > 0 and subcritical if ζ1 < 0 where

ζ1 = −w · h2

w · Lv
(2.60)

where v is the right eigenvector of L and w is the left eigenvector of L corresponding

to the eigenvalue 1/ξ1.

Proof Evaluating the substitution of the expansions (2.59) into the eigenvalue equa-

tion (2.54) at O(ε2) we obtain:

u(2) = ξ1Lu(2) + ζ1Lu(1) + h2

which we can rewrite as

(I− ξ1L)u(2) = ζ1Lv + h2 (2.61)
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where I is the 2×2 identity matrix. As ξ1 is a characteristic value of L, (I−ξ1L) is a

singular matrix. Thus, for (2.61) to have a solution, ζ1Lv + h2 must be in the range

of (I− ξ1L), i.e., it must be orthogonal to the null space of the adjoint of (I− ξ1L).

The null space of the adjoint of (I − ξ1L) is spanned by the left eigenvector of L

(corresponding to the eigenvalue 1/ξ1), which we denote by w :=
( √

B
√

A
)
.

The Fredholm condition for the solvability of (2.61) gives us

w · (ζ1Lv + h2) = 0.

This requires

ζ1 = −w · h2

w · Lv
.

If ζ1 is positive, then for small positive ε, u > 0 and ζ > ξ1 and we have a supercritical

(forward) bifurcation. Similarly, if ζ1 is negative, then for small positive ε, u > 0

and ζ < ξ1 and we have a subcritical (backward) bifurcation. ¤

Theorem 2.3.7 Assuming ψv > µ1v, in the absence of disease-induced death (δh =

0), the bifurcation at R0 = 1 is supercritical (forward).

Proof When δh = 0, we can explicitly evaluate h(ζ, u) in the nonlinear eigenvalue

equation (2.54) from the equilibrium equations (2.50) as

h = ζ

(
C(δh=0)ehev

D(δh=0)ehev

)
(2.62)

since the coefficients of all the other higher order terms are zero. We have explicit

representations for C(δh=0) and D(δh=0), but we do show them here. It suffices to say

that both C(δh=0) and D(δh=0) are negative. From (2.62) and (2.59) we can evaluate

the second order expansion, h2.

h2 = ξ1

(
C(δh=0)

√
A
√

B

D(δh=0)

√
A
√

B

)

=

(
C(δh=0)

D(δh=0)

)
(2.63)
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As h2 contains only negative terms and w, v and L contain only nonnegative

terms, (2.60) implies that ζ1 is positive. Thus, by Lemma 2.3.6, with no disease-

induced death, for any positive values of the other parameters there is a supercritical

(forward) bifurcation at R0 = 1. ¤

For positive values of δh, it is possible for this model to exhibit a subcritical

bifurcation where, near the bifurcation point, positive endemic equilibria exist for

R0 < 1. Other examples of epidemiological models with subcritical (backward)

bifurcations at R0 = 1 include those described by Castillo-Chavez and Song [11],

Gómez-Acevedo and Yi [28] and van den Driessche and Watmough [67].

Although we cannot prove the existence of a subcritical (backward) bifurcation,

we show through numerical examples that it is possible for some positive values of δh.

This is important because it implies that there can be a stable endemic equilibrium

even if R0 is less than 1.

We first use the bifurcation software program AUTO [20] to create bifurcation

diagrams around R0 = 1. We show two examples of these bifurcation diagrams in

Figure 2.2. One has all parameter values as described in Table 2.3 except for the

bifurcation parameter, σvh, which is varied as shown in the figure. The other curve

has parameter values described in Table 2.3, except for δh = 3.41938× 10−5 and the

bifurcation parameter, σvh, which is also varied as shown in the figure.

For the curve with δh = 3.45392 × 10−4, we can see both unstable and stable

endemic equilibrium points. There is a subcritical (backward) bifurcation at σvh =

0.5779 (R0 = 1); and a saddle-node bifurcation at σvh = 0.5515 (R0 = 0.9543). Thus

a locally asymptotically stable endemic equilibrium is possible for values of R0 below

1. For comparison we show the bifurcation diagram with δh = 3.41938×10−5. Here,

we only see a stable branch of endemic equilibrium points. There is a supercritical

(forward) bifurcation at σvh = 0.5559 (R0 = 1). There are no endemic equilibrium

points for R0 less than 1.

As Figure 2.3 shows, numerical simulations suggest that even as σvh increases

to large levels, the size of the projection of the endemic equilibrium on the fraction

of exposed humans, eh, increases monotonically, and the equilibrium point remains
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Figure 2.2: Two bifurcation diagrams for (2.12) showing only the endemic equilib-
rium points. The top curve (labeled δh = 3.45392 × 10−4) is for parameter values
described in Table 2.3. The bottom curve (labeled δh = 3.41938 × 10−5) has the
same parameters as the first curve, except for δh. Only the equilibrium value of the
fraction of exposed humans, eh, is shown on the y-axis.

stable. Although we only show the bifurcation diagram for eh, the same is true for

the other fractional variables, ih, rh, ev, and iv.

We now focus on an example with parameter values described in Table 2.3. The

reproductive number corresponding to these parameter values is R0 = 0.9690. Most

of these parameter values are within the bounds of a realistically feasible range, with

the exception of the mosquito birth rate which has been significantly increased to

lower the value of the reproductive number below 1. The value of δh corresponds
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(a) Bifurcation diagram with parameters as de-
scribed in Table 2.3 (except for σvh which is
varied as shown).
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(b) Bifurcation diagram with parameters as de-
scribed in Table 2.3 (except for δh = 3.41938×
10−5 and σvh which is varied as shown).

Figure 2.3: Two bifurcation diagrams for (2.12) showing only the fraction of exposed
humans of the endemic equilibrium points, for a larger interval of σvh values than is
shown in Figure 2.2. As the bifurcation parameter increases, the equilibrium value
of the fraction of the exposed human population increases monotonically and the
endemic equilibrium remains stable.

to a death rate of 12.62% of infectious humans per year. We numerically5 find four

equilibrium points: two on the boundary of, and two in, the positive cone of R7. The

two equilibrium points on the boundary are the mosquito-free equilibrium point,

x
(PT2.3)
mfe = (0, 0, 0, 771.3, 0, 0, 0), (2.64)

and the disease-free equilibrium point,

x
(PT2.3)
dfe = (0, 0, 0, 771.3, 0, 0, 1129). (2.65)

The two equilibrium points inside the positive cone are two endemic equilibria:

x
(PT2.3)
ee1 = (0.006400, 0.1287, 0.03244, 525.8, 0.1067, 0.02668, 1129) (2.66)

5The numerical solutions to the equilibrium equations were found using the NSolve command
in Mathematica.
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Table 2.3: The parameter values for which there exist positive endemic equilibrium
points when R0 < 1: R0 = 0.9690. The unit of time is days.

Λh = 3.285× 10−2

ψh = 7.666× 10−5 ψv = 0.4000
βvh = 0.8333 βhv = 2.000× 10−2

β̃vh = 8.333× 10−3

σvh = 0.5600
νh = 8.333× 10−2 νv = 0.1000
γh = 3.704× 10−3

δh = 3.45392× 10−4

ρh = 1.460× 10−2

µ1h = 4.212× 10−5 µ1v = 0.1429
µ2h = 1.000× 10−7 µ2v = 2.279× 10−4

and

x
(PT2.3)
ee2 = (0.01622, 0.3297, 0.08279, 301.7, 0.2254, 0.05635, 1129). (2.67)

Linear stability analysis shows that the “larger” endemic equilibrium point, x
(PT2.3)
ee2 ,

is locally asymptotically stable, while the “smaller” point, x
(PT2.3)
ee1 , is unstable. Fur-

ther linear analysis with an increased value of σvh = 0.6 and all other parameters as

in Table 2.3 (with R0 = 1.038) shows that there is one stable endemic equilibrium

point.

Figure 2.4 shows simulations of the original unscaled equations (2.1) for param-

eter values in Table 2.3. These plots illustrate the stability of the “larger” endemic

equilibrium, x
(PT2.3)
ee2 , in the presence of a stable disease-free equilibrium point. Fig-

ure 2.5, for the same parameter values, shows only the infectious human population

for two different initial conditions. One solution approaches the locally asymp-

totically stable endemic equilibrium point, while the other approaches the locally

asymptotically stable disease-free equilibrium point.
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Figure 2.4: A numerical simulation of the malaria model (2.1) (using the original
system variables before normalization) with parameter values defined in Table 2.3.
These parameters correspond to R0 = 0.969. The initial conditions used were Sh =
300, Eh = 10, Ih = 30, Rh = 0, Sv = 1000, Ev = 100 and Iv = 50; which
correspond to eh = 0.0294, ih = 0.0882, rh = 0, Nh = 340, ev = 0.0870, iv = 0.0435
and Nv = 1150. The system approaches an endemic equilibrium point, showing
the existence of a stable endemic equilibrium for R0 < 1. The simulations were
conducted using MATLAB’s ode45 — a variable order Runge-Kutta method —
with a relative tolerance of 10−5 and an absolute tolerance of 10−7.

2.4 Summary and conclusions

We analyzed a 7-dimensional ODE model for the transmission of malaria, with 4

variables for humans and 3 variables for mosquitoes. We showed that there exists a

domain where the model is epidemiologically and mathematically well-posed.
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Figure 2.5: A numerical simulation of the malaria model (2.1) with parameter values
defined in Table 2.3. These parameters correspond to R0 = 0.969. Only the number
of infectious humans, Ih, is shown for two different initial conditions. Initial condi-
tion 1 is: Sh = 300, Eh = 10, Ih = 30, Rh = 0, Sv = 1000, Ev = 100 and Iv = 50;
which corresponds to eh = 0.0294, ih = 0.0882, rh = 0, Nh = 340, ev = 0.0870,
iv = 0.0435 and Nv = 1150. Initial condition 2 is: Sh = 700, Eh = 10, Ih = 30,
Rh = 0, Sv = 1000, Ev = 100 and Iv = 50; which corresponds to eh = 0.0135,
ih = 0.0405, rh = 0, Nh = 740, ev = 0.0870, iv = 0.0435 and Nv = 1150. The
solution for Initial Condition 1 approaches the locally asymptotically stable en-
demic equilibrium point, while the solution for Initial Condition 2 approaches the
locally asymptotically stable disease-free equilibrium point. The simulations were
conducted using MATLAB’s ode45 — a variable order Runge-Kutta method —
with a relative tolerance of 10−5 and an absolute tolerance of 10−7.

For this model, we were able to show the existence of two equilibrium points
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with no disease: one with only humans and no mosquitoes, xmfe, and one with both

humans and mosquitoes, xdfe. The equilibrium point with no mosquitoes, xmfe, is

locally asymptotically stable if the mosquito birth rate, ψv, is less than the mosquito

death rate, µ1v.

We defined a reproductive number, R0, that is epidemiologically accurate in that

it provides the expected number of new infections (in mosquitoes or humans) from

one infectious individual (human or mosquito) over the duration of the infectious

period given that all other members of the population are susceptible. We showed

that, provided the mosquito birth rate is greater than the mosquito death rate, if

R0 < 1, then the disease-free equilibrium point, xdfe, is locally asymptotically stable

and if R0 > 1, then xdfe is unstable.

We also proved that an endemic equilibrium point exists for all R0 > 1 with

a transcritical bifurcation at R0 = 1. The analysis and the numerical simulations

showed that for δh = 0, (no disease-induced death) and for some small positive

values of δh, there is a supercritical (forward) transcritical bifurcation at R0 = 1

with an exchange of stability between the disease-free equilibrium and the endemic

equilibrium as shown in Figure 2.6(a). For larger values of δh, there is a subcritical

(backward) transcritical bifurcation at R0 = 1, with an exchange of stability between

the endemic equilibrium and the disease free equilibrium; and there is a saddle-node

bifurcation at R0 = R∗
0 for some R∗

0 < 1. A schematic of this bifurcation diagram is

shown in Figure 2.6(b).

While we do not have any analytical results on the stability of the endemic

equilibrium for large values of R0, numerical results suggest that the equilibrium

is stable. However, it follows from Theorem 2.1.1 that all orbits of the system

of equations (2.12) are bounded. Thus, if there were no stable endemic equilibria

in D, then there would exist a nonequilibrium attractor (such as a limit cycle or

strange attractor), though for this model we have no evidence for nonequilibrium

attractors. Also, although we cannot prove in general that the endemic equilibrium

point is unique for R0 > 1, numerical results for particular parameter sets seem to

suggest that there is a unique endemic equilibrium point for R0 > 1.
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(a) A supercritical bifurcation for small values
of δh. We have proved the stability of the
disease-free equilibrium point (locally asymp-
totically stable for R0 < 1 and unstable for
R0 > 1) and the existence of the endemic
equilibrium point for all R0 > 1. We have
also proved that the bifurcation is supercriti-
cal when δh = 0. Numerical simulations sug-
gest that the endemic equilibrium is stable for
R0 > 1. Numerical results also suggest that for
some small positive values of δh, the bifurcation
is supercritical. We have no analytical results
for the stability of the endemic equilibrium as
R0 approaches ∞.

max

R  = 10

ζ

u

u

u
u

s

s
0R  = R0

*

(b) A subcritical bifurcation for large values of
δh. We have proved the stability of the disease-
free equilibrium point (locally asymptotically
stable for R0 < 1 and unstable for R0 > 1) and
the existence of the endemic equilibrium point
for all R0 > 1. Numerical simulations show that
for some values of δh, there is a saddle-node bi-
furcation at some R∗0 < 1 (dependent on the
parameter values) and a subcritical transcriti-
cal bifurcation at R0 = 1. Thus, for some values
of R0 < 1, there exist two endemic equilibrium
points, the smaller of which is unstable while
the larger is locally asymptotically stable. We
have no analytical results for the stability of the
endemic equilibrium as R0 approaches ∞.

Figure 2.6: Schematics of the two possible bifurcation scenarios for different values of
δh for the malaria model (2.12). It is important to note that this figure is a cartoon,
which summarizes the results for the bifurcation, and not an actual numerical study
of the bifurcation.

The possible existence of a subcritical (backward) bifurcation at R0 = 1 and

a saddle-node bifurcation at some R∗
0 < 1, as shown in Figure 2.6(b), can have

strong implications for public health. Simply reducing R0 to a value below 1 is

not always sufficient to eradicate the disease; it is now necessary to reduce R0 to a

value less than R∗
0 to ensure that there is no endemic equilibrium. The existence of

a saddle-node bifurcation also implies that in some areas with endemic malaria, it

may be possible to significantly reduce prevalence or eradicate the disease with small

increases in control programs (a small reduction in R0 so that it is less than R∗
0).
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Note that it may also be possible in some areas where malaria has been eradicated,

for a slight disruption, like a change in environmental or control variables or an

influx of infectious humans or mosquitoes, for the disease to reestablish itself in the

population with a significant increase in disease prevalence (increasing R0 above R∗
0

or moving the system into the basin of attraction of the stable endemic equilibrium).

The possibility of a subcritical (backward) bifurcation in our model is also a

significant difference from the model of Ngwa and Shu [56], as that model only

exhibited a supercritical (forward) bifurcation at R0 = 1.



66

CHAPTER 3

PARAMETER VALUES AND SENSITIVITY ANALYSIS

We compile two reasonable sets of baseline values for the parameters in the model:

one for areas of high transmission (R0 = 7.0) and one for areas of low transmission

(R0 = 1.1). We compute the sensitivity indices of the reproductive number and the

endemic equilibrium to the parameters around these baseline values. The sensitivity

indices allow us to compare the effectiveness of different control strategies, as each

strategy affects different parameters to different degrees.

3.1 Baseline parameter values

We show baseline values and ranges in Table 3.1 for the parameters described in

Table 2.2. We include two baseline values: for areas of high transmission and low

transmission. We also describe our reasons for using these values and the refer-

ences, where available. We estimate parameter values from published studies and

country-wide data. For location specific parameters, such as migration rates, we

pick realistically feasible values. For the human population in our model, we con-

sider villages, small towns, or small regions. We assume high transmission occurs

in parts of Africa and low transmission occurs in Asia and the Americas. We use 2

significant figure accuracy for all the parameters.

3.1.1 Population data for humans

Table 3.2 shows the life expectancy and birth rate estimates for the year 2005 for

some African countries with areas of high malaria transmission. Using this data, we

assume a birth rate of 40 births per year per 1000 people so ψh = 40/365.25/1000.

We also assume an immigration rate of 12 people per year. We set values of µ1h =

1.6× 10−5 and µ2h = 3.0× 10−7. These correspond to, in the absence of malaria, a
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Table 3.1: Baseline values and ranges for parameters for the malaria model (2.12).
Descriptions of the parameters are in Table 2.2.

Baseline Baseline
Dimension high low Range Details

Λh Humans ×
Days−1

0.033 0.041 0.0027 – 0.27 §3.1.1

ψh Days−1 1.1× 10−4 5.5× 10−5 2.7× 10−5 – 1.4× 10−4 §3.1.1
ψv Days−1 0.13 0.13 0.020 – 0.27 §3.1.2
σvh Days−1 0.40 0.25 0.13 – 0.47 §3.1.3
βhv 1 0.022 0.022 0.010 – 0.27 §3.1.4
βvh 1 0.48 0.24 0.072 – 0.64 §3.1.5

β̃vh 1 0.048 0.024 0.0072 – 0.64 §3.1.5
νh Days−1 0.10 0.10 0.067 – 0.20 §3.1.6
νv Days−1 0.091 0.083 0.029 – 0.33 §3.1.7
γh Days−1 0.0035 0.0035 0.0014 – 0.017 §3.1.8
δh Days−1 9.0× 10−5 1.8× 10−5 0 – 4.1× 10−4 §3.1.9
ρh Days−1 5.5× 10−4 2.7× 10−3 1.1× 10−2 – 5.5× 10−5 §3.1.10
µ1h Days−1 1.6× 10−5 8.8× 10−6 1.0× 10−6 – 1.0× 10−3 §3.1.1
µ2h Humans−1

× Days−1

3.0× 10−7 2.0× 10−7 1.0× 10−8 – 1.0× 10−6 §3.1.1

µ1v Days−1 0.033 0.033 0.0010 – 0.10 §3.1.2
µ2v Mosquitoes−1

× Days−1

8.0× 10−6 4.0× 10−5 1.0× 10−6 – 1.0× 10−3 §3.1.2

life expectancy of 40 years and 3.8% of the population emigrating every year. The

stable population size for these parameter values, in the absence of malaria, is 523.

Table 3.3 shows the life expectancy and birth rate estimates for the year 2005

for some Asian and American countries with areas of low malaria transmission.

Using this data, we assume a birth rate of 20 births per year per 1000 people so

ψh = 20/365.25/1000. We also assume an immigration rate of 15 people per year.

We set values of µ1h = 8.8 × 10−6 and µ2h = 2.0 × 10−7. These correspond to, in

the absence of malaria, a life expectancy of 70 years and 3.2% of the population

emigrating every year. The stable population size for these parameter values, in the

absence of malaria, is 583.

To determine the range of these parameters, we allow the immigration rate, Λh,
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Table 3.2: Demographic data for countries with areas of high levels of malaria
transmission. The unit for life expectancy is years and the unit for the birth rate is
total births per 1000 people per year.

Country Life Birth References
Expectancy Rate

Botswana 33.87 23.33 CIA (2005) [13]
Congo, DR 49.35 44.38 CIA (2005) [13]

Kenya 47.99 40.13 CIA (2005) [13]
Malawi 36.97 43.95 CIA (2005) [13]
Zambia 39.7 41.38 CIA (2005) [13]

Table 3.3: Demographic data for countries with areas of low levels of malaria trans-
mission. The unit for life expectancy is years and the unit for the birth rate is total
births per 1000 people per year.

Country Life Birth References
Expectancy Rate

Brazil 71.69 16.83 CIA (2005) [13]
India 64.35 22.32 CIA (2005) [13]

Indonesia 69.57 20.71 CIA (2005) [13]
Mexico 75.19 21.01 CIA (2005) [13]

Saudi Arabia 75.46 29.56 CIA (2005) [13]
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to vary from 1 migrant per year to 100 migrants per year. This is a location specific

parameter so it can vary greatly. We allow the birth rate to vary from 10 births per

1000 people per year to 50 births per 1000 people per year. We allow µ1h and µ2h to

vary so that the minimum removal rate corresponds to a life expectancy of 80 years

and no emigration, and the maximum removal rate corresponds to a life expectancy

of 30 years and 33% annual emigration. The exact values of µ1h and µ2h, for a given

life expectancy and emigration rate, would depend on the values of the immigration

rate and the birth rate.

3.1.2 Population data for mosquitoes

We use the results for the mosquito birth rate calculated by Briët (2002) (Fig. 2 in

[10]) for An. gambiae to give us a rate of 130 new adult female mosquitoes per day

per 1000 female mosquitoes. The stable equilibrium value of the mosquito popula-

tion, Nv, varies greatly depending on the location. For areas of high transmission,

we use estimates derived from the data from Gimnig et al. (2003) [27]. Gimnig et al.

(2003) [27] provide quarterly data for the average number of An. gambiae and An.

funestus mosquitoes in a region of Western Kenya (Asembo). From this data, we use

an estimate of 2 An. gambiae and 0.8 An. funestus mosquitoes per house. We also

assume that there are 1.5 people per house (Gimnig et al. (2003) [26] state that in

Asembo there are 17000 people living in approximately 2500 family compounds with

about 3–5 houses per compound) and there are a total of about 12 times as many

mosquitoes as are found in the houses. Given the size of the human population in

the model and the mosquito birth rate, we set µ1v = 0.033 and µ2v = 8.0× 10−6 so

that there is a stable equilibrium value of about 12000 mosquitoes.

For areas with low transmission, we use the same mosquito birth rate and

mosquito (density independent) death rate, as that for areas of high transmission,

but a higher density dependent death rate, µ2v = 4.0 × 10−5, to provide a stable

equilibrium value of about 2400 mosquitoes.

Table 3.4 shows different estimates for mosquito life expectancy.
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Table 3.4: Mosquito life expectancy data.

Lifespan Mosquito References
(days) species

5.6 An. funestus Krafsur and Garrett-Jones (1977) [44]
5.89 An. funestus Gillies and Wilkes (1963) [24]
10.2 An. funestus Garrett-Jones and Grab (1964) [22]
11.26 An. gambiae Gillies and Wilkes (1965) [25]
15.4 An. gambiae Garrett-Jones and Shidrawi (1969) [23]
8.0 An. gambiae Garrett-Jones and Grab (1964) [22]
5.8 An. nili Garrett-Jones and Grab (1964) [22]
8.5 An. coustani Garrett-Jones and Grab (1964) [22]
7.1 An. punctulatus Peters and Standfast (1960) [58]
20 An. balabacensis Slooff and Verdgrager (1972) [65]
9 An. minimus Khan and Talibi (1972) [36]
9 An. gambiae Molineaux et al. (1979) [51]

3.6 An. gambiae Zahar (1974) [72]

3.1.3 Data for σvh

We use an estimate of 0.40 bites on humans per mosquito per day in areas of

high transmission and 0.25 bites on humans per mosquito per day in areas of low

transmission. Table 3.5 shows different estimates for the average number of bites

on humans per mosquito per day. These estimates include both, the dependence

on the mosquito’s gonotrophic cycle (the number of days a mosquito requires to

produce eggs before it searches for a blood meal again), and the dependence on

the mosquito’s anthropophilic rate (the mosquito’s preference for human blood as

opposed to other mammalian blood).
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3.1.4 Data for βhv

Table 3.6 shows the probability of transmission of infection from an infectious

mosquito to a susceptible human given that a contact between the two occurs.

We use an estimate of βhv = 0.022 for both, areas of high and low transmission.

Table 3.6: Data for probability of transmission of infec-
tion from mosquitoes to humans.

Probability of Human References
Transmission characteristic
0.0223±0.0028 - Nedelman (1985) [54]1

0.01 - Davidson and Draper (1953) [15]
0.015–0.026 - Pull and Grab (1974) [59]
0.06–0.27 Children Krafsur and Armstrong (1978) [43]
0.05–0.13 Adults Krafsur and Armstrong (1978) [43]

0.012 Village 12 Nedelman (1984) [53]
0.086 Village 23 Nedelman (1984) [53]

3.1.5 Data for βvh and β̃vh

Table 3.7 shows the probability of transmission of infection from infectious humans

to susceptible mosquitoes given that a contact between the two occurs. We use an

estimate of βvh = 0.48 for areas of high transmission and βvh = 0.24 for areas of

low transmission. We assume that the probability of transmission from recovered

humans to susceptible mosquitoes is one tenth the probability of transmission from

infectious humans [56], so β̃vh = 0.048 for areas of high transmission and β̃vh = 0.024

for areas of low transmission.

1Calculations from data from Pull and Grab (1974) [59].
2With relative highest mosquito density.
3With relative lowest mosquito density.
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Table 3.8: Data for the latent period in humans.
Latent Plasmodium References

Period (days) species
10–14 P. ovale Molineaux and Gramiccia (1980) [50]
15–16 P. malariae Molineaux and Gramiccia (1980) [50]
9–10 P. falciparum Molineaux and Gramiccia (1980) [50]
5–15 - Oaks et al. (1991) [57]

3.1.6 Data for νh

We assume a latent period in humans of 10 days, for both baseline cases, from the

data shown in Table 3.8.

3.1.7 Data for νv

We assume the latent period in mosquitoes to be 11 days in areas of high transmis-

sion and 12 days in areas of low transmission. Table 3.9 shows some estimates for

the latent period in mosquitoes.

Table 3.9: Data for the latent period in mosquitoes.

Latent Plasmodium Temperature References
Period species (◦C)
(days)

9 P. vivax 25–27 Anderson and May (1991) [1]
12 P. falciparum 25–27 Anderson and May (1991) [1]
117 P. falciparum 24 Baker (1966) [7]
3–35 P. vivax 17–31 Macdonald (1957) [49]
5–35 P. falciparum 20–33 Macdonald (1957) [49]

3.1.8 Data for γh

We use an estimated recovery period of 9.5 months in, both, areas of high and low

transmission. Table 3.10 shows some estimates of the duration of the infectious

period in humans.

7Mosquito species is An. gambiae.
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3.1.9 Data for δh

The value of the disease-induced death rate varies considerably across different re-

gions, depending on the diagnosis and treatment facilities available. Arudo et al.

(2003) [5] give the mortality rate for malaria for children under 5 years old in Asembo

(a region in western Kenya) as 32.9 deaths per year per 1000 children. Although

this data is only for children and for all children (not only those that are infectious),

we use it as an estimate for the per capita disease-induced death rate. This as-

sumption is reasonable because in areas of high malaria transmission like Asembo,

almost all children suffer from clinical malaria and most adults (with the excep-

tion of pregnant women and immigrants from areas of low malaria transmission)

do not contract clinical malaria. For areas of low transmission, we assume that di-

agnostic and treatment facilities are more advanced and the disease-induced death

rate is a fifth that of Asembo. We assume that the range of δh can vary from no

disease-induced deaths to 150 deaths per year per 1000 infected people.

3.1.10 Data for ρh

Immunity to malaria in humans is a complicated mechanism that is not completely

understood. It has been shown that immunity is short-lived and requires repeated

reinfection to sustain itself ([2] and [19]). Thus, people in areas of high transmission

are generally immune for long periods of time, while people in areas of low trans-

mission lose their immunity relatively quickly after contracting malaria. The rate

of loss of immunity is a nonlinear process that depends on the transmission rate.

However, for ease of analysis, we make the simplifying assumption that immunity

is lost at a constant rate. This assumption is ok if the level of malaria does not

change significantly over time in the area where we model malaria. For areas of

high transmission, we assume that the period of immunity lasts 5 years, while in

areas of low transmission, we assume that the period lasts for one year. We also

assume that the range can vary from 3 months to 50 years.
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Table 3.11: The endemic equilibrium for the malaria model (2.1) for the baseline
parameter values described in Table 3.1 for areas of high transmission.

Sh = 12.6454 Sv = 8911
Eh = 3.0060 Ev = 1891
Ih = 80.1010 Iv = 1323
Rh = 393.3509

Table 3.12: The endemic equilibrium for the malaria model (2.12) for the baseline
parameter values described in Table 3.1 for areas of high transmission.

eh = 0.0061 ev = 0.1559
ih = 0.1638 iv = 0.1091
rh = 0.8042

Nh = 489.10 Nv = 12125

3.2 Derived quantities and numerical simulations

In this section, we calculate the reproductive number, R0 (2.20) and the endemic

equilibrium point(s), xee, for the malaria model (2.1) and (2.12) for the baseline

parameter values given in Table 3.1.

3.2.1 High transmission

For the baseline parameters for high malaria transmission, R0 = 6.9859. There is

only one endemic equilibrium point, xee, shown in the original variables in Table 3.11,

and in normalized variables in Table 3.12. We show a numerical simulation of the

malaria model (2.1) in Figure 3.1.

3.2.2 Low transmission

For the baseline parameters for low malaria transmission, R0 = 1.1261. There is only

one endemic equilibrium point, xee, shown in the original variables in Table 3.13,

and in normalized variables in Table 3.14. We show a numerical simulation of the

malaria model (2.1) in Figure 3.2.
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Figure 3.1: A numerical simulation of the malaria model (2.1) (using the original
system variables before normalization) with baseline parameter values defined in
Table 3.1 for areas of high transmission. These parameters correspond to R0 =
6.9859. The initial conditions used were Sh = 500, Eh = 10, Ih = 30, Rh = 0,
Sv = 10000, Ev = 100 and Iv = 50; which correspond to eh = 0.0185, ih = 0.0556,
rh = 0, Nh = 540, ev = 0.0099, iv = 0.0049 and Nv = 10150. The system approaches
the endemic equilibrium point given in Table 3.11. The simulations were conducted
using MATLAB’s ode45 — a variable order Runge-Kutta method — with a relative
tolerance of 10−5 and an absolute tolerance of 10−7.

3.3 Sensitivity analysis

In determining how best to tackle malaria, and reduce malaria mortality, it is nec-

essary to know the relative importance of the different factors responsible for its

transmission and prevalence. Initial disease transmission is directly related to R0,
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Table 3.13: The endemic equilibrium for the malaria model (2.1) for the baseline
parameter values described in Table 3.1 for areas of low transmission.

Sh = 471.3376 Sv = 2326.95
Eh = 1.1708 Ev = 59.84
Ih = 46.9698 Iv = 38.21
Rh = 58.2041

Table 3.14: The endemic equilibrium for the malaria model (2.12) for the baseline
parameter values described in Table 3.1 for areas of low transmission.

eh = 0.0030 ev = 0.0247
ih = 0.0812 iv = 0.0158
rh = 0.1007

Nh = 578.22 Nv = 2425

and disease prevalence is directly related to the endemic equilibrium point, specifi-

cally the sizes of eh, ih, rh, ev and iv. These sizes represent the individuals (humans

and mosquitoes) who have some life stage of Plasmodium in their bodies. The

fraction of infectious humans, ih, is especially important because it represents the

people that suffer the most and is directly related to the total number of malarial

deaths. We calculate the sensitivity indices of the reproductive number, R0, and the

endemic equilibrium point to the different parameters in the model. These indices

tell us how crucial each parameter is to disease transmission and prevalence.

In conducting the sensitivity analysis, we use methods described by Arriola and

Hyman [4]. The normalized forward sensitivity index of a variable to a parameter is

the ratio of the relative change in the variable to the relative change in the parameter.

When the variable is a differentiable function of the parameter, the sensitivity index

may be alternatively defined using partial derivatives.

Definition The normalized forward sensitivity index of a variable, u, that depends

continuously on a parameter, p, is defined as:

Υu
p :=

∂u

∂p
· p

u
. (3.1)
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Figure 3.2: A numerical simulation of the malaria model (2.1) (using the original
system variables before normalization) with baseline parameter values defined in
Table 3.1 for areas of low transmission. These parameters correspond to R0 =
1.1261. The initial conditions used were Sh = 600, Eh = 20, Ih = 3, Rh = 0,
Sv = 2400, Ev = 30 and Iv = 5; which correspond to eh = 0.0321, ih = 0.0048,
rh = 0, Nh = 623, ev = 0.0123, iv = 0.0021 and Nv = 2435. The system approaches
the endemic equilibrium point given in Table 3.13. The simulations were conducted
using MATLAB’s ode45 — a variable order Runge-Kutta method — with a relative
tolerance of 10−5 and an absolute tolerance of 10−7.

We show detailed examples of evaluating these sensitivity indices in §3.3.2.1.

Sensitivity analysis is also commonly used to determine the robustness of model

predictions to parameter values, as there are usually errors in data collection and

presumed parameter values. However, as we do not use our model to make predic-
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tions, we do not utilize this aspect of sensitivity analysis.

3.3.1 Reproductive number

As we have an explicit expression for R0 (2.20), we can evaluate the sensitivity of

R0 to the sixteen different parameters described in Table 2.2 as,

ΥR0
p :=

∂R0

∂p
· p

R0

, (3.2)

to provide an analytical expression for the sensitivity index. However, with the

exception of ΥR0
σvh

, these expressions for the sensitivity indices are complex with

little obvious structure. We therefore evaluate the sensitivity indices at the baseline

parameter values given in Table 3.1. For example, the sensitivity index of R0 (2.20)

with respect to βvh is ΥR0
βvh

= (∂R0/∂βvh) × (βvh/R0) evaluated at the parameter

values in Table 3.1. The sensitivity indices of R0 to the sixteen different parameters

in the model for areas of high and low transmission are shown in Table 3.15. We

note here that the sensitivity index of R0 with respect to σvh, ΥR0
σvh

, does not depend

on the values of the parameters because ΥR0
σvh

= (∂R0/∂σvh) × (σvh/R0) is always

exactly equal to 1.

In both cases, of high and low transmission, the most sensitive parameter is

the mosquito biting rate, σvh. Other important parameters include the probability

of disease transmission from infectious mosquitoes to susceptible humans, βhv, the

density-dependent mosquito death rate, µ2v, and the human to mosquito disease

transmission probability, βvh. As ΥR0
σvh

= +1.0, decreasing (or increasing) σvh by

10% decreases (or increases) R0 by 10%. Similarly, as ΥR0
µ2v

= −0.5, increasing (or

decreasing) µ2v by 10% decreases (or increases) R0 by 5%.

For almost all parameters, the sign of the sensitivity indices of R0 (i.e., whether

R0 increases or decreases when a parameter increases) agrees with an intuitive ex-

pectation. The only possible exception is the mosquito birth rate, ψv. For both,

high and low transmission, the reproductive number decreases as the mosquito birth

rate increases. We would expect R0 to increase because increasing ψv increases the
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Table 3.15: Sensitivity indices of R0 (2.20) to parameters for the malaria model,
evaluated at the baseline parameter values given in Table 3.1. The parameters are
ordered from most sensitive to least. In both cases, of high and low transmission,
the most sensitive parameter is the mosquito biting rate, σvh, and the least sensitive
parameter is the human rate of progression from the latent period, νh.

High Transmission Low Transmission
Parameter Sign Value Parameter Sign Value

1. σvh + 1.0 1. σvh + 1.0
2. βhv + 0.50 2. βhv + 0.50
2. µ2v − 0.50 2. µ2v − 0.50
4. µ2h + 0.34 4. βvh + 0.44
5. βvh + 0.34 5. γh − 0.43
6. γh − 0.30 6. νv + 0.31
7. νv + 0.29 7. µ2h + 0.30
8. ψh − 0.28 8. Λh − 0.20
9. µ1v − 0.17 9. µ1v − 0.17

10. β̃vh + 0.16 10. ψh − 0.15
11. Λh − 0.16 11. ψv − 0.14

12. ρh − 0.12 12. β̃vh + 0.055
13. ψv − 0.12 13. ρh − 0.053
14. µ1h + 0.035 14. µ1h + 0.023
15. δh − 0.012 15. δh − 0.0025
16. νh + 0.00086 16. νh + 0.00063

number of mosquitoes.

However, the mosquito death rate is density dependent. As the birth rate in-

creases and the number of mosquitoes increases, the death rate also increases because

the environment can only support a certain number of mosquitoes (given food re-

strictions and so on). Therefore, the average lifespan of the mosquito also decreases.

Mathematically, at equilibrium population size, the per capita birth rate, ψv, is

equal to the per capita death rate, µ1v +µ2vN
∗
v . Thus, at equilibrium, ψv is also the

per capita death rate; and with an exponential distribution for the death rate, 1/ψv

is the expected lifespan of the mosquitoes. As the latent period of Plasmodium in

mosquitoes is of the same order as the lifespan of the mosquitoes, shortening the

lifespan of the mosquito reduces the reproductive number.
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Thus any changes in ψv have two opposite effects. Increasing ψv increases the

number of mosquitoes which tends to increase R0, and also decreases the mosquito

lifespan which tends to reduce R0. The values of the other parameters help determine

which of these two effects is stronger. In both lists of baseline parameters that we

use, the effect of the reduction of the mosquito lifespan is stronger and R0 decreases

for an increase in ψv.

We should expect however, that for other parameter values, it is possible for

R0 to increase when ψv increases. We evaluate the sensitivity indices for R0 with

parameter values exactly as in Table 3.1 for low transmission, except for µ1v = 0.123

(instead of µ1v = 0.033). The equilibrium mosquito population for these parameters

is N∗
v = 175 and the most sensitive parameters are:

1. ΥR0
µ1v

= −8.8

2. ΥR0
ψv

= +8.5

3. ΥR0
σvh

= +1.0

Thus, when there are few mosquitoes, R0 increases when ψv increases.

3.3.2 Endemic equilibrium

As we do not have an explicit expression for the endemic equilibrium, xee, we cannot

find analytical expressions for the sensitivity indices. We therefore, evaluate the local

sensitivity indices at the baseline parameter values in Table 3.1. To calculate these

indices, we first need to evaluate the partial derivatives of the state variables at the

endemic equilibrium with respect to the parameters.

For ease of notation, we label the seven state variables at the endemic equilibrium

point (eh, ih, . . . , Nv) by x1, x2, . . . , x7; the sixteen parameters (Λh, ψh, . . . , µ2v) by

p1, p2, . . . , p16; and the seven equilibrium equations (2.35) by



84

g1(x1, . . . , x7; p1, . . . , p16) = 0 (3.3)
... =

...

g7(x1, . . . , x7; p1, . . . , p16) = 0.

We want to evaluate ∂xi/∂pj for 1 ≤ i ≤ 7 and 1 ≤ j ≤ 16 for the parameter values

in Table 3.1 (with the corresponding endemic equilibrium point given in Table 3.12

or 3.14). To do so, we take full derivatives of the equilibrium equations (3.3) with

respect to all the parameters, pj. This gives us 7× 16 equations of the form

dgk

dpj

=
7∑

i=1

(
∂gk

∂xi

∂xi

∂pj

)
+

16∑

l=1

(
∂gk

∂pl

∂pl

∂pj

)
= 0 (3.4)

for k going from 1 to 7 and j going from 1 to 16. However, ∂pl/∂pj = 0 if l 6= j so

each equation in (3.4) reduces to

7∑
i=1

∂gk

∂xi

∂xi

∂pj

= −∂gk

∂pj

. (3.5)

These equations are decoupled in terms of the parameters, pj, but are coupled

in terms of the function, gk. The equations (3.4) are thus 16 linear systems of 7

coupled equations. They may be written as

Az(j) = b(j) (3.6)

where A is the (7 × 7) Jacobian of the malaria model (2.12) with Aki = ∂gk/∂xi;

z(j) is the unknown (7 × 1) vector with the ith term of z(j) given by ∂xi/∂pj; and

b(j) is a (7×1) vector with the kth term given by −∂gk/∂pj. The matrix A is known

because we can evaluate the Jacobian (2.21) for the given parameter values and the

corresponding endemic equilibrium point. Similarly, we can directly evaluate b(j) by

calculating the derivative, −∂gk/∂pj, at the given parameter values.

Solving these 16 linear systems of equations (3.6) for z(j) gives us what we want:

∂xi/∂pj for 1 ≤ i ≤ 7 and 1 ≤ j ≤ 16. Finally, we multiply ∂xi/∂pj by pj/xi, as

in the definition of the sensitivity index (3.1), to find the sensitivity of each state
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Table 3.16: The sensitivity indices, (∂xi/∂pj) × (pj/xi), of the state variables at
the endemic equilibrium, xi, to the parameters, pj, for baseline parameter values
for areas of high transmission given in Table 3.1, measure the relative change in the
solution to changes in the parameters.

eh ih rh Nh ev iv Nv

Λh +0.056 +0.044 −0.021 +0.31 +0.016 +0.017 0
ψh +0.092 +0.071 −0.034 +0.51 +0.027 +0.027 0
ψv +0.00044 +0.00044 +0.00045 −0.000030 −0.32 −1.3 +1.3
σvh +0.046 +0.045 +0.046 −0.0031 +0.77 +0.77 0
βhv +0.026 +0.026 +0.027 −0.0018 +0.019 +0.019 0
βvh +0.013 +0.013 +0.013 −0.00089 +0.50 +0.50 0

β̃vh +0.0064 +0.0063 +0.0064 −0.00044 +0.25 +0.25 0
νh −1.0 +0.0062 +0.0063 −0.00043 +0.0046 +0.0046 0
νv +0.015 +0.015 +0.016 −0.0011 −0.40 +0.60 0
γh +0.10 −0.84 +0.15 +0.058 −0.38 −0.38 0
δh +0.011 −0.010 +0.0037 −0.068 −0.0042 −0.0042 0
ρh +0.62 +0.62 −0.14 −0.043 +0.27 +0.27 0
µ1h +0.0090 +0.0076 +0.00064 −0.075 +0.0039 +0.0039 0
µ2h +0.082 +0.070 +0.0059 −0.69 +0.036 +0.036 0
µ1v −0.0089 −0.0089 −0.0090 +0.00061 −0.0066 −0.0066 −0.34
µ2v −0.026 −0.026 −0.027 +0.0018 −0.019 −0.019 −1

variable in the endemic equilibrium point, xi, to the parameter, pj.

We show the sensitivity indices of the state variables at the endemic equilibrium

point, xee, to the parameters for areas of high and low transmission in Tables 3.16

and 3.17 respectively. All sensitivity indices are shown to 2 significant figures because

that was the accuracy of the parameters. However, the sensitivity indices for Nv

can be calculated analytically as we have an explicit expression for the equilibrium

value of the number of mosquitoes. We show these results for Nv in §3.3.2.1.

In interpreting the sensitivity indices, it is important to first note two points.

1. Keeping all other factors fixed, increasing disease prevalence will lead to a

decrease in the human population size — because of disease-induced death in

infectious humans. Similarly, reducing the disease prevalence will lead to an

increase in the human population size.
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Table 3.17: Sensitivity indices of the endemic equilibrium to parameters for baseline
parameter values given in Table 3.1 for areas of low transmission.

eh ih rh Nh ev iv Nv

Λh −1.5 −1.5 −1.5 +0.39 −1.5 −1.5 0
ψh −1.1 −1.2 −1.2 +0.30 −1.1 −1.1 0
ψv −0.87 −0.88 −0.88 +0.0069 −1.4 −2.4 +1.3
σvh +7.4 +7.6 +7.6 −0.059 +8.2 +8.2 0
βhv +3.8 +3.9 +3.9 −0.030 +3.7 +3.7 0
βvh +3.2 +3.3 +3.3 −0.026 +4.0 +4.0 0

β̃vh +0.40 +0.41 +0.41 −0.0032 +0.50 +0.50 0
νh −0.98 +0.019 +0.019 −0.00015 +0.018 +0.018 0
νv +2.3 +2.4 +2.4 −0.018 +1.9 +2.9 0
γh −2.8 −3.8 −2.8 +0.030 −3.5 −3.5 0
δh +0.017 +0.012 +0.012 −0.0079 +0.012 +0.012 0
ρh +0.065 +0.066 −0.89 −0.00052 −0.037 −0.037 0
µ1h +0.18 +0.18 +0.18 −0.049 +0.17 +0.17 0
µ2h +2.3 +2.3 +2.3 −0.64 +2.2 +2.2 0
µ1v −1.3 −1.3 −1.3 +0.010 −1.3 −1.3 −0.34
µ2v −3.8 −3.9 −3.9 +0.030 −3.7 −3.7 −1

2. Keeping all other factors fixed, reducing the human population size will lead to

an increase in disease prevalence — because the number of mosquito bites per

human per unit time will increase. Similarly increasing the human population

size will lead to a decrease in disease prevalence.

The equilibrium value of the size of the mosquito population is decoupled

from the rest of the system and every mosquito has a fixed number of bites

on humans per unit time. As the human population decreases and the total

number of mosquito bites on humans remains constant, the number of bites

per human per unit time increases, leading to an increase in disease prevalence.

In areas of low transmission, the order of the relative sensitivity of the different

parameters for R0 is largely similar to that for the equilibrium value of ih. As the

reproductive number is based on a linearization around the disease-free equilibrium,

xdfe, and the endemic equilibrium in areas of low transmission is close to xdfe (be-

cause R0 is close to 1), the sensitivity indices are similar to those for R0. The most
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sensitive parameter is the mosquito biting rate, σvh, followed by the mosquito to

human disease transmission probability, βhv, and the density-dependent mosquito

death rate, µ2v. Other important parameters include the human recovery rate, γh,

the human to mosquito disease transmission probability, βvh, the mosquito rate of

progression from the latent state, νv, and the human density-dependent death and

emigration rate, µ2h.

The direction of change of the endemic equilibrium with respect to most of the

parameters, for areas of low transmission, agrees with an intuitive expectation. The

parameters that perhaps require some explanation are the human disease-induced

death rate, δh, and the rate of loss of immunity, ρh. As δh increases, disease preva-

lence increases. We believe that this is true because an increase in δh reduces the

equilibrium human population, Nh and the effect of this reduction is stronger than

the effect of the reduction on ih and R0, resulting in an overall increase in dis-

ease prevalence. As ρh increases, rh decreases, which would tend to reduce disease

prevalence. However, as a significant fraction of people are in the recovered class,

reducing the number of recovered people results in a redistribution of the population

that increases the proportion of people in the exposed and infectious classes.

In areas of high transmission, the sensitivity of the endemic equilibrium to the

parameters is quite different from the sensitivity of R0 to the parameters. As R0 is

large, the endemic equilibrium is far from the disease-free equilibrium. The magni-

tude of the sensitivity indices for the endemic equilibrium in high transmission is

also much lower than in low transmission. We believe this is because as R0 increases,

disease prevalence moves closer to 100% and even for large changes in the parameter

values, there are only small changes in the endemic equilibrium.

The most sensitive parameter for ih is γh followed by ρh. As the infectious and

recovered periods are long and over 97% of the people are in the diseased classes, any

changes in the recovery rate or rate of loss of immunity will have a relatively large

effect on the fraction of infectious humans. The rate of loss of immunity has a large

effect on ih because as 80% of the people are in the recovered class, any increase

will remove a large number of people from the recovered class. Since infection rates
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are high, most of these people will be absorbed into the other classes, especially the

infectious class. (This effect is similar to, and more pronounced than, that seen in

areas of low transmission. In areas of high transmission, the increase in ih is also

strong enough to increase disease prevalence in mosquitoes.)

Increases in the human demographic parameters, ψh, µ2h and Λh, also result

in large increases in ih. Increasing µ2h causes a significant reduction in the human

population size and thus leads to an increase in disease prevalence. The effects of the

human birth rate, ψh, and the immigration rate, Λh, are a little more complicated.

Increasing these parameters increases the total human population size which would

tend to decrease disease prevalence. However, as the incoming population is in

the susceptible class and the inoculation rate is high, most of these people will get

infected and move through the exposed and infectious classes to the recovered class.

The net result of increasing the number of humans entering the population is the

reduction of the fraction of recovered humans and an increase in the proportion

of humans in the other classes. Increasing ih also increases disease prevalence in

mosquitoes. This effect is stronger than the decrease in mosquito disease prevalence

due to a reduction in rh and an increase in Nh. Other important parameters for

ih are the mosquito biting rate, σvh, followed by the mosquito to human disease

transmission probability, βhv, and the density-dependent mosquito death rate, µ2v.

These were the most important parameters for R0 and for the endemic equilibrium

in areas of low transmission.

3.3.2.1 Sensitivity analysis of the equilibrium mosquito population

As we have an explicit expression for the equilibrium value of Nv, we can analytically

evaluate the sensitivity of Nv to the parameters. Remember at equilibrium,

Nv =
ψv − µ1v

µ2v

. (2.36)

As Nv depends on only three parameters, the sensitivity indices of Nv to all other

parameters is 0. We evaluate the nonzero sensitivity indices below:
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1. Sensitivity of Nv to µ2v:

ΥNv
µ2v

=
∂Nv

∂µ2v

· µ2v

Nv

= −
(

ψv − µ1v

µ2
2v

)
· µ2v ·

(
µ2v

ψv − µ1v

)

= −1

2. Sensitivity of Nv to ψv:

ΥNv
ψv

=
∂Nv

∂ψv

· ψv

Nv

=
1

µ2v

· ψv ·
(

µ2v

ψv − µ1v

)

=
ψv

ψv − µ1v

For the baseline parameter values given in Table 3.1, for areas of high and low

transmission, ΥNv
ψv

= 1.3.

3. Sensitivity of Nv to µ1v:

ΥNv
µ1v

=
∂Nv

∂µ1v

· µ1v

Nv

= − 1

µ2v

· µ1v ·
(

µ2v

ψv − µ1v

)

= − µ1v

ψv − µ1v

For the baseline parameter values given in Table 3.1, for areas of high and low

transmission, ΥNv
µ1v

= −0.34.
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3.4 Control strategies

In 1998, the World Health Organization (WHO), in conjunction with the United

Nations Children’s Fund (UNICEF), the United Nations Development Programme

(UNDP), and the World Bank, launched the Roll Back Malaria Global Partnership

(RBM), with the goal of halving the worldwide burden of malaria by 2010. Of the

numerous anti-malarial activities and research efforts supported by RBM and others,

we describe some of the control strategies, and their effects on the parameters of our

model, here. As we know the sensitivity indices of R0 and the endemic equilibrium

point to these parameters, we can use them to compare the effectiveness of the

control strategies.

Larval control: This strategy includes methods such as the destruction of breeding

sites which aim to reduce the number of mosquitoes. Decreasing the number of

breeding sites lowers the mosquito birth rate, ψv, and probably also increases

the mosquito death rates, µ1v and µ2v. Although sensitivity analysis shows

that reducing ψv would increase R0, in areas of high transmission reducing ψv

would reduce the fraction of infectious humans at equilibrium, ih. In areas

of high transmission, a 10% reduction in ψv would approximately increase

R0 by 1.2% and reduce ih by 0.0044%. In areas of low transmission, a 10%

reduction in ψv would approximately increase R0 by 1.4% and increase ih by

8.8%. This is not useful for a control strategy, but methods used for larval

control would also affect µ1v and µ2v (though to lesser degrees) which would

have more beneficial effects. In areas of high transmission, a 10% increase in

µ2v would approximately reduce R0 by 5% and reduce ih by 0.26%. In areas

of low transmission, a 10% increase in µ2v would approximately reduce R0 by

5% and reduce ih by 39%.

Indoor residual spraying (IRS): Spraying reduces mosquito longevity (and per-

haps also fertility). This strategy is also likely to kill mosquitoes that rest

indoors after feeding so it would increase the chances of killing infected
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mosquitoes. IRS increases the mosquito death rate and reduces the num-

ber of mosquitoes — increasing µ1v and µ2v. As described above, increasing

µ2v can be effective in reducing malaria burden.

Insecticide-treated bed nets (ITN): RBM has been promoting the use of in-

secticide treated bed nets in many countries and regions of Africa to reduce

the transmission of malaria; and has succeeded in doing so in many regions.

As some recent studies have shown [30], ITN’s have had a significant impact

on disease prevalence and mortality. Increasing the number of bed nets re-

duces the number of human-mosquito contacts, and to a lesser extent increases

the mosquito death rates, µ1v and µ2v. Preventing mosquito-human contacts

would reduce the number of bites per mosquito, σvh. This would translate into

the mosquitoes biting other animals or not biting at all. Reducing the number

of blood meals that each female mosquito gets, would also lower the mosquito

birth rate, ψv, and perhaps reduce the number of mosquitoes. In areas of high

transmission, a 10% reduction in σvh would approximately reduce R0 by 10%

and reduce ih by 0.45%. In areas of low transmission, a 10% reduction in σvh

would approximately reduce R0 by 10% and reduce ih by 76%. This seems to

be the most effective strategy for control in areas of low transmission, and the

most effective in reducing disease transmission in areas of high transmission.

Insecticide-treated livestock: There are studies underway in regions that have

zoophilic mosquitoes to treat cattle and other livestock close to homesteads

with insecticides. Insecticide-treated livestock has similar effects to IRS, al-

though treating livestock with insecticide has been shown to be more cost-

effective in areas where the mosquitoes are mostly zoophilic [29] and [63]. It

increases µ1v, µ2v and to a lesser degree reduces σvh. Like IRS, insecticide-

treated livestock is an effective strategy.

Intermittent prophylactic treatment (IPT): This is a new area of research

that involves administering antimalarial drugs at regular intervals, even to

those who are not sick, to reduce parasitemia load. This is essentially similar
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to the treatment taken by travellers from malaria-free regions when visiting

malaria-endemic countries. This form of control would most likely be applied

in areas of high transmission where almost everyone has some Plasmodium in

their blood.

Intermittent prophylactic treatment in pregnancy (IPTp): As the

name suggests, IPTp involves giving malarial medicine to pregnant

women, regardless of whether or not they have clinical malaria. Initial

tests are now in progress.

Intermittent prophylactic treatment for infants (IPTi): Initial stud-

ies have started in this area and have shown significant effects in reducing

infant mortality.

As our model shows no distinction between infants, adults and pregnant

women, we can only model this strategy as a general reduction in the proba-

bility of transmission of infection from an infectious mosquito to a susceptible

human, βhv. The treatment also probably causes a slight increase in the hu-

man recovery rate, γh, as it may result in some infectious people beginning

treatment before becoming aware of their infection. In areas of high trans-

mission, a 10% reduction in βhv would approximately reduce R0 by 5% and

reduce ih by 0.26%. In areas of low transmission, a 10% reduction in βhv would

approximately reduce R0 by 5% and reduce ih by 39%.

Prompt and effective case management (PECM): This strategy involves the

quick identification and treatment of malaria cases. Although it may seem ob-

vious, PECM is not always possible in many places because of poor health

infrastructure and a lack of resources. This strategy is more commonly prac-

ticed in areas of low transmission because these areas usually have more re-

sources and identifying malarial infections is easier. Quick treatment is doubly

effective because it directly reduces the suffering and lack of productivity due

to malaria; and it reduces the transmission of infection to mosquitoes. PECM
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increases the human recovery rate, γh, and to a lesser extent reduces the

disease-induced death rate, δh. In areas of high transmission, a 10% increase

in γh would approximately reduce R0 by 3% and reduce ih by 8.4%. In areas

of low transmission, a 10% increase in γh would approximately reduce R0 by

4.3% and reduce ih by 38%. This appears to be the most effective strategy for

reducing disease burden in areas of high transmission.

Gametocytocidal drugs: These drugs kill gametocytes in humans, reducing

human-to-mosquito disease transmission. This is useful in areas like South-

East Asia where there is low transmission and most sick people can be reached.

This would not be useful in many parts of Africa where there are high levels

of transmission and there are not sufficient resources to allow the drugs to be

dispensed to all people with parasite loads. These drugs reduce the disease

transmission probability from infectious and recovered humans to susceptible

mosquitoes, βvh and β̃vh. In areas of high transmission, a 10% reduction in

βvh would approximately reduce R0 by 3.4% and reduce ih by 0.13%. In areas

of low transmission, a 10% reduction in βvh would approximately reduce R0

by 4.4% and reduce ih by 33%.

Transmission blocking vaccine: Research on a vaccine that blocks malaria

transmission has so far appeared promising. Like the gametocytocidal drugs,

the vaccine reduces the disease transmission probability from infectious and re-

covered humans to susceptible mosquitoes, βvh and β̃vh. However, the coverage

of the vaccine would be far greater than that of the drugs and so the vaccine

would have a stronger effect than the gametocytocidal drugs. Although the

vaccine would be more expensive to develop, the cost per dose would be lower

than that of the drugs.

Transgenetically modified mosquitoes: As there are some species of Anopheles

mosquitoes that have an immune response to kill the Plasmodium parasites,

there is hope that genetically modified mosquitoes could be introduced into

the wild that would be incapable of transmitting malaria. This is a promis-
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ing area of research, although still in its early stages. There would need to

be strict controls to ensure that the new mosquitoes created are not acciden-

tally given the capability of transmitting other diseases such as influenza or

AIDS. As these mosquitoes would be immune to malaria, having a popula-

tion of only transgenetically modified mosquitoes would result in βvh = 0 and

β̃vh = 0. However, we would expect some wild-type mosquitoes to persist

in the population so the control strategy would reduce the two transmission

probability terms, βvh and β̃vh. Li (2004) [46] and (2005) [47] has examined

some population models for the introduction of transgenic mosquitoes.

3.5 Conclusion and comparison of control strategies

We divide the parameters of the malaria model, by two criteria, into four categories.

The first criterion is whether the sensitivity analysis shows them to be important

in disease transmission and prevalence (whether the sensitivity index of R0 or xee

to the parameter is high). The second criterion is whether we have control over the

parameter through the intervention strategies listed in §3.4. In the first category,

we include the parameters that are important for disease transmission and spread,

that we have control over: σvh, βhv, βvh, γh, and µ2v. In the second category, we

include the parameters that are important, but that we do not have control over:

Λh, ψh, ρh, µ2h, and νv (which though important, is not as important as the others).

The third category are the parameters that we have control over but do not seem

to be important: ψv, β̃vh, and µ1v. The fourth category are the parameters that are

not important and that we do not have control over: νh and µ1h. One parameter,

δh, falls outside these four categories. Although δh would fit in the third category

because we have control over it and it is not important for disease transmission and

spread, it is still an extremely important parameter from a social point of view as

it is directly related to malaria mortality and human suffering.

It is reassuring to note that the most sensitive parameters for R0 and xee are in

the first category and not in the second category. As Table 3.15 shows for R0, the
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three most sensitive parameters in high transmission areas, and five most sensitive

parameters in low transmission areas, — all parameters with sensitivity indices

greater than 0.35 — can be controlled through intervention. As Tables 3.16 and

3.17 show for ih in xee, the most sensitive parameter in high transmission areas is

controllable and the five most sensitive parameters in low transmission areas are

controllable.

The most sensitive parameter for R0, in both high and low transmission, and

for ih in low transmission areas is σvh. This suggests that the use of ITN’s is very

effective, as has been shown by field studies conducted by the Centers for Disease

Control and Prevention (CDC) and the Kenya Medical Research Institute (KEMRI)

in western Kenya [30]. The equilibrium fraction of infectious humans, ih, in areas

of high transmission is most sensitive to γh, which we can control with PECM,

suggesting that this would also be an effective strategy, especially in areas of high

transmission. PECM also reduces the disease-induced death rate, lowering malaria

mortality.

Among the parameters that we can control, the most sensitive parameters after

σvh and γh are βhv and µ2v whose sensitivity indices are equal in magnitude for R0

and ih in high and low transmission. These can be controlled by IPT, and by larval

control, IRS, and insecticide-treated livestock. The only other important parameter

that we have control over is βvh, which we can control with gametocytocidal drugs,

a transmission blocking vaccine, and transgenetically modified mosquitoes.

There are some important parameters that we cannot control. Most of these are

the human demographic parameters, µ2h, Λh, and ψh, which also vary from region

to region. The rate of loss of immunity, ρh, is another important parameter that

we have little control over. In reality, this rate represents a nonlinear process that

depends on the transmission rate so it remains an important simplification of the

model. Although the mosquito rate of progression from the latent period, νv, is an

important parameter that we have no control over, the magnitudes of its sensitivity

indices are not as high as the other important parameters.

We had expected the mosquito demographic parameters, ψv and µ1v, to be more
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important than the model showed them to be. These are parameters that some

commonly used control strategies target. We assume that the low sensitivity indices

are due to the density dependence of the per capita mosquito death rate. As we

demonstrated earlier in an example, there are regimes of parameter values where

the magnitudes of the sensitivity indices for ψv and µ1v are high. As expected, the

probability of disease transmission from recovered humans to susceptible mosquitoes,

β̃vh, is not important. However, control strategies that reduce βvh also reduce β̃vh.

We note here that all the control strategies in §3.4, with the possible exception

of larval control which targets ψv, have a strong effect on at least one important

parameter so they are effective. However, according to our model there are situa-

tions where larval control may not be effective in, and possibly even detrimental to,

malaria control.

So far, we only have a qualitative relationship between the control strategies and

the parameters. A future goal is to quantitatively relate the control strategies to

the parameters and to include the cost of the control strategies to directly relate the

reduction in disease prevalence and transmission to the cost involved.
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CHAPTER 4

CONCLUSION

We derived and analyzed a mathematical model to better understand the transmis-

sion and spread of malaria. We used this model to compare intervention strategies

for malaria control for two representative areas of high and low transmission to

show that the most effective strategies are the use of insecticide-treated bed nets

and prompt and effective diagnosis and treatment of infected individuals.

Mathematically, we modeled malaria as a 7-dimensional system of ordinary dif-

ferential equations. We first showed that there exists a domain where the model is

epidemiologically and mathematically well-posed. We showed the existence of two

equilibrium points without disease: one with only humans and no mosquitoes, xmfe,

and one with both humans and mosquitoes, xdfe. The equilibrium point with no

mosquitoes, xmfe, is locally asymptotically stable if the mosquito birth rate, ψv, is

less than the density-independent mosquito death rate, µ1v.

We defined a reproductive number, R0, that is epidemiologically accurate in that

it provides the expected number of new infections (in mosquitoes or humans) from

one infectious individual (human or mosquito) over the duration of the infectious

period given that all other members of the population are susceptible. We showed

that, assuming ψv > µ1v, if R0 < 1 then the disease-free equilibrium point, xdfe, is

locally asymptotically stable; and if R0 > 1 then xdfe is unstable.

We also proved that an endemic equilibrium point exists for all R0 > 1 with

a transcritical bifurcation at R0 = 1. The analysis and the numerical simulations

showed that with no, or little, disease-induced death (δh = 0 or some small positive

values of δh), there is a supercritical (forward) transcritical bifurcation at R0 = 1

with an exchange of stability between the disease-free equilibrium and the endemic

equilibrium. For larger values of δh, there is a subcritical (backward) transcritical

bifurcation at R0 = 1, with an exchange of stability between the endemic equilibrium



98

and the disease-free equilibrium; and there is a saddle-node bifurcation at R0 = R∗
0

for some R∗
0 < 1.

While we do not have any analytical results on the stability of the endemic

equilibrium for large values of R0, numerical results suggest that the equilibrium is

stable. However, we showed that that all orbits of the system of equations describ-

ing the malaria model (2.12) are bounded. Thus, if there are no stable endemic

equilibria, then there would exist a nonequilibrium attractor (such as a limit cycle

or strange attractor), though for this model we have no evidence for nonequilibrium

attractors. Also, although we cannot prove in general that the endemic equilibrium

point is unique for R0 > 1, numerical results for particular parameter sets seem to

suggest that there is a unique endemic equilibrium point for R0 > 1.

The possible existence of a subcritical (backward) bifurcation at R0 = 1, and

a saddle-node bifurcation at some R∗
0 < 1, can have strong implications for public

health. Simply reducing R0 to a value below 1 is not always sufficient to eradicate

the disease; it is now necessary to reduce R0 to a value less than R∗
0 to ensure that

there is no endemic equilibrium. The existence of a saddle-node bifurcation also

implies that in some areas with endemic malaria, it may be possible to significantly

reduce prevalence or eradicate the disease with small increases in control programs

(a small reduction in R0 so that it is less than R∗
0). Note that it may also be

possible in some areas where malaria has been eradicated, for a slight disruption,

like a change in environmental or control variables or an influx of infectious humans

or mosquitoes, for the disease to reestablish itself in the population with a significant

increase in disease prevalence (increasing R0 above R∗
0 or moving the system into

the basin of attraction of the endemic equilibrium).

Following the mathematical analysis, we compiled two reasonable sets of base-

line values for the parameters in the model: one for areas of high transmission

(R0 = 7.0) and one for areas of low transmission (R0 = 1.1). We computed the sen-

sitivity indices of the reproductive number, R0, and the endemic equilibrium, xee,

to the parameters around these baseline values. The sensitivity indices allowed us

to compare the effectiveness of different control strategies, as each strategy affects
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different parameters to different degrees.

We noted that the most sensitive parameters for R0 and xee are controllable

through intervention strategies. The most sensitive parameter for R0, in both high

and low transmission, and for ih in low transmission areas is the mosquito biting

rate, σvh. This suggests that the use of ITN’s can be very effective, as has been

demonstrated by field studies [30]. The equilibrium fraction of infectious humans,

ih, in areas of high transmission is most sensitive to the human recovery rate, γh,

which we can control with PECM, suggesting that this would also be an effective

strategy, especially in areas of high transmission. PECM also reduces the disease-

induced death rate, reducing malaria mortality.

Among the parameters that we can control, the most sensitive parameters after

σvh and γh are the mosquito to human disease transmission probability, βhv, and the

density-dependent mosquito death rate, µ2v, whose sensitivity indices are equal in

magnitude for R0 and ih in high and low transmission. These can be controlled by

IPT; and by larval control, IRS, and insecticide-treated livestock. The only other

important parameter that we have control over is the human to mosquito disease

transmission probability, βvh, which we can control with gametocytocidal drugs, a

transmission blocking vaccine, and transgenetically modified mosquitoes.

There are some important parameters that we cannot control. Most of these are

the human demographic parameters, µ2h, Λh, and ψh, which also vary from region

to region. The rate of loss of immunity, ρh, is another important parameter that

we have little control over. In reality, this rate represents a nonlinear process that

depends on the transmission rate so it remains an important simplification of the

model. Although the mosquito rate of progression from the latent period, νv, is an

important parameter that we have no control over, the magnitudes of its sensitivity

indices are not as high as the other important parameters.

We had expected the mosquito demographic parameters, ψv and µ1v, to be more

important than the model showed them to be. These are parameters that some

commonly used control strategies target. We assume that the low sensitivity indices

are due to the density dependence of the per capita mosquito death rate. As ex-
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pected, the probability of disease transmission from recovered humans to susceptible

mosquitoes, β̃vh, is not important. However, control strategies that reduce βvh also

reduce β̃vh.

All the control strategies that we discussed, with the possible exception of larval

control which targets ψv, have a strong effect on at least one important parameter

so they are effective. However, according to our model there are situations where

larval control may not be effective in, and possibly even detrimental to, malaria

control.

So far, we only have a qualitative relationship between the control strategies and

the parameters. A future goal is to quantitatively relate the control strategies to

the parameters and to include the cost of the control strategies to directly relate

the reduction in disease prevalence and transmission to the cost involved. Other

future goals include improving the model to capture important features of malaria

transmission that our model does not include. We list some of these below.

Seasonal effects: Seasonally varying environmental effects, such as rainfall, tem-

perature, and humidity, affect many of the important factors in malaria trans-

mission. These environment-dependent parameters include the mosquito birth

rate, ψv, the mosquito death rates, µ1v and µ2v, and the mosquito rate of pro-

gression from the latent period, νv. We can model these seasonal effects by

making some of these parameters periodic functions of time. Analyzing this

periodically-forced model, including changes in the reproductive number and

endemic states, would provide a more accurate picture of malaria transmis-

sion than is currently obtained from models using parameter values that are

averaged over the seasons.

Mosquito population models: The mosquito life cycle has discrete stages and

the development times for these stages are dependent on the environment.

We can improve models for mosquito population dynamics by including these

separate juvenile stages, while incorporating environmental and seasonal ef-

fects. Also, anthropophilic mosquito species, like An. gambiae, depend on
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humans for their reproduction. We can model this with a mosquito birth rate,

ψv, that is dependent on the size of the human population, Nh.

Interactions between mosquitoes and humans: We have currently assumed

that the number of bites per mosquito is fixed, while the number of bites

per human changes depending on the number of mosquitoes. For a more ac-

curate description of mosquito-human interaction, the total number of bites

between mosquitoes and humans would need to depend on the densities of

both populations.

Superinfection: Similar to other infections caused by macroparasites, malaria dis-

plays some properties of superinfection where reinfection when one is already

infected can worsen the effects of the disease. We can include this in our model

by making the recovery rate, γh, a function of the inoculation rate, λh.

Transmission-rate dependent period of immunity: Resistance to malaria

has been shown to be dependent on prevalent levels of transmission. We

include this effect in our model by making the rate of loss of immunity, ρh, a

function of the inoculation rate, λh.

Age structure: Age structure is important in the dynamics of malaria, as most

deaths occur in infants and the average parasitemia levels of infected individ-

uals decreases with age. Immune response also changes with age. Adding age

structure also allows us to study the effects of the various control strategies on

the age distribution of disease prevalence. We can model age structure, either

through discrete age groups or continuously through converting the system of

equations to partial differential equations.

Spatial Structure: Spatial spread is an important feature in the dynamics of

malaria, from local transmission in a given region, to the global spread of drug-

resistant strains of Plasmodium. We can include spatial dynamics through the

replication of the basic model at different nodes, representing various locations,

with some human/mosquito migration between the nodes.
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Ultimately, we would like to validate this model by applying it to a specific

malaria-endemic part of the world. We want to compare predicted endemic states

obtained from the model using parameter values for that location to the actual local

prevalence data. This will allow us to make informed decisions about the type and

level of intervention strategies that provide the most effective coverage in that area.
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APPENDIX A

BIOLOGICAL AND MEDICAL BACKGROUND OF MALARIA

A.1 Introduction

In this appendix, we describe the history and some of the medical and biological

factors of malaria. The word, malaria, is derived from the Italian phrase, “mal

aria”, meaning bad air.

A.2 History

Malaria, or malaria-like symptoms, have been described in written history for thou-

sands of years, including ancient Chinese, Indian, Greek and Roman writings. The

Chinese writings mention a cure for the disease from a certain Qinghao plant. In

1971, Chinese scientists isolated a chemical, artemisinin, from this plant, that serves

among the modern drugs available against malaria today. The Indian writings,

Susruta, describe the disease as being transmitted by the bites of certain insects.

Hippocrates, among the Greeks, writes of the symptoms of the disease. It is likely

that malaria was responsible for the decline of the populations of several of the city-

states. The Romans noticed a correlation between high prevalence of the disease

and proximity to swampland.

The modern history of malaria began in the early 17th Century when Spanish

Jesuits in South America discovered, from the local population, that the bark of a

certain tree1 cures malaria. Some highlights of the history of malaria following this

discovery are described in Table A.1:

1The bark is known as Peruvian bark and the tree is named Cinchona after the Countess of
Chinchón (wife of the Viceroy of Peru) who, according to legend, was cured of malarial fever with
this bark.
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Table A.1: A brief history of malaria.

1880: Laveran discovered the parasite (Plasmodium) responsible for the dis-
ease.

1886: Golgi discovered that there was more than one species of Plasmodium
that infected humans.

1897: Ronald Ross2 discovered that mosquitoes transmit malaria.
WW II: Chloroquine (kills the parasite) and DDT (kills mosquitoes) synthe-

sized.
1945: Plan of global3 malaria eradication begins.
1951: Malaria considered eradicated from the USA4.
1978: Effort to eradicate worldwide malaria considered a failure.
Now: Resurgence of malaria; with reintroduction into areas where it was

previously considered eradicated.

A.3 The malaria parasite

The parasite that causes malaria is of the genus Plasmodium. There are four species

that affect humans:

• P. falciparum — more common in tropical areas

• P. vivax — more common in temperate areas

• P. malariae — not as common

• P. ovale — not as common

There are other species of Plasmodium that cause malaria in other animals.

2Ronald Ross was also the first person to mathematically model malaria.
3The worldwide malaria eradication program did not include many African nations because the

problem there was considered too big and the countries were thought to be lacking in the necessary
resources.

4There were 1,337 reported cases of malaria in the USA in 2002 — of which all but 5 were
imported.
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A.3.1 Life cycle

The species of Plasmodium that infect humans have three main life stages: two of

which require a human host (in the liver and blood) and one requiring a mosquito

host. Figure A.1 shows the life cycle of the malaria parasite.

When an infectious mosquito bites a human, the parasite, in the form of sporo-

zoites in the saliva of the mosquito, enters the human. The sporozoites then migrate

to the liver, invading the hepatic cells. In 5–15 days, the sporozoites develop into

schizonts5. The schizonts contain thousands of “daughter” merozoite cells. The

merozoites invade erythrocytes (red blood cells) and mature into schizonts, ruptur-

ing the erythrocytes and releasing more merozoites6. It usually takes about 48 hours

for the merozoites to reproduce more merozoites for P. falciparum, P. vivax and P.

ovale; and about 3 days for P. malariae. These merozoites go on to invade more

erythrocytes and the cycle continues (until treatment or death).

Some merozoites differentiate into sexual forms, known as gametocytes. These

gametocytes then enter a feeding mosquito where they fuse to form a zygote. The

zygote matures into an ookinete which penetrates the stomach wall. The ookinete

develops into an oocyst which, in a week or more, releases over 10,000 sporozoites.

These sporozoites then migrate to the salivary glands. When the mosquito bites

again, the sporozoites in the saliva enter a new human host and the cycle contin-

ues. It takes about 7–21 days for the gametocytes to form new sporozoites in the

mosquito. This incubation time can vary greatly depending on the environmental

temperature, humidity and the species of Plasmodium. The optimal environmental

conditions for sporozoite development are temperatures between 20◦C and 30◦C;

and relative humidity greater than 60%. P. falciparum cannot develop if the ambi-

ent temperature is below 15◦C: largely the reason why the parasite is not prevalent

in temperate zones.

5It is possible for sporozoites of P. vivax and P. ovale to remain in the liver for years after the
primary infection and cause relapses of malaria in the future.

6The rupturing of the red blood cells causes fever and signals the clinical onset of malaria.
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Figure A.1: An illustration of the life cycle of P. Vivax. The other species of
Plasmodium have a similar life cycle, although the time needed to develop from one
stage to the next varies. This picture is reproduced, with permission, from Kimball
[37].

A.4 The mosquito

There are about 3500 species of mosquito worldwide, of which 430 are in the genus

Anopheles7. Of these 430, only 30–40 species of Anopheles are capable of transmit-

7Anopheles is derived from the Greek word for useless (“without advantage”).
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ting malaria (they are suitable for the development of the parasite). The Anopheles

mosquitoes are found worldwide, with the exception of Antarctica and some islands

in the Pacific Ocean. The Anopheles mosquitoes are easy to recognize because of

their characteristic stance: they rest with their head down and their abdomen stick-

ing out, while other mosquitoes usually rest with their body parallel to the resting

surface.

A.4.1 Life cycle

The life cycle of the mosquito can be divided into 4 main stages:

Egg: The mosquito eggs usually hatch into larvae in 2–3 days, although this process

is temperature-dependent and can take up to 2–3 weeks in cold weather. The

eggs are not resistant to drying and require water for successful hatching.

Larva: The larvae require water and prefer clean unpolluted water. They have to

frequently rise to the water surface to breathe. They feed on algae, bacteria

and other microorganisms.

Pupa: The pupae also require water and need to resurface frequently to breathe.

Adult: The adult males usually feed on nectar and other sources of sugar. Their

average lifespan is about a week. Both males and females are sexually active a

few days after emerging from the pupal state. At dusk, male mosquitoes form

a swarm and females fly into the swarm to mate.

The adult female also feeds on nectar and other sources of sugar, but requires

a blood meal for the protein needed to produce eggs. After the blood meal, the

female usually rests until the eggs develop. This process too is temperature-

dependent and usually takes 2–3 days in tropical conditions. Once she has

laid the eggs, the female will mate again and look for another blood meal.

The adult female mosquito can live up to a month (longer in captivity) but
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has an expected lifetime of 1–2 weeks in nature. The lifespan of the mosquito

also depends on temperature and humidity, among other factors.

The transition from egg to adult usually occurs in 10-14 days in tropical condi-

tions, but can take as little as 5 days or up to a month. The development time for

mosquitoes depends on the environmental conditions and on the species of mosquito,

with warmer temperatures promoting quicker development.

A.4.2 Other factors related to mosquitoes

The various species of Anopheles mosquitoes differ greatly in their preference for

breeding sites. For example, An. stephensi can breed in tin cans and cisterns,

while An. gambiae prefer small sunlit pools. Knowing the most prevalent mosquito

vector is thus important in designing malaria control strategies that depend on the

destruction of mosquito breeding sites.

Some Anopheles mosquitoes are anthropophilic (prefer humans) while others

are zoophilic (prefer animals). The anthropophilic mosquitoes are more likely to

spread malaria because they bite humans more often. The primary vectors in Africa,

An. gambiae and An. funestus are strongly anthropophilic and are thus efficient

spreaders of malaria. In areas with higher concentrations of zoophilic mosquitoes,

it is possible to devise other malaria prevention strategies such as treating livestock

with insecticides.

Most Anopheles are crepuscular (active mostly at dusk and dawn) or nocturnal

(active mostly at night). Other feeding and resting patterns vary between the differ-

ent species. Some feed indoors (endophagic), while others feed outdoors (exophagic).

Similarly, some rest indoors (endophilic), while others rest outdoors (exophilic).

These different preferences require different prevention strategies. It is possible to

reduce endophilic mosquitoes by spraying homes with insecticides, while reducing

the number of breeding sites is a more effective way of dealing with exophagic and

exophilic mosquitoes.

Also, mosquito populations are usually localized because mosquitoes rarely travel
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too far from their breeding sites. However, they can get blown around by wind8.

Mosquitoes usually seek their hosts through various stimuli, including, higher con-

centrations of CO2; certain body odors; warmth; and movement. When feeding, the

female mosquito first injects some saliva into the host to prevent clotting, allowing

the malaria parasite to enter the human host.

Warmer temperatures and rainfall usually result in large increases in mosquito

populations. The rainfall provides plenty of breeding grounds, while warmer tem-

peratures speed up most of the developmental processes of the mosquitoes.

Human activities have in many cases aided mosquito populations. Irrigation and

agriculture frequently increase the number of breeding sites. Even commonplace

human artifacts like tire tracks on muddy roads can provide successful breeding

sites for mosquitoes. The abundance of human garbage, such as tin cans and old

tires can also serve as breeding grounds to mosquitoes. With warm temperatures

and high humidity, even small puddles can last long enough to allow mosquito eggs

to develop into adults.

There are many species of Anopheles mosquitoes that do not allow the Plas-

modium parasite to successfully develop. Some mosquitoes even have an immune

response that kills the invading parasite. Studying these species could give us some

insights into new ways of controlling malaria.

There is some evidence (though not conclusive) that mosquitoes infected with

Plasmodium have decreased life expectancy, higher mortality rates, lower fertility

rates and higher man-biting rates than non-infected mosquitoes [56]. There is also

some recent evidence that suggests that the Plasmodium parasite, through some

unknown mechanism, may increase the attractiveness of infectious humans to the

Anopheles mosquitoes [45].

8It is possible for mosquitoes to travel much greater distances through inadvertent human
activity. In the summer of 1989, 5 Swiss citizens contracted malaria from mosquitoes that had
made the journey to Geneva on a plane from a malaria-endemic country.
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A.5 Disease

Malaria is usually transmitted between humans through the bites of female Anophe-

les mosquitoes. It can, however, be directly transmitted from human to human

through blood transfusions, needle sharing and vertically from mother to child, but

the incidence of direct human to human transmission is significantly lower than that

from through mosquitoes.

The incubation period is usually 7–30 days9 (the time it takes for the sporozoites

from a new mosquito bite to travel to the liver and develop into merozoites in the

blood stream).

There are 2 types of malaria.

Uncomplicated malaria: Classically, uncomplicated malaria is associated with

an attack that lasts 6–10 hours. Although this attack is not observed often,

it remains the stereotypical symptom of malaria. The attack involves 3 stages:

1. Cold stage (sensation of cold, shivering)

2. Hot stage (fever, headache, vomiting, seizures in young children)

3. Sweating stage (sweats, tiredness)

These attacks usually occur every second day for P. falciparum, P. vivax and

P. ovale; and every third day for P. malariae10. The usual symptoms of

malaria include, fever, chills, sweating, headaches, nausea, vomiting, body

aches, and general malaise. For infections with P. falciparum, it is also possible

for the patient to exhibit more specialized symptoms, including, mild jaundice;

enlargement of the liver; and an increased respiratory rate. As most of the

usual symptoms of uncomplicated malaria are common to many other diseases

9It is possible for the incubation period to last years for infections of P. vivax and P. ovale.
10This cycle corresponds to the the time taken by the merozoites in the blood to develop into

schizonts in the erythrocytes and release more merozoites. The reason this cycle is not always seen
is that not all merozoites in the blood are synchronized.
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(such as influenza and the common cold), malaria is not always an easy disease

to diagnose.

Severe malaria: Severe malaria occurs when P. falciparum infections are com-

plicated by severe organ failure. This usually occurs in people with little

or no immunity and must be treated as a medical emergency. Some of the

symptoms of severe malaria are:

• Cerebral malaria (characterized by abnormal behaviour, impaired con-

sciousness or coma)

• Severe anaemia caused by hemolysis (destruction of red blood cells)

• Hemoglobinuria (hemoglobin in the urine) due to hemolysis

• Pulmonary edema (fluid build-up in the lungs) and Acute Respiratory

Distress Syndrome (ARDS)

• Thrombocytopenia (decrease in blood platelets) and abnormalities in

blood coagulation

• Cardiovascular collapse and shock

A.5.1 Relapse

Sporozoites of P. vivax and P.ovale can survive in the liver cells of humans for years,

releasing merozoites into the bloodstream at arbitrary times. It is thus possible for

a person who has contracted and been treated for malaria to have a relapse many

years in the future. It is also possible to not show the first symptoms of malaria

until many years have passed since the infectious bite.

People infected with P. falciparum and P. malariae can also show symptoms of

malaria some period of time after termination of treatment. This, however, is due

to surviving parasites in the bloodstream and is known as recrudescence.
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A.6 Diagnosis

As the symptoms for malaria are rather general, it is difficult to derive concrete

diagnoses from them. The symptoms should, however, lead to suspicion of malaria

and thus to more rigorous tests.

The primary test for malaria remains microscopic diagnosis: involving a techni-

cian searching for the parasite in a blood smear under a microscope. As this test

depends heavily on the quality of the reagents (used in creating the blood smear),

the quality of the microscope and the experience of the laboratorian, the test is not

always reliable. Several blood smears may be required to show the presence of the

parasite. This test can also determine the species of Plasmodium causing the in-

fection. There are also other tests, including antigen detection (accuracy still to be

verified) and molecular diagnosis (requires a specialized laboratory) but these are far

more expensive and are not commonly available in the areas where malaria is most

prevalent. Other sophisticated techniques can be used to measure past infections

and resistance of the parasite to anti-malarial drugs.

A.6.1 Problems with diagnosis:

There are two extreme problems with the diagnosis of malaria. In regions where

malaria has been eradicated, doctors are not familiar with malaria, and considering

the similarities in symptoms to other common diseases, malaria is often overlooked

as the responsible disease. This can be dangerous because malaria is a serious life-

threatening illness if not treated early. Not recognizing, and hence not treating,

people with malaria also increases the risks of reintroduction of malaria into these

regions.

On the other side of the spectrum, in regions where malaria is endemic and

transmission rates are high, medical workers, when confronted with malaria-like

symptoms are likely to presuppose that the disease is malaria. In many of the poorer

(and highly malaria-endemic) countries, resources are often lacking to conduct any

diagnostic tests, including microscopic diagnosis. To further complicate the issue,
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most adults in areas of high malaria transmission continuously have low levels of

Plasmodium in their blood, without having clinical malaria. Thus, it is likely for a

person with some disease other than malaria to be treated only for malaria. This

practice can increase the prevalence of drug-resistant strains of the parasite and does

not treat people who may have some other potentially life-threatening disease.

A.7 Treatment

Malaria is a curable disease, with good chances of survival, if diagnosed early and

given the correct medication. However, severe malaria can be dangerous if not

treated early or treated with drugs that the parasite is immune to.

There are various drugs available today that kill blood-borne parasites, includ-

ing chloroquine; sulfadoxine-pyrimethamine (Fansidar r©); mefloquine (Lariam r©);

atovaquone-proguanil (Malarone r©); quinine; doxycycline; and artemisinin (from

Qinghao plant).

In many areas of the world (excluding Central America west of the Panama

Canal, and many parts of the Middle East), P. falciparum is resistant to chloro-

quine. This is one of the primary reasons for the large number of anti-malarial drugs

available today. These other drugs are more expensive and usually have more seri-

ous side-effects, including the possibility of neural disorders; so chloroquine remains

the primary drug of choice against all Plasmodium species that have no chloroquine

resistance. P. vivax and P. ovale are currently resistant to chloroquine only in

Papua New Guinea and Indonesia, although there have been some isolated cases of

chloroquine-resistant P. vivax in Burma, India and South and Central America. P.

malariae currently has no chloroquine resistance.

The main drug used to kill dormant P. vivax and P. ovale stages in the liver is

primaquine phosphate.

Quinidine gluconate is administered intravenously to treat severe malaria.
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A.8 Immunity

Infection with malaria leaves some temporary residual immunity. Inhabitants of

areas with high malaria transmission also build up immunity to the disease — and

usually have low levels of Plasmodium in their blood. Serious malarial illnesses are

thus rare in adults and older children, affecting only young children and pregnant

women (without this protective immunity). However, immunity to malaria has

been shown to be transient [38] and decays in the absence of reinfection. This

decay process is not fully understood and some studies in Madagascar have shown

protective immunological memory after decades of no malaria transmission [16].

A.9 Problems facing malaria control

There are currently numerous obstacles to malaria control in many parts of the

world. Many of these problems were responsible for the failure of the global malaria

eradication plan. Some of these obstacles include:

• A serious lack of resources in areas worst hit by malaria. This forms a vi-

cious cycle, as malaria significantly reduces productivity in a region, increasing

poverty. Increased poverty then further hinders the fight against malaria.

• The number of drug-resistant strains of Plasmodium is increasing quickly:

most obviously seen with the ineffectiveness of chloroquine against P. falci-

parum in most parts of the world; and the emergence of chloroquine-resistant

P. vivax (CRPV).

• There is also an increasing number of insecticide-resistant mosquitoes

(including resistance to dichloro-diphenyl-trichloroethane (DDT)11). Many

mosquitoes have also now learned to altogether avoid insecticide treated sur-

faces, making their control even harder.

11Probably the most effective and inexpensive chemical used to control mosquitoes to date,
although now banned in many parts of the world because of environmental concerns.
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• Human activities continually create new breeding sites for mosquitoes and

human populations have invaded (and continue to invade) mosquito habitats,

increasing the number of contacts between mosquitoes and humans.

• Overpopulation and urbanization has significantly increased human popula-

tion density in many parts of the world, again increasing the number of con-

tacts between humans and mosquitoes.

• As malaria affects some of the poorest countries of the world, there is no

large financial incentive for pharmaceutical companies to invest large amounts

of money in research and development for malarial medicines and vaccines.

Most of the research is done in academic and governmental organizations.

• Global warming promotes quicker development of mosquitoes and of the par-

asites in the mosquitoes, and increases the lifespan of mosquitoes, greatly

increasing the transmission rate of malaria.

A.10 Control Strategies

In 1998, the World Health Organization (WHO), in conjunction with the United

Nations Children’s Fund (UNICEF), the United Nations Development Programme

(UNDP), and the World Bank, launched the Roll Back Malaria Global Partnership

(RBM), with the goal of halving the worldwide burden of malaria by 2010. Of

the numerous anti-malarial activities and research efforts supported by RBM and

others, we describe some of the control strategies here.

Larval control: This strategy includes methods such as the destruction of breeding

sites which aim to reduce the number of mosquitoes.

Indoor residual spraying (IRS): Spraying reduces mosquito longevity (and per-

haps also fertility). This strategy is also likely to kill mosquitoes that rest

indoors after feeding so it would increase the chances of killing infected

mosquitoes.
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Insecticide-treated bed nets (ITN): RBM has been promoting the use of in-

secticide treated bed nets in many countries and regions of Africa to reduce

the transmission of malaria; and has succeeded in doing so in many regions.

As some recent studies have shown [30], ITN’s have had a significant impact

on disease prevalence and mortality.

Insecticide-treated livestock: There are studies underway in regions that have

zoophilic mosquitoes to treat cattle and other livestock close to homesteads

with insecticides. Insecticide-treated livestock has similar effects to IRS, al-

though treating livestock with insecticide has been shown to be more cost-

effective in areas where the mosquitoes are mostly zoophilic [29] and [63].

Intermittent prophylactic treatment (IPT): This is a new area of research

that involves administering antimalarial drugs at regular intervals, even to

those who are not sick, to reduce parasitemia load. This is essentially similar

to the treatment taken by travellers from malaria-free regions when visiting

malaria-endemic countries. This form of control would most likely be applied

in areas of high transmission where almost everyone has some Plasmodium in

their blood.

Intermittent prophylactic treatment in pregnancy (IPTp): As the

name suggests, IPTp involves giving malarial medicine to pregnant

women, regardless of whether or not they have clinical malaria. Initial

tests are now in progress.

Intermittent prophylactic treatment for infants (IPTi): Initial stud-

ies have started in this area and have shown significant effects in reducing

infant mortality.

Prompt and effective case management (PECM): This strategy involves the

quick identification and treatment of malaria cases. Although it may seem ob-

vious, PECM is not always possible in many places because of poor health

infrastructure and a lack of resources. This strategy is more commonly prac-
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ticed in areas of low transmission because these areas usually have more re-

sources and identifying malarial infections is easier. Quick treatment is doubly

effective because it directly reduces the suffering and lack of productivity due

to malaria; and it reduces the transmission of infection to mosquitoes.

Gametocytocidal drugs: These drugs kill gametocytes in humans, reducing

human-to-mosquito disease transmission. This is useful in areas like South-

East Asia where there is low transmission and most sick people can be reached.

This would not be useful in many parts of Africa where there are high levels

of transmission and there are not sufficient resources to allow the drugs to be

dispensed to all people with parasite loads.

Transmission blocking vaccine: Research on a vaccine that blocks malaria

transmission has so far appeared promising. Like the gametocytocidal drugs,

the vaccine reduces the transmission probability from infectious and recovered

humans to susceptible mosquitoes. However, the coverage of the vaccine would

be far greater than that of the drugs and so the vaccine would have a stronger

effect than the gametocytocidal drugs. Although the vaccine would be more

expensive to develop, the cost per dose would be lower than that of the drugs.

Transgenetically modified mosquitoes: As there are some species of Anopheles

mosquitoes that have an immune response to kill the Plasmodium parasites,

there is hope that genetically modified mosquitoes could be introduced into

the wild that would be incapable of transmitting malaria. This is a promising

area of research, although still in its early stages. There would need to be

strict controls to ensure that the new mosquitoes created are not accidentally

given the capability of transmitting other diseases such as influenza or AIDS.

As these mosquitoes would be immune to malaria, having a population of

only transgenetically modified mosquitoes would eliminate the transmission of

malaria. However, we would expect some wild-type mosquitoes to persist in

the population. Li (2004) [46] and (2005) [47] has examined some population

models for the introduction of transgenic mosquitoes.
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[41] J. C. Koella and C. Boëte, A model for the coevolution of immunity and
immune evasion in vector-borne disease with implications for the epidemiology
of malaria, The American Naturalist, 161 (2003), pp. 698–707.

[42] G. A. Korn and T. M. Korn, Mathematical handbook for scientists and
engineers: definitions, theorems, and formulas for reference and review, Dover
Publications, Mineola, New York, 2000.

[43] E. S. Krafsur and J. C. Armstrong, An integrated view of entomological
and parasitological observations on falciparum malaria in Gambela, Western
Ethiopian Lowlands, Transactions of the Royal Society of Tropical Medicine
and Hygiene, 72 (1978), pp. 348–356.

[44] E. S. Krafsur and C. Garrett-Jones, The survival of Wuchereria in-
fected Anopheles funestus Giles in north-eastern Tanzania, Transactions of the
Royal Society of Tropical Medicine and Hygiene, 71 (1977), pp. 155–160.



122

[45] R. Lacroix, W. R. Mukabana, L. C. Gouagna, and J. C. Koella,
Malaria infection increases attractiveness of humans to mosquitoes, PLoS Bi-
ology, 3 (2005), pp. 1590–1593.

[46] J. Li, Simple mathematical models for interacting wild and transgenic mosquito
populations, Mathematical Biosciences, 189 (2004), pp. 39–59.

[47] , Heterogeneity in modeling of mosquito populations with transgenic
mosquitoes, Journal of Difference Equations and Applications, 2 (2005),
pp. 443–457.

[48] J. Li, R. M. Welch, U. S. Nair, T. L. Sever, D. E. Irwin, C. Cordon-
Rosales, and N. Padilla, Dynamic malaria models with environmental
changes, in Proceedings — Thirty-Fourth Southeastern Symposium on System
Theory, Huntsville, AL, USA, 2002, pp. 396–400.

[49] G. Macdonald, The epidemiology and control of malaria, Oxford University
Press, London, 1957.

[50] L. Molineaux and G. Gramiccia, The Garki Project, World Health Orga-
nization, Geneva, 1980.

[51] L. Molineaux, G. R. Shidrawi, J. L. Clarke, J. R. Boulzaguet, and
T. S. Ashkar, Assessment of insecticidal impact on the malaria mosquito’s
vectorial capacity, from data on the man-biting rate and age-composition, Bul-
letin of the World Health Organisation, 57 (1979), pp. 265–274.

[52] R. C. Muirhead-Thomson, The malarial infectivity of an African village
population to mosquitoes (Anopheles gambiae): A random xenodiagnostic sur-
vey, American Journal of Tropical Medicince and Hygiene, 6 (1957), pp. 971–
979.

[53] J. Nedelman, Inoculation and recovery rates in the malaria model of Dietz,
Molineaux and Thomas, Mathematical Biosciences, 69 (1984), pp. 209–233.

[54] , Introductory review: Some new thoughts about some old malaria models,
Mathematical Biosciences, 73 (1985), pp. 159–182.

[55] G. A. Ngwa, Modelling the dynamics of endemic malaria in growing pop-
ulations, Discrete and Continuous Dynamical Systems—Series B, 4 (2004),
pp. 1173–1202.

[56] G. A. Ngwa and W. S. Shu, A mathematical model for endemic malaria
with variable human and mosquito populations, Mathematical and Computer
Modelling, 32 (2000), pp. 747–763.



123

[57] S. C. Oaks Jr., V. S. Mitchell, G. W. Pearson, and C. C. J. Car-
penter, eds., Malaria: obstacles and opportunities, National Academy Press,
Washington, D.C., 1991.

[58] W. Peters and H. A. Standfast, Studies on the epidemiology of malaria in
New Guinea. II. Holoendemic malaria, the entomological picture, Transactions
of the Royal Society of Tropical Medicine and Hygiene, 54 (1960), pp. 249–260.

[59] J. H. Pull and B. Grab, A simple epidemiological model for evaluating the
malaria inoculation rate and the risk of infection in infants, Bulletin of the
World Health Organisation, 51 (1974), pp. 507–516.

[60] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,
Journal of Functional Analysis, 7 (1971), pp. 487–513.

[61] M. G. Roberts and J. A. P. Heesterbeek, A new method for estimating
the effort required to control an infectious disease, Proceedings of the Royal
Society of London Series B, 270 (2003), pp. 1359–1364.

[62] R. Ross, The prevention of malaria, John Murray, London, 1911.

[63] M. Rowland, N. Durrani, M. Kenward, N. Mohammed, H. Urah-
man, and S. Hewitt, Control of malaria in Pakistan by applying deltamethrin
insecticide to cattle: a community-randomised trial, The Lancet, 357 (2001),
pp. 1837–41.

[64] C. P. Simon and J. A. Jacquez, Reproduction numbers and the stability of
equilibria of SI models for heterogeneous populations, SIAM Journal on Applied
Mathematics, 52 (1992), pp. 541–576.

[65] R. Slooff and J. Verdrager, Anopheles balabacensis Baisas 1936 and
malaria transmission in south-eastern areas of Asia. WHO/MAL/72.765, 1972.

[66] M. E. Smalley and R. E. Sinden, Plasmodium falciparum gametocytes:
Their longevity and infectivity, Parasitology, 74 (1977), pp. 1–8.

[67] P. van den Driessche and J. Watmough, A simple SIS epidemic model
with a backward bifurcation, Journal of Mathematical Biology, 40 (2000),
pp. 525–540.

[68] , Reproduction numbers and sub-threshold endemic equilibria for compart-
mental models of disease transmission, Mathematical Biosciences, 180 (2002),
pp. 29–48.

[69] World Health Organization, WHO: Malaria. http://www.who.int/

health topics/malaria/en/.



124

[70] H. M. Yang, Malaria transmission model for different levels of acquired immu-
nity and temperature-dependent parameters (vector), Revista de Saúde Pública,
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