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Historical Introduction

The beginning of the story

The history of copulas may be said to begin with Fréchet (1951).
Fréchet’s problem: given the distribution functions Fj
(j = 1, 2, . . . , d) of d r.v.’s X1,X2, . . . ,Xd defined on the same
probability space (Ω,F ,P), what can be said about the set
Γ(F1,F2, . . . ,Fd ) of the d–dimensional d.f.’s whose marginals are
the given Fj?

H ∈ Γ(F1, . . . ,Fd )⇐⇒ H(+∞, . . . ,+∞, t,+∞, . . . ,+∞) = Fj(t)

The set Γ(F1, . . . ,Fd ) is called the Fréchet class of the Fj ’s.
Notice Γ(F1, . . . ,Fd ) 6= ∅ since, if X1,X2, . . . ,Xd are independent,
then

H(x1, x2, . . . , xd ) =
d∏

j=1

Fj(xj).

But, it was not clear which the other elements of Γ(F1, . . . ,Fd )
were.
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Bibliography–1

For Fréchet’s work see, e.g.,

M. Fréchet, Sur les tableaux de corrélation dont les marges
sont donnés, Ann. Univ. Lyon, Science, 4, 13–84 (1951)

G. Dall’Aglio, Fréchet classes and compatibility of distribution
functions, Symposia Math., 9, 131–150 (1972)

In this latter paper Dall’Aglio studies under which conditions there
is just one d.f. belonging to Γ(F1,F2).
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Enters Sklar

In 1959, Sklar obtained the most important result in this respect,
by introducing the notion, and the name, of a copula, and proving
the theorem that now bears his name.
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Correspondence with Fréchet

He and Bert Schweizer had been making progress in their work on
statistical metric spaces, to the extent that Menger suggested it
would be worthwhile to communicate their results to Fréchet.
Fréchet was interested, and asked to write an announcement for
the Comptes Rendus. This lead to an exchange of letters between
Sklar and Fréchet, in the course of which Fréchet sent Sklar several
packets of reprints, mainly dealing with the work he and his
colleagues were doing on distributions with given marginals. These
reprints were important for much of the subsequent work. At the
time, though, the most significant reprint for Sklar was that of
Féron (1956).
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Sklar–2

Féron, in studying three-dimensional distributions had introduced
auxiliary functions, defined on the unit cube, that connected such
distributions with their one-dimensional margins. Sklar saw that
similar functions could be defined on the unit d–cube for all d ≥ 2
and would similarly serve to link d–dimensional distributions to their
one–dimensional margins. Having worked out the basic properties
of these functions, he wrote about them to Fréchet, in English.
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Sklar–3

Fréchet asked Sklar to write a note about them in French. While
writing this, Sklar decided he needed a name for these functions.
Knowing the word “copula” as a grammatical term for a word or
expression that links a subject and predicate, he felt that this would
make an appropriate name for a function that links a
multidimensional distribution to its one-dimensional margins, and
used it as such. Fréchet received Sklar’s note, corrected one
mathematical statement, made some minor corrections to Sklar’s
French, and had the note published by the Statistical Institute of
the University of Paris (Sklar, 1959).
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A curiosity

Curiously, it should be noted that in that paper, the author “Abe
Sklar” is named as “M. Sklar” (should it be intended as
“Monsieur”?)
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Lack of a proof

The proof of Sklar’s theorem was not given in (Sklar, 1959), but a
sketch of it was provided in (Sklar, 1973). (see also (Schweizer &
Sklar, 1974)), so that for a few years practitioners in the field had
to reconstruct it relying on the hand–written notes by Sklar himself;
this was the case, for instance, of the present speaker. It should be
also mentioned that some “indirect” proofs of Sklar’s theorem
(without mentioning copula) were later discovered by Moore &
Spruill and Deheuvels.
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For about 15 years, all the results concerning copulas were obtained
in the framework of the theory of Probabilistic Metric spaces
(Schweizer & Sklar, 1974). The event that arose the interest of the
statistical community in copulas occurred in the mid seventies,
when Bert Schweizer, in his own words (Schweizer, 2007),

quite by accident, reread a paper by A. Rényi, entitled
On measures of dependence and realized that [he] could
easily construct such measures by using copulas.

The first building blocks were the announcement by Schweizer &
Wolff in the Comptes Rendus de l’Académie des Sciences (1976)
and Wolff’s Ph.D. Dissertation at the University of Massachusetts
at Amherst (1977). These results were presented to the statistical
community in (Schweizer & Wollf, 1981) (see also (Wolff, 1980)).
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However, for several other years, Chapter 6 of the 1983 book by
Schweizer & Sklar, devoted to the theory of Probabilistic metric
spaces, was the main source of basic information on copulas. Again
in Schweizer’s words from (Schweizer, 2007),

After the publication of these articles and of the book
. . . the pace quickened as more . . . students and colleagues
became involved. Moreover, since interest in questions of
statistical dependence was increasing, others came to the
subject from different directions. In 1986 the enticingly
entitled article “The joy of copulas” by C. Genest and R.C
MacKay (1986), attracted more attention.
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Finance

At end of the nineties, the notion of copulas became increasingly
popular. Two books about copulas appeared and were to become
the standard references for the following decade. In 1997 Joe
published his book on multivariate models, with a great part
devoted to copulas and families of copulas. In 1999 Nelsen
published the first edition of his introduction to copulas (reprinted
with some new results in 2006).
But, the main reason of this increased interest has to be found in
the discovery of the notion of copulas by researchers in several
applied field, like finance. Here we should like briefly to describe this
explosion by quoting Embrechts’s comments (Embrechts, 2009).
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Embrechts

. . . the notion of copula is both natural as well as easy
for looking at multivariate d.f.’s. But why do we witness
such an incredible growth in papers published starting the
end of the nineties (recall, the concept goes back to the
fifties and even earlier, but not under that name)? Here I
can give three reasons: finance, finance, finance. In the
eighties and nineties we experienced an explosive
development of quantitative risk management
methodology within finance and insurance, a lot of which
was driven by either new regulatory guidelines or the
development of new products . . . . Two papers more than
any others “put the fire to the fuse”: the . . . 1998 RiskLab
report (Embrechts et al., 2002) and at around the same
time, the Li credit portfolio model (Li, 2001).
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Today

The advent of copulas in finance originated a wealth of
investigations about copulas and, especially, applications of copulas.
At the same time, different fields like hydrology discovered the
importance of this concept for constructing more flexible
multivariate models. Nowadays, it is near to impossible to give a
complete account of all the applications of copulas to the many
fields where they have be used.
Since the field is still in fieri, it is important from time to time to
survey the progresses that have been achieved, and the new
questions that they pose. The aim of this talk is to survey the
recent literature.
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Today–2

To quote Schweizer again:

The “era of i.i.d.” is over: and when dependence is
taken seriously, copulas naturally come into play. It
remains for the statistical community at large to recognize
this fact. And when every statistics text contains a
section or a chapter on copulas, the subject will have
come of age.
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Random variables and vectors

When a r.v. X = (X1,X2, . . . ,Xd ) is given, two problems are
interesting:

to study the probabilistic behaviour of each one of its
components;
to investigate the relationship among them.

It will be seen how copulas allow to answer the second one of these
problems in an admirable and thorough way.
It is a general fact that in probability theory, theorems are proved in
the probability space (Ω,F ,P), while computations are usually
carried out in the measurable space (Rd

,B(Rd
)) endowed with the

law of the random vector X.
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Distribution functions

The study of the law PX is made easier by the knowledge of the
distribution function(=d.f.), as defined here.
Given a random vector X = (X1,X2, . . . ,Xd ) on the probability
space (Ω,F ,P), its distribution function FX : Rd → I is defined by

FX(x1, x2, . . . , xd ) = P
(
∩d

i=1 {Xi ≤ xi}
)

(1)

if all the xi ’s are in R, while:
FX(x1, x2, . . . , xd ) = 0, if at least one of the arguments equals
−∞
FX(+∞,+∞, . . . ,+∞) = 1.
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C–volume

A d–box is a cartesian product

[a,b] =
d∏

j=1

[aj , bj ],

where, for every index j ∈ {1, 2, . . . , d}, 0 ≤ aj ≤ bj ≤ 1.
For a function C : Id → I, the C–volume VC of the box [a,b] is
defined via

VC ([a,b]) :=
∑
v

sign(v)C (v)

where the sum is carried over all the 2d vertices v of the box [a,b];
here

sign(v) =

{
1, if vj = aj for an even number of indices,
−1, if vj = aj for an odd number of indices.
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Properties of distribution functions

Theorem

The d.f. FX of the r.v. X = (X1,X2, . . . ,Xd ) has the following
properties:

F is isotone, i.e. F (x) ≤ F (y) for all x, y ∈ Rd , x ≤ y;
for all (x1, . . . , xi−1, xi+1, . . . , xd ) ∈ Rd−1, the function

R 3 t 7→ FX (x1, . . . , xi−1, t, xi+1, . . . , xd )

is right–continuous;
for every d–box [a,b], VFX ([a,b]) ≥ 0.
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Marginals

Let F be a d–dimensional d.f. (d ≥ 2). Let σ = (j1, . . . , jm) a
subvector of (1, 2, . . . , d), 1 ≤ m ≤ d − 1. We call σ–marginal of F
the d.f. Fσ : Rm → I defined by setting d −m arguments of F
equal to +∞, namely, for all x1, . . . , xm ∈ R,

Fσ(x1, . . . , xm) = F (y1, . . . , yd ),

where, for every j ∈ {1, 2, . . . , d}, yj = xj if j ∈ {j1, . . . , jm}, and
yj = +∞ otherwise.
In particular, when σ = {j}, F(j) is usually called 1–dimensional
marginal and it is denoted by Fj .
If F is the d.f. of the r.v. ~X = (X1,X2, . . . ,Xd ), then the
σ–marginal of F is the d.f. of the subvector (Xj1 , . . . ,Xjm).
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The definition

Definition
For d ≥ 2, a d–dimensional copula (shortly, a d–copula) is a
d–variate d.f. on Id whose univariate marginals are uniformly
distributed on I.

Each d -copula may be associated with a r.v. U = (U1,U2, . . . ,Ud )
such that Ui ∼ U(I) for every i ∈ {1, 2, . . . , d} and U ∼ C .
Conversely, any r.v. whose components are uniformly distributed on
I is distributed according to some copula.
The class of all d–copulas will be denoted by Cd .
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A characterization

Theorem

A function C : Id → I is a copula if, and only if, the following
properties hold:

for every j ∈ {1, 2, . . . , d}, C (u) = uj when all the
components of u are equal to 1 with the exception of the j–th
one that is equal to uj ∈ I;
C is isotonic, i.e. C (u) ≤ C (v) for all u, v ∈ Id such that
u ≤ v;
C is d–increasing.
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The special case d = 2

Explicitly, a bivariate copula is a function C : I2 → I such that
∀u ∈ [0, 1] C (u, 0) = C (0, u) = 0
∀u ∈ [0, 1] C (u, 1) = C (1, u) = u
for all u, u′, v , v ′ in I with u ≤ u′ and v ≤ v ′

C (u′, v ′)− C (u′, v)− C (u, v ′) + C (u, v) ≥ 0

This last inequality is referred to as the rectangular inequality; a
function that satisfies it is said to be 2–increasing.
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Consequences

C (u) = 0 for every u ∈ Id having at least one of its
components equal to 0
(The 1–Lipschitz property): for all u, v ∈ Id ,

|C (u)− C (v)| ≤
d∑

i=1

|ui − vi |.

Cd is a compact set in the set C (Id , I) of all continuous
functions from Id into I equipped with the topology of
pointwise convergence.
Pointwise and uniform convergence are equivalent in Cd .
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Examples–1

The independence copula Πd (u) = u1 u2 · · · ud associated with
a random vector U = (U1,U2, . . . ,Ud ) whose components are
independent and uniformly distributed on I.
The comonotonicity copula Mind (u) = min{u1, u2, . . . , ud}
associated with a vector U = (U1,U2, . . . ,Ud ) of r.v.’s
uniformly distributed on I and such that U1 = U2 = · · · = Ud
almost surely.
The countermonotonicity copula
W2(u1, u2) = max{u1 + u2 − 1, 0} associated with a bivariate
vector U = (U1,U2) of r.v.’s uniformly distributed on I and
such that U1 = 1− U2 almost surely.
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Examples–2: Convex combinations

Convex combinations of copulas: Let U1 and U2 be two
d–dimensional r.v.’s on (Ω,F ,P) distributed according to the
copulas C1 and C2, respectively. Let Z be a Bernoulli r.v. such that
P(Z = 1) = α and P(Z = 2) = 1− α for some α ∈ I. Suppose
that U1, U2 and Z are independent. Now, consider the
d–dimensional r.v. U∗

U∗ = σ1(Z ) U1 + σ2(Z ) U2

where, for i ∈ {1, 2}, σi (x) = 1, if x = i , σi (x) = 0, otherwise.
Then, U∗ is distributed according to the copula αC1 + (1− α)C2.
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Examples–3

Fréchet–Mardia family of copulas

CFM
d (u) = λΠd (u) + (1− λ)Md (u)

for every λ ∈ I. A convex sum of the copulas Πd and Md .
Cuadras–Augé family; for α ∈ I,

CCA
d (u) = (Πd (u))α (Md (u))1−α ,
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The derivatives

Consider a bivariate copula C ∈ C2. For every v ∈ I, the functions

I 3 t → C (t, v)

I 3 t → C (v , t)

are increasing; therefore, their first derivatives exists almost
everywhere with respect to Lebesgue measure and are positive,
where they exist. Because of the Lipschitz condition, they are also
bounded above by 1

0 ≤ D1 C (s, t) ≤ 1 0 ≤ D2C (s, t) ≤ 1 a.e.

where

D1 C (s, t) :=
∂C (s, t)

∂s
and D2 C (s, t) :=

∂C (s, t)

∂t
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A useful formula

The following integration–by–parts formula is sometimes useful in
the computation of statistical quantities.

Theorem

Let A and B be 2–copulæ, and let the function ϕ : I→ R be
continuously differentiable, i.e., ϕ ∈ C1. Then∫

[0,1]2
ϕ ◦ AdB =

∫ 1

0
ϕ(t) dt −

∫
[0,1]2

ϕ′(A)D1AD2B du dv

=

∫ 1

0
ϕ(t) dt −

∫
[0,1]2

ϕ′(A)D2AD1B du dv
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Fréchet–Hoeffding bounds

Theorem

For every Cd ∈ Cd and for every u ∈ Id ,

Wd (u) = max

{
d∑

i=1

ui − d + 1, 0

}
≤ C (u) ≤ Md (u).

These bounds are sharp:

inf
C∈Cd

C (u) = Wd (u), sup
C∈Cd

C (u) = Md (u).

Notice that, while W2 is a copula, Wd is not a copula for d ≥ 3.
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The marginals of a copula

A marginal of an d–copula C is obtained by setting some of its
argument equal 1. A k–marginal of C , k < d , is obtained by
setting exatly d − k arguments equal to 1; therefore, there are(

d
k

)
k–marginals of the d–copula C .
In particular, the d 1–marginals are easily computed:

C (1, 1, . . . , 1, uj , 1, . . . , 1) = uj (j = 1, 2, . . . , d)
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Sklar’s Theorem

Theorem
Given an d–dimensional d.f. H there exists an d–copula C such
that for all (x1, x2, . . . , xd ) ∈ Rn

H(x1, x2, . . . , xd ) = C (F1(x1),F (x2), . . . ,Fd (xd )) (2)

The copula C is uniquely defined on
∏d

j=1 ran Fj and is therefore
unique if all the marginals are continuous.
Conversely, if F1, F2,. . . , Fd are d (1–dimensional) d.f.’s, then the
function H defined through eq. (2) is an d–dimensional d.f..
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How to obtain a copula from a joint d.f.

Given a d–variate d.f. F , one can derive a copula C . Specifically,
when the marginals Fi are continuous, C can be obtained by means
of the formula

C (u1, u2, . . . , ud ) = F (F−11 (u1),F−12 (u2), . . . ,F−1d (ud )),

where F−1i denoted the pseudo–inverse of Fi ,

F−1i (s) = inf{t | Fi (t) ≥ s}.

Thus, copulæ are essentially a way for transforming the r.v.
(X1,X2 . . . ,Xd ) into another r.v.

(U1,U2, . . . ,Ud ) = (F1(X1),F2(X2), . . . ,Fd (Xd ))

having the margins uniform on I and preserving the dependence
among the components.
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The uniqueness question

Sklar’s theorem immediately poses the question of the uniqueness
of the copula C :

If the r.v.’s involved, or, equivalently, their d.f.’s, are both
continuous, then the copula C is unique.

If at least one of the d.f.’s has a discrete component, then the
copula C is uniquely defined only on the product of the ranges
ran F1 × ran F2 × · · · × ran Fd , and there may well be more than
one copula extending C from this cartesian product to the whole
unit cube Id . In this latter case it is costumary to have recourse to
a procedure of bilinear interpolation in order to single out a unique
copula; this allow to speak of the copula of the pair (X ,Y ). See
Lemma 2.3.5 in (Nelsen, 2006) or (Darsow, Nguyen & Olsen, 1992)
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Comments

Notice that in many papers where copulæ are applied there is
often hidden the assumption that the r.v.’s involved are
continuous; this avoids the uniqueness question.
If all the d.f.’s involved are continuous then to each joint d.f. in
the Fréchet class Γ(F1,F2, . . . ,Fd ) there corresponds a unique
d–copula C ∈ Cd ; otherwise, to each H ∈ Γ(F1,F2, . . . ,Fd )
there corresponds the set of copulas in Cd that coincide on

d∏
j=1

ran Fj
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Comments–2

The second part of Sklar’s theorem is very easy to prove, but it is
extremely important for the applications; it is, in fact, the very
foundation of all the models built on copulas. Models are built
according to the following scheme:

the d rv’s X1,X2, . . . ,Xd are individually described by their
1–dimensional d.f.’s F1,F2, . . . ,Fd

then a copula C ∈ Cd is introduced; this contains every piece
of information about the dependence relationship among the
r.v.’s X1,X2, . . . ,Xd , independently of the choice of the
marginals F1,F2, . . . ,Fd .

In particular, copulas can serve for modelling situations where a
different distribution is needed for each marginal, providing a valid
alternative to several classical multivariate d.f.’s such Gaussian,
Pareto, Gamma, etc.. This fact represents one of the main
advantage of the copula’s idea.
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Caution–2

Sklar’s theorem should be used with some caution when the
margins have jumps. In fact, even if there exists a copula
representation for non–continuous joint d.f.’s, it is no longer
unique. In such cases, modelling and interpreting dependence
through copulas needs some caution. The interested readers should
refer to the paper (Marshall, 1996) and to the in–depth discussion
by Genest and Nešlehová (2007).
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Survival copulæ

Sklar’s Theorem can be formulated in terms of survival functions
instead of d.f.’s. Specifically, given a r.v. X = (X1,X2, . . .Xd ) with
joint survival function F and univariate survival marginals F i

(i = 1, 2, . . . , d), for all (x1, x2, . . . , xn) ∈ Rd

F (x1, x2, . . . , xd ) = C̃
(
F 1(x1),F 2(x2), . . . ,F d (xd )

)
.

for some copula C̃ , usually called the survival copula of X (the
copula associated with the survival function of X).
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Survival copulæ–2

In particular, let C be the copula of X and let
U = (U1,U2, . . . ,Ud ) be a vector such that U ∼ C . Then,

C̃ (u) = C (1− u1, 1− u2, . . . , 1− ud ),

where C (u) = P(U1 > u1,U2 > u2, . . . ,Ud > ud ) is the survival
function associated with C , explicitly given by

C (u) = 1 +
d∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤n

Ci1i2···ik (ui1 , ui2 , . . . , uik ),

with Ci1i2··· ,ik denoting the marginal of C related to (i1, i2, · · · , ik).
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Singular and absolutely continuous components

For simplicity’s sake, we consider here only the case d = 2.
Every copula C ∈ C2 may be expressed in the form

C = Cac + Cs

where Cac is absolutely continuous and Cs is singular.

For an absolutely continuous copula C one has a density c such that

C (u, v) =

∫
I2
c(s, t) ds dt =

∫ 1

0
ds
∫ 1

0
c(s, t) dt

The density c is found by differentiation

c(u, v) = D1D2C (u, v) =
∂2C (u, v)

∂u ∂v
a.e.
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Singular and absolutely continuous components–2

The presence of a singular component in a copula often causes
analytical difficulties. Nevertheless, there are specific applications in
which this presence is actually a useful feature; for instance, in
default models described by two random variables X and Y , the
fact that the event {X = Y } may have non–zero probability
implies, on the one hand, the existence of a singular component in
their copula, and, on the other hand, the possibility of joint defaults
of X and Y .
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A special case

Notice, however, that, as a consequence of the Lipschitz condition,
for every copula C ∈ C2 and for every v ∈ I, both functions
t 7→ C (t, v) and t 7→ C (v , t) are absolutely continuous so that

C (t, v) =

∫ t

0
c1,v (s) ds and C (v , t) =

∫ t

0
c2,v (s) ds

This latter representation has so far found no application.
Notice also that it possible to prove that, for a 2–copula C ,

D1D2C = D2D1C a.e.
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Examples–1

Both the copulæ W2 and M2 are singular:
M2 uniformly spreads the probability mass on the main
diagonal v = u (u ∈ I) of the unit square;
W2 uniformly spreads the probability mass on the opposite
diagonal v = −u (u ∈ I) of the unit square.

The product copula Π2(u, v) := u v is absolutely continuous and its
density π is given by

π(u, v) = 1I2(u, v)
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Rank–invariant property

Theorem
Let X = (X1, . . . ,Xd ) be a r.v. with continuous d.f. F , univariate
marginals F1, F2,. . . , Fd , and copula C. Let T1,. . . ,Td be strictly
increasing functions from R to R. Then C is also the copula of the
r.v. (T1(X1), . . . ,Td (Xd )).

the study of rank statistics – insofar as it is the study
of properties invariant under such transformations – may
be characterized as the study of copulas and
copula-invariant properties.

(Schweizer & Wolff, 1981)
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Independence

Theorem
Let (X1,X2, . . . ,Xd ) be a r.v. with continuous joint d.f. F and
univariate marginals F1,. . . , Fd . Then the copula of (X1, . . . ,Xd ) is
Πd if, and only if, X1,. . . , Xd are independent.
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Comonotonicity and countermonotonicity

Theorem

Let (X1,X2, . . . ,Xd ) be a r.v. with continuous joint d.f. F and
univariate marginals F1,. . . ,Fd . Then the copula of (X1, . . . ,Xd ) is
Md if, and only if, there exists a r.v. Z and increasing functions
T1,. . . ,Td such that X = (T1(Z ), . . . ,Td (Z )) almost surely.

Theorem

Let (X1,X2) be a r.v. with continuous d.f. F and univariate
marginals F1, F2. Then (X1,X2) has copula W2 if, and only if, for
some strictly decreasing function T , X2 = T (X1) almost surely.
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Stochastic measures

Definition

A measure µ on the measurable space (Id ,B(Id )) will said to be
stochastic if, for every Borel set A and for every j ∈ {1, 2, . . . , d},

µ(I× · · · × I︸ ︷︷ ︸
j−1

×A× I× · · · × I) = λ(A),

where λ denotes the (restriction to B(I) of the) Lebesgue measure.
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Copulæ and stochastic measures

Theorem
Every copula C ∈ Cd induces a stochastic measure µC on the
measurable space (Id ,B(Id )) defined on the rectangles R = [a,b]
contained in Id , by

µC (R) := VC ([a,b]) .

Conversely, to every stochastic measure µ on (Id ,B(Id )) there
corresponds a unique copula Cµ ∈ Cd defined by

Cµ(u) := µ ([0,u]) .
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Markov operators

Definition
Given two probability spaces (Ω1,F2,P1) and (Ω2,F2,P2), a linear
operator T : L∞(Ω1)→ L∞(Ω2) is said to be a Markov operator if

T is positive, viz. Tf ≥ 0 whenever f ≥ 0;
T1 = 1 (here 1 denotes the constant function f ≡ 1);
E2(Tf ) = E1(f ) for every function f ∈ L∞(Ω1) (Ej denotes
the expectation in the probability space (Ωj ,Fj ,Pj) (j = 1, 2))

Theorem
Every Markov operator T : L∞(Ω1)→ L∞(Ω2) has an extension to
a bounded operator T : Lp(Ω1)→ Lp(Ω2) for every p ≥ 1.
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Copulæ and Markov operators

Theorem

For every copula C ∈ C2 the operator TC defined on L1(I) via

(TC f ) (x) :=
d
dx

∫ 1

0
D2C (x , t) f (t) dt

is a Markov operator on L∞(I).
Conversely, for every Markov operator T on L1(I) the function CT
defined on I2 via

CT (x , y) :=

∫ x

0

(
T1[0,y ]

)
(s) ds

is a 2–copula.
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Examples

(TW2 f ) (x) = f (1− x)

(TM2 f ) (x) = f (x)

(TΠ2 f ) (x) =

∫ 1

0
f dλ

Theorem

For the adjoint (TC )† of the Markov operator TC in the space Lp

with p ∈ ]1,+∞[ one has (TC )† = TCT , where the transpose CT

of the copula C is defined by CT (x , y) := C (y , x).
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The extension to the case d > 2

For d > 2, consider the factorization Id = Ip × Iq, where
d = p + q. While for d = 2 there is only one possible factorization,
p = 1 and q = 1, this factorization is not unique when d > 2.
Let C ∈ Cd be given; it induces a probability measure µC on
(Id ,B(Id )). Denote the marginals of µC on (Ip,B(Ip)) and on
(Iq,B(Iq)) by µp and µq, respectively.
Given a decomposition d = p + q, there is a unique Markov
operator T : L∞(Ip)→ L∞(Iq) associated with µC and, hence,
with the copula C . Therefore, to every copula C ∈ Cd there
correspond as many Markov operators as there are solutions in
natural numbers p and q of the Diophantine equation p + q = d .
Since the number of these solutions is d − 1, there are d − 1
possible different Markov operators corresponding to a d–copula
when d ≥ 3.
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Measure–preserving transformations

(Ω,F , µ) and (Ω′,F ′, ν) — two measure spaces.
f : Ω→ Ω′ is a measure–preserving transformations (=MPT) if

∀B ∈ F ′ f −1(B) ∈ F
∀B ∈ F ′ µ

(
f −1(B)

)
= ν(B)

From now on (Ω,F , µ) = (Ω′,F ′, ν) = (I,B(I), λ)
B(I) — the Borel sets I
λ — the (restriction) of Lebesgue measure to B(I).
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Copulæ and MPT’s

Theorem
If f1, f2,. . . , fd are MPT’s, the function Cf1,f2,...,fd : In → I defined
by

Cf1,f2,...,fd (x1, x2, . . . , xd ) := λ
(
f −11 [0, x1] ∩ · · · ∩ f −1d [0, xd ]

)
is a copula. Conversely, for every d–copula C ∈ Cd , there exist d
MPT’s f1, f2,. . . fd such that

C = Cf1,f2,...,fd .

This representation is not unique: if ϕ is another MPT on I, then

Cf1,f2,...,fd = Cf1◦ϕ,f2◦ϕ,...,fd◦ϕ.
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Special MPT’s

A transformation f is said to be ergodic if, for all measurable sets A
and B , one has

lim
n→+∞

1
n

n−1∑
k=0

µ
(
f −kA ∩ B

)
= µ(A)µ(B);

f is said to be strongly mixing iIf f satisfies the stronger property

lim
n→+∞

µ
(
f −nA ∩ B

)
= µ(A)µ(B)
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Two corollaries

Corollary

If f is strongly mixing, then, for all x , y ∈ [0, 1],

lim
n→+∞

Cf n,g (x , y) = xy = Π2(x , y).

Corollary

If f is ergodic, then, for all x , y ∈ [0, 1],

lim
n→+∞

1
n

n−1∑
j=0

Cf j ,g (x , y) = xy = Π2(x , y).
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Two examples

For the copula M2 one has

λ
(
f −1 [0, x ] ∩ f −1 [0, y ]

)
= λ

(
f −1 ([0, x ] ∩ [0, y ])

)
= λ ([0, x ] ∩ [0, y ]) = min{x , y} = M2(x , y).

for every measure–preserving transformation f .
As for the copula W2, recall that it concentrates all the probability
mass uniformly on the the diagonal ϕ(t) = 1− t of the unit square.
In this case ϕ = ϕ−1, so that

λ
(
ϕ−1 [0, x ] ∩ [0, y ]

)
= λ ([1− x , 1] ∩ [0, y ])

=

{
0, if x ≤ 1− y ,
x + y − 1, if x > 1− y ;

therefore
W2(x , y) = λ

(
ϕ−1 [0, x ] ∩ [0, y ]

)
.
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The independence copula

Theorem
Let f and g be measure–preserving transformations. The following
conditions are equivalent for Cf ,g ∈ C2:
(a) Cf ,g = Π2

(b) f and g, when regarded as random variables on the standard
probability space (I,B(I), λ), are independent.
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Patchwork

An at most countable family (Si )i∈I of closed and connected
subsets of I2

Si ∩ Sj ⊂ ∂Si ∩ ∂Sj

C – a copula
a continuous function Fi : Si → I2 that is isotone in each place
and agrees with C (called background) on the the boundary
∂Si of Si , namely Fi (u, v) = C (u, v) for every (u, v) ∈ ∂Si

The function F : I2 → I

F (u, v) :=

{
Fi (u, v) , (u, v) ∈ Si ,

C (u, v) , elsewhere,

is called the patchwork of (Fi )i∈I into C .
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Patchwork copulæ

Theorem
Given the family (Ri )i∈I of rectangles, for the patchwork of the
family (Fi )i∈I into the copula C the following statements are
equivalent:
(a) F is a copula;
(b) for every i ∈ I , Fi is 2–increasing on Ri and coincides with C

on the boundary ∂Ri of Ri .
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Ordinal sums

J be a finite or countable subset of the natural numbers N
(]ak , bk [)k∈J be a family of sub–intervals of I indexed by J. It
is required that any two of them have at most an endpoint in
common.
(Ck)k∈J a family of copulas also indexed by J

Definition
The ordinal sum C of (Ck)k∈J with respect to family of intervals
(]ak , bk [)k∈J is defined, for all u = (u1, u2) ∈ I2 by

C (u, v) :=

{
ak + (bk − ak)Ck

(
u−ak
bk−ak

, v−ak
bk−ak

)
, (u, v) ∈ [ak , bk ]2 ,

min{u, v} , elsewhere.
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Ordinal sums–2

Theorem
The ordinal sum of the family of copulas (Ck)k∈J with respect to
the family of intervals (]ak , bk [)k∈J is a copula.

An ordinal sum is a special case of the construction of patchwork
copulas; it suffices to choose

the copula M2 as the background copula;
Sk = ]ak , bk [× ]ak , bk [ for every k ∈ J;
for every k ∈ J, Fk is a version of the copula Ck rescaled in
such a way as to meet the requirements of a patchwork
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W2–ordinal sums

Theorem
Let C ∈ C2 be a copula for which there exists x0 ∈ ]0, 1[ such that
C (x0, 1− x0) = 0. Then there exist two 2–copulæ C1 ∈ C2 and
C2 ∈ C2 such that

C (u, v) =


x0 C1

(
u
x0 ,

x0+v−1
x0

)
(u, v) ∈ [0, x0]× [1− x0, 1]

(1− x0)C2

(
u−x0
1−x0 ,

v
1−x0

)
, (u, v) ∈ [x0, 1]× [0, 1− x0]

W2(u, v), elsewhere.
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Shuffles of Min

A copula is said to be a shuffle of Min it is obtained through the
following procedure:

the probability mass is placed on the support of the copula
M2, namely on the main diagonal of the unit square;
then the unit square is cut into a finite number of vertical
strips;
these vertical strips are permuted (“shuffled”) and, possibly,
some of them are flipped about their vertical axes of symmetry;
finally the vertical strips are reassembled to form the unit
square again;
to the probability mass thus obtained there corresponds a
unique copula C , which is a shuffle of Min.

Shuffles of Min were introduced in (Mikusiński et al. (1992)).
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A different presentation

Two continuous random variables X and Y have a shuffle of Min C
as their copula is if, and only if, one of them is an invertible
piecewise linear function of the other one.

The set of Shuffles of Min is dense in C2.
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Density of the shuffles

Theorem
Let X and Y be continuous random variables on the same
probability space (Ω,F ,P), let F and G be their marginal d.f.’s and
H their joint d.f.. Then, for every ε > 0 there exist two random
variables Xε and Yε on the same probability space and a piecewise
linear function ϕ : R→ R such that
(a) Yε = ϕ ◦ Xε
(b) Fε := FXε = F and Gε := FYε = G
(c) ‖H − Hε‖∞ < ε

where Hε is the joint d.f. of Xε and Yε, and ‖ · ‖∞ denotes the
L∞–norm on R2.
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A surprising consequence

The last result has a surprising consequence. Let X and Y be
independent (and continuous) random variables on the same
probability space, let F and G be their marginal d.f.’s and
H = F ⊗ G their joint d.f.. Then, according to the previous
theorem, it is possible to construct two sequences (Xn) and (Yn) of
random variables such that, for every n ∈ N, their joint d.f. Hn
approximates H to within 1/n in the L∞–norm, but Yn is almost
surely a (piecewise linear) function of Xn.
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A generalization; preliminaries–1

(Ω,F , µ) – a measure space
(Ω1,F1) – a measurable space
ϕ : Ω→ Ω1 – a measurable function
T – the set of all measure–preserving transformations of
(I,B(I), λ)

Tp – the set of all measure-preserving permutations
(automorphisms) of this space
image measure of µ under ϕ

µϕ(A) = (µ ◦ ϕ)(A) = µ
(
ϕ−1A

)
(A ∈ F1)

T equipped with the composition of mappings is a semigroup and
Tp is a subgroup of T .
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Interval exchange transformations

{J1,i} (i = 1, 2, . . . , n) – partition of I into the non–degenerate
intervals J1,i = [a1,i , b1,i [ and the singleton J1,n = {1}.
{J2,i} (i = 1, 2, . . . , n) – another such partition such that,
λ(J1,i ) = λ(J2,i )
the interval exchange transformation

T (x) =


x − a1,1 + a2,1, if x ∈ J1,i ,
λ ((I \

⋃n
i=1 J1,i ) ∩ [0, x ]) +

∑n
i=1(b2,i − a2,a) 1[a2,1](x)

otherwise,
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A mapping on I2

Given T : I→ I define ST : I2 → I2 via

ST (u, v) := (T (u), v) . ((u, v) ∈ I2)

J – a (possibly degenerate) interval in I
the (vertical) strip J × I
the partition of the unit square I2 into possibly infinitely many,
vertical strips.
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Generalized shuffling

A shuffling of a strip partition {Ji × I}i∈I (card I ≤ ℵ0) is any
permutation S of the unit square such that

(1Sh) admits the representation S = ST for some T : I→ I
(2Sh) is measure–preserving on the space

(
I2,B(I2), λ2

)
(3Sh) the restriction S |Ji×I of S to every strip Ji × I is continuous

with respect to the standard product topology on I2
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Generalized shuffling–2

Intuitively, shuffling is just a reordering of the strips. This feature is
captured by the condition (1Sh), which represents the shuffling by a
single transformation T of the unit interval. In particular, ST is a
permutation of I2 if, and only if, T is a permutation of I. Because
of (2Sh) the single strips maintain their measure after shuffling.
Finally, condition (3Sh) is just a technical tool for ensuring that,
during shuffling, the integrity of strips is preserved.
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Shuffles: the new characterization

Lemma
Consider the image measure of a doubly stochastic measure µ
under ST . Then the following statements are equivalent:
(a) µST is doubly stochastic
(b) T is in T .

Theorem
The following statements are equivalent:
(a) a copula C ∈ C2 is a shuffle of Min;
(b) there exists a piece–wise continuous T ∈ T such that

µC = µM2 ◦ S
−1
T

C. Sempi An introduction to Copulas. Tampere, June 2011.



An introduction to Copulas
Shuffles of Min

Shuffles: the new definition

Definition

A copula C ∈ C2 is a generalized shuffle of Min if µC = µM2 ◦ S
−1
T

for some T ∈ T . Such a shuffle of Min is denoted by MT .

In this definition, T is allowed to have countably many
discontinuity points, which is a quite natural generalization of the
original notion of shuffle of Min.
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Shuffling an arbitrary copula

Definition
Let C ∈ C2 be a copula. A copula A is a shuffle of C if there exists
T ∈ T such that µA = µC ◦ S−1T . In this case, A is also called the
T–shuffle of C and denoted by CT .

If a copula C is represented by means of two measure–preserving
transformations f and g , Cf ,g , then

(Cf ,g )T = CT◦f ,g
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Orbits

The mapping which assigns to every T ∈ T and to every copula
C ∈ C2 the corresponding shuffle CT defines an action of the group
T on the set of all copulas. The orbit of a copula C with respect to
this action is the set T (C ) = {CT | T ∈ T } constituted by all
shuffles of C . The general theory of group actions guarantees that
the classes of type T (C ) form a partition of the set of all copulas.
The orbit of a copula is exactly the collection of all its shuffles.

Theorem
For a copula C ∈ C2 the following statements are equivalent:
(a) C = Π2;
(b) T (C ) = {C}.
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More on shuffles

Theorem
If C ∈ C2 is absolutely continuous then so are all its shuffles.

Theorem
Every copula C ∈ C2 other than Π2 has a non–exchangeable shuffle.

Theorem
For every copula C ∈ C2, the independence copula Π2 can be
approximated uniformly by elements of T (C ).
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Generators

A function ϕ : R+ → I is said to be an (outer additive) generator if
it is continuous, decreasing and ϕ(0) = 1, limt→+∞ ϕ(t) = 0 and is
strictly decreasing on [0, t0], where t0 := inf{t > 0 : ϕ(t) = 0}. If
the function ϕ is invertible, or, equivalently, strictly decreasing on
R+, then the generator is said to be strict. If ϕ is strict, then
ϕ(t) > 0 for every t > 0 (and limt→+∞ ϕ(t) = 0).
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Archimedan copulæ

A copula C ∈ Cd is said to be Achimedean if a generator ϕ exists
such that

C (u) = ϕ
(
ϕ(−1)(u1) + ϕ(−1)(u2) + · · ·+ ϕ(−1)(ud )

)
u ∈ Id .

Such a copula will be denoted by Cϕ
When ϕ is strict the copula Cϕ is said to be strict; in this case, Cϕ
has the representation

Cϕ(u) = ϕ
(
ϕ−1(u1) + · · ·+ ϕ−1(ud )

)
.
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d–monotone functions

A function f : ]a, b[→ R is called d–monotone in ]a, b[, where
−∞ ≤ a < b ≤ +∞ if

it is differentiable up to order d − 2;
for every x ∈ ]a, b[, its derivatives satisfy the inequalities

(−1)k f (k)(x) ≥ 0, (k = 0, 1, . . . , d − 2)

(−1)d−2 f (d−2) is decreasing and convex in ]a, b[

f is 2–monotone function iff it is decreasing and convex. If f has
derivatives of every order and if

(−1)k f (k)(x) ≥ 0,

for every x ∈ ]a, b[ and for every k ∈ Z+ is said to be completely
monotonic.
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Characterization of Archimedean copulas

Theorem
(McNeil & Nešlehová) Let ϕ : R+ → I be a generator. Then the
following statements are equivalent:
(a) ϕ is d–monotone on ]0,+∞[;
(b) Cϕ(u) := ϕ

(
ϕ(−1)(u1) + · · ·+ ϕ(−1)(ud )

)
is a d–copula.

Corollary
Let ϕ : R+ → I be a generator. Then the following statements are
equivalent:
(a) ϕ is completely monotone on ]0,+∞[

(b) Cϕ : Id → I is a d–copula for every d ≥ 2
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Examples

The copula Π2 is Archimedean: take ϕ(t) = e−t ; since
limt→+∞ ϕ(t) = 0 and ϕ(t) > 0 for every t > 0, ϕ is strict; then
ϕ−1(t) = − ln t and

ϕ
(
ϕ−1(u) + ϕ−1(v)

)
= exp (− (− ln u − ln v)) = uv = Π2(u, v).

Also W2 is Archimedean; take ϕ(t) := max{1− t, 0}. Since
ϕ(1) = 0, ϕ is not strict. Its quasi–inverse is ϕ(−1)(t) = 1− t.
On the contrary, the upper Fréchet–Hoeffding bound M2 is not
Archimedean.
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The Gumbel–Hougaard family

CGH
θ (u) = exp

−( d∑
i=1

(− log(ui ))θ

)1/θ
where θ ≥ 1. For θ = 1 we obtain the independence copula as a
special case, and the limit of CGH

θ for θ → +∞ is the
comonotonicity copula. The Archimedean generator of this family
is given by ϕ(t) = exp

(
−t1/θ

)
. Each member of this class is

absolutely continuous.
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The Mardia–Takahasi–Clayton family

The standard expression for members of this family of d–copulas is

CMTC
θ (u, v) = max


(

d∑
i=1

u−θi − (d − 1)

)−1/θ
, 0


where θ ≥ −1

d−1 , θ 6= 0. The limiting case θ = 0 corresponds to the
independence copula.
The Archimedean generator of this family is given by

ϕθ(t) = (max{1 + θt, 0})−1/θ .

For every d–dimensional Archimedean copula C and for every
u ∈ Id , CθθLu ≤ C (u) for θL = − 1

d−1 .
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Frank’s family

CFr
θ (u) = −1

θ
log

(
1 +

∏d
i=1
(
e−θui − 1

)
(e−θ = 1)

d−1

)
,

where θ > 0. The limiting case θ = 0 corresponds to Πd . For the
case d = 2, the parameter θ can be extended also to the case
θ < 0.
Copulas of this type have been introduced by Frank in relation with
a problem about associative functions on I. They are absolutely
continuous.
The Archimedean generator is given by

ϕθ(t) = −1
θ log

(
1− (1− e−θ) e−t

)
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EFGM copulæ–1

For d ≥ 2 let S be the class of all subsets of {1, 2, . . . , d} having
at least 2 elements; S contains 2d − d − 1 elements. To each
S ∈ S, we associate a real number αS , with the convention that,
when S = {i1, i2, . . . , ik}, αS = αi1i2...ik .
An EFGM copula can be expressed in the following form:

CEFGM
d (u) =

d∏
i=1

ui

1 +
∑
S∈S

αS
∏
j∈S

(1− uj)

 ,

for suitable values of the αS ’s.
For the bivariate case EFGM copulæ have the following expression:

CEFGM
2 u1, u2 = u1u2 (1 + α12(1− u1)(1− u2)) ,
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EFGM copulæ–2

EFGM copulæ are absolutely continuous with density

cEFGM
d (u) = 1 +

∑
S∈S

αS
∏
j∈S

(1− 2uj).

As a consequence, the parameters αS ’s have to satisfy the
following inequality

1 +
∑
S∈S

αS
∏
j∈S

ξj ≥ 0

for every ξj ∈ {−1, 1}. In particular, |αS | ≤ 1.
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A necessary detour: associativity

Definition
A binary operation T on I is said to be associative if, for all s, t
and u in I,

T (T (s, t), u) = T (s,T (t, u))

Definition
The T–powers of an element t ∈ I under the associative function
T are defined recursively by

t1 := t and ∀n ∈ N tn+1 := T (tn, t) ,
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t–norms

Definition

A triangular norm, or, briefly, a t–norm T is a function T : I2 → I
that is associative, commutative, isotone in each place, viz., both
the functions

I 3 t 7→ T (t, s) and I 3 t 7→ T (s, t)

are isotone for every s ∈ I and such that T (1, t) = t for every
t ∈ I.

Definition
A t–norm T is said to be Archimedean if, for all s and t in ]0, 1[,
there is n ∈ N such that sn < t.
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Copulæ and t–norms

Theorem
For a t–norm T the following statements are equivalent:
(a) T is a 2–copula;
(b) T satisfies the Lipschitz condition:

T (x ′, y)− T (x , y) ≤ x ′ − x x , x ′, y ∈ I x ≤ x ′

Theorem
For an Archimedean t–norm T, which has ϕ as an outer additive
generator, the following statements are equivalent:
(a) T is a 2–copula;
(b) either ϕ or ϕ(−1) is convex.
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Two important concepts

Definition
An element a ∈ ]0, 1[ is said to be a nilpotent element of the
t–norm T if there exists n ∈ N such that a(n)

T = 0.

Definition

A t–norm T is said to be strict if it is continuous on I2 and is
strictly increasing on ]0, 1[; it is said to be nilpotent if it is
continuous on I2 and every a ∈ ]0, 1[ is nilpotent.

The t–norm Π2(u, v) := uv is strict, while
W2(u, v) := max{u + v − 1, 0} is nilpotent.

∀ a ∈ ]0, 1[ an
W2

= max{na − (n − 1), 0},

so that an
W2

= 0 for n ≥ 1/(1− a).

C. Sempi An introduction to Copulas. Tampere, June 2011.



An introduction to Copulas
How many Archimedean copulæ are there?

Representation of t–norms

Under mild conditions the t–norm T has the following
representation

T (x , y) = ϕ
(
ϕ(−1)(x) + ϕ(−1)(y)

)
x , y ∈ I,

where ϕ : R+ → I is continuous, decreasing and ϕ(0) = 1, while
ϕ(−1) : I→ R+ is a quasi–inverse of ϕ that is continuous, strictly
decreasing on I and such that ϕ(−1)(1) = 0
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Isomorphisms of generators

ϕ : R+ → I — an Archimedean generator
ψ — a stricly increasing bijection on I, in particular, ψ(0) = 0 and
ψ(1) = 1. Then ψ ◦ ϕ is also a generator.
If Tϕ is the Archimedean t–norm generated by the outer generator
ϕ, then, as is immediately checked, ψ ◦ ϕ is the generator of the
t–norm

Tψ◦ϕ(u, v) = (ψ ◦ ϕ)
(
ϕ(−1) ◦ ψ−1(u) + ϕ(−1) ◦ ψ−1(v)

)
= ψ

(
Tϕ
(
ψ−1(u), ψ−1(v)

))
.
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Isomorphisms of generators–2

Definition
Two generators ϕ1 and ϕ2 are said to be isomorphic if there exists
a strictly increasing bijection ψ : I→ I such that ϕ2 = ψ ◦ ϕ1.
Two t–norms T1 and T2 are said to be isomorphic if there exists a
strictly increasing bijection ψ : I→ I such that, for all u and v in I,

T2(u, v) = ψ
(
T1
(
ψ−1(u), ψ−1(v)

))
.
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Two results on t–norms

Theorem

For a function T : I2 → I, the following statements are equivalent:
(a) T is a strict t–norm;
(b) T is isomorphic to Π2.

Theorem

For a function T : I2 → I, the following statements are equivalent:
(a) T is a nilpotent t–norm;
(b) T is isomorphic to W2.
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Isomorphisms for copulas–1

Theorem
For an Archimedean 2–copula C ∈ C2, the following statements are
equivalent:
(a) C is strict;
(b) C is isomorphic to Π2;
(c) every additive generator ϕ of C is isomorphic to ϕΠ2(t) = e−t

(t ∈ R+)
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Isomorphisms for copulas–2

Theorem
For an Archimedean 2–copula C ∈ C2, the following statements are
equivalent:
(a) C is nilpotent;
(b) C is isomorphic to W2;
(c) every outer additive generator ϕ of C is isomorphic to

ϕW2(t) = max{1− t, 0} (t ∈ R+)
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An example

The copula
C (u, v) :=

uv
u + v − uv

usually denoted by Π/(Σ− Π) in the literature is strict; its
generator is

ϕ(t) =
1

1 + t
(t ∈ R+).

The isomorphism with ϕΠ2 is realized by the function ψ : I→ I
defined by

ψ(s) =
1

1− ln s
.
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Brownian motion

In a probability space (Ω,F ,P) let {B(1)
t : t ≥ 0} and

{B(2)
t : t ≥ 0} be two Brownian motions (=BM’s). We explicitly

assume that the BM is continuous and consider, for every t ≥ 0,
the random vector

Bt :=
(
B(1)

t ,B(2)
t

)
Then {Bt : t ≥ 0} defines a stochastic process with values in R2.
The literature deals mainly with the independent case, viz., B(1)

t

and B(2)
t are independent for every t ≥ 0; this is usually called the

two–dimensional BM.
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Distribution functions

For every t ≥ 0, let F (1)
t and F (2)

t be the (right–continuous)
distribution functions (=d.f.’s) of B(1)

t and B(2)
t , respectively; thus,

for every x ∈ R,

F (j)
t (x) = P

(
B(j)

t ≤ x
)

(j = 1, 2).

Actually, For every t ≥ 0, F (1)
t (x) = F (2)

t (x) = Φ(x/
√
t), where Φ

is the d.f. of the standard normal distribution N(0, 1).
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Coupled BM–1

For every t ≥ 0, let Ct , which depends on t, be the bivariate copula
of the random pair (B(1)

t ,B(2)
t ). Then the d.f. Ht : R2 → I of the

random pair Bt , is given, for all x and y in R, by

Ht(x , y) = Ct

(
F (1)

t (x),F (2)
t (y)

)
.

Since both B(1)
t and B(2)

t are normally distributed the copula Ct is
uniquely determined for every t ≥ 0.
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Coupled BM–2

Through an abuse of notation we shall write

Bt := Ct

(
B(1)

t ,B(2)
t

)
Notice that, in principle, a different copula is allowed for every
t ≥ 0. The process {Bt : t ≥ 0} will be called the 2–dimensional
coupled Brownian motion.
The traditional two–dimensional BM is included in the picture; in
order to recover it, it suffices to choose the independence copula
Π2(u, v) := u v ((u, v) ∈ I2) and set Ct = Π2 for every t ≥ 0

Ht(x , y) = F (1)
t (x)F (2)

t (y) ((x , y) ∈ R2).
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Properties to be studied

The (one–dimensional) BM is the example of a stochastic process
that has three properties

it a Markov process;
it is a martingale in continuous time;
it is a Gaussian process.

These three aspects will be examined for a coupled BM.
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The Markov property

Since the Markov property for a d–dimensional process
{Xt : t ≥ 0} disregards the dependence relationship of its
components at every t ≥ 0, but is solely concerned with the
dependence structure of the random vector Xt at different times,
the traditional proof for the ordinary (independent) BM holds for
the coupled BM {Bt := Ct(B(1)

t ,B(2)
t ) : t ≥ 0}. Therefore,

Theorem

A coupled Brownian motion {Bt := Ct(B(1)
t ,B(2)

t ) : t ≥ 0} is a
Markov process.
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The coupled BM is a martingale

Theorem

The coupled Brownian motion {Bt := Ct(B(1)
t ,B(2)

t ) : t ≥ 0} is a
martingale.
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Gaussian processes

One has first to state what is meant by the expression Gaussian
process when a stochastic process with values in R2 is considered.
We shall adopt the following definition.

Definition

A stochastic process {Xt : t ≥ 0} with values in Rd is said to be
Gaussian if, for every n ∈ N, and for every choice of n times
0 ≤ t1 < t2 < · · · < tn, the random vector (Xt1 ,Xt2 , . . . ,Xtn) has a
(d × n)–dimensional normal distribution.
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Is a coupled BM a Gaussian process?

Let the copula Ct coincide, for every t ≥ 0, with M2, i.e.,
M2(u, v) = min{u, v}, u and v in I. Then

Ht(x , y)

=
1√
2π t

min
{∫ x

−∞
exp{−v2/(2t)} du,

∫ y

−∞
exp{−u2/(2t)} dv

}
= Φ

(
min{x , y}√

t

)
.

A simple calculation shows that

∂2Ht(x , y)

∂x ∂y
= 0 a.e.

with respect to the Lebesgue measure λ2, so that Ht is not even
absolutely continuous.
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Example–2

If the copula Ct is given, for every t ≥ 0, by W2, where

W2(u, v) := max{u + v − 1, 0},

then the d.f. Ht of Bt is given by

Ht(x , y) = max
{
Φ

(
x√
t

)
+ Φ

(
y√
t

)
− 1, 0

}
,

which again leads, after simple calculations, to the conclusion that,
again, Bt is not even absolutely continuous.
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Singular copulæ

The two previous examples represent extreme cases; in fact, since
the d.f.’s involved are continuous, the copula of two random
variables is M2 if, and only if, they are comonotone, namely, each
of them is an increasing function of the other, while their copula is
W2 if, and only if, they are countermonotone, namely, each of them
is a decreasing function of the other. In this sense both examples
are the opposite of the independent case, which is characterized by
the copula Π2.
We recall that a copula can be either absolutely continuous or
singular or, again, a mixture of the two types. In general, if the
copula C is singular, namely the d.f. of a probability measure
concentrated on a subset of zero Lebesgue measure λ2 in the unit
square I2, then also Bt is singular.
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The absolutely continuous case

Now let the copula Ct be absolutely continuous with density ct ; a
simple calculation shows that Bt is absolutely continuous and that
its density is given a.e. by

ht(x , y) =
1

2π t
exp
(
−x2 + y2

2t

)
ct

(
Φ

(
x√
t

)
, Φ

(
y√
t

))

As a consequence, Bt has a normal law if, and only if, ct(u, v) = 1
for almost all u and v in I; together with the boundary conditions,
this implies Ct(u, v) = u v = Π2(u, v).
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The special position of independence

Theorem

In a coupled Brownian motion{
Bt = Ct

(
B(1)

t ,B(2)
t

)
: t ≥ 0

}
,

Bt has a normal law if, and only if, Ct = Π2, viz., if, and only if,
its components B(1)

t and B(2)
t are independent.
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The ∗–product

Definition
Given two copulas A and B in C2, define a map via

(A ∗ B)(x , y) :=

∫ 1

0
D2A(x , t)D1B(t, y) dt .

Theorem
For all copulas A and B, A ∗ B is a copula, namely A ∗ B ∈ C2, or,
equivalently, ∗ : C2 × C2 → C2.
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The ∗–product–2

Lemma
For every pair A and B of 2–copulas, one has

TA ◦ TB = TA∗B .

C. Sempi An introduction to Copulas. Tampere, June 2011.



An introduction to Copulas
Construction of copulas–2

Continuity in one variable

Theorem
Consider a sequence (An)n∈N of copulas and a copula B. If the
sequence (An) converges (uniformly) to A ∈ C, An → A then both

An ∗ B −−−−→
n→+∞

A ∗ B and B ∗ An −−−−→
n→+∞

B ∗ A,

in other words the ∗–product is continuous in each place with
respect to the uniform convergence of copulas.
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A consequence

Theorem
The binary operation ∗ is associative, viz.
A ∗ (B ∗ C ) = (A ∗ B) ∗ C, for all 2–copulas A, B, and C.

Corollary

The set of copulas endowed with the ∗–product, (C2, ∗) is a
semigroup with identity.
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However. . .

. . . the ∗–product is not commutative, so that the semigroup (C2, ∗)
is not abelian.
Let C1/2 be the copula belonging to the Cuadras–Augé family,
defined by

C1/2(u, v) =

{
u
√
v , u ≤ v ,

√
u v , u ≥ v .

(W2 ∗ C1/2)

(
1
4
,
1
2

)
=

1
4
−
√
2
8
6= 1

2
−
√
3
4

= (C1/2 ∗W2)

(
1
4
,
1
2

)
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Special cases

Π2 ∗ C = C ∗ Π2 = Π2,

M2 ∗ C = C ∗M2 = C ,
(W2 ∗ C )(u, v) = v − C (1− u, v),

(C ∗W2)(u, v) = u − C (u, 1− v).

In particular, one has W2 ∗W2 = M2.

Theorem
The copulæ Π2 and M2 are the (right and left) annihilator and the
identity of the ∗–product, respectively.
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Copulæ and Conditional Expectations

Theorem
Let C be the copula of the continuous random variables X and Y
defined on the probability space (Ω,F ,P); then, for almost every
ω ∈ Ω,

E
(
1{X≤x} | Y

)
(ω) = D2C (FX (x),FY (Y (ω)))

and
E
(
1{Y≤y} | X

)
(ω) = D1C (FX (X (ω)),FY (y)) .
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An important consequence

Corollary
Let X , Y and Z be continuous random variables on the probability
space (Ω,F ,P). If X and Z are conditionally independent given Y ,
then

CXZ = CXY ∗ CYZ .
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∗–product and Markov processes

Theorem
Let (Xt)t∈T be a real stochastic process, let each random variable
Xt be continuous for every t ∈ T and let Cst denote the (unique)
copula of the random variables Xs and Xt (s, t ∈ T ). Then the
following statements are equivalent:
(a) for all s, t, u in T ,

Cst = Csu ∗ Cut ;

(b) the transition probabilities P(s, x , t,A) := P (Xt ∈ A | Xs = x)
satisfy the Chapman–Kolmogorov equations

P(s, x , t,A) =

∫
R

P(u, ξ, t,A)P(s, x , u, dξ)

for every Borel set A, for all s and t in T with s < t, for every
u ∈ ]s, t[ ∩ T and for almost all x ∈ R.
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The ?–product

The Chapman–Kolmogorov equation is a necessary but not a
sufficient condition for a Markov process. This motivates the
introduction of another operation on copulas.

Definition
Let A ∈ Cm and B ∈ Cn; the ?–product of A and B is the mapping
A ? B : Im+n−1 → I defined by

(A ? B)(u1, . . . , um+n−1)

:=

∫ xm

0
DmA(u1, . . . , um−1, ξ)D1B(ξ, um+1, . . . , um+n−1) dξ.
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Properties of the star–product

(a) for all copulas A ∈ Cm and B ∈ Cn the ?–product A ? B is an
(m + n − 1)–copula, viz. ? : Cm × Cn → Cm+n−1

(b) the ?–product is continuous in each place: if the sequence
(Ak)k∈N converges uniformly to A ∈ Cm, then, for every
B ∈ Cn one has both

Ak ? B −−−−→
k→+∞

A ? B and B ? Ak −−−−→
k→+∞

B ? A

(c) the ?–product is associative:

(A ? B) ? C = A ? (B ? C )
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Characterization of Markov processes

Theorem
For a stochastic process (Xt)t∈T such that each random variable
Xt has a continuous distribution the following statements are
equivalent:
(a) (Xt) is a Markov process;
(b) for every choice of n ≥ 2 and of t1, t2,. . . , tn in T such that

t1 < t2 < · · · < tn

Ct1,t2,...,tn = Ct1t2 ? Ct2t3 ? · · · ? Ctn−1tn ,

where Ct1,t2,...,tn is the unique copula of the random vector
(Xt1 ,Xt2 , . . . ,Xtn) and Ctj tj+1 is the (unique) copula of the
random variables Xtj and Xtj+1 .
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The role of the Chapman–Kolmogorov equations

It is now possible to see from the standpoint of copulas why the
Chapman–Kolmogorov equations alone do not garantee that a
process is Markov. One can construct a family of n–copulas with
the following two requirements:

they do not satisfy the conditions of the equations

Ct1,t2,...,tn = Ct1t2 ? Ct2t3 ? · · · ? Ctn−1tn

they do satisfy the conditions of the equations

Cst = Csu ∗ Cut

and are, as a consequence, compatible with the 2–copulas of
a Markov process and, hence, with the Chapman–Kolmogorov
equations.
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Construction of the example

Consider a stochastic process (Xt) in which the random variables
are pairwise independent. Thus the copula of every pair of random
variables Xs and Xt is given by Π2. Since, Π2 ∗ Π2 = Π2, the
Chapman–Kolmogorov equations are satisfied. It is now an easy
task to verify that for every n > 2, the n–fold ?–product of Π2
yields

(Π2 ? Π2 ? · · · ? Π2)(u1, u2, . . . , un) = Πn(u1, u2, . . . , un) ,

so that it follows that the only Markov process with pairwise
indedependent (continuous) random variables is one where all finite
subsets of random variables in the process are independent.
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Construction of the example–2

On the other hand, there are many 3–copulæ whose 2–marginals
coincide with Π2; such an instance is represented by the family of
copulas

Cα(u1, u2, u3) := Π3(u1, u2, u3)+α u1 (1−u1) u2 (1−u2) u3 (1−u3) ,

for α ∈ ]−1, 1[. Now consider a process (Xt) such that
three of its random variables, call them X1, X2 and X3, have
Cα as their copula;
every finite set not containing all three of X1, X2 and X3 is
made of independent random variables;
the n–copula (n > 3) of a finite set containing all three of
them is given by

Ct1,...,tn(u1, . . . , un) = Cα(u1, u2, u3) Πn−3(u4, . . . , un) ,

where we set Π1(t) := t.
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Construction of the example–3

Such a process exists since it is easily verified that the resulting
joint distribution satisfy the compatibility of Kolmogorov’s
consistency theorem; this ensures the existence of a stochastic
process with the specified joint distributions. Since any two random
variables in this process are independent, the
Chapman–Kolmogorov equations are satisfied. However, the copula
of X1, X2 and X3 is inconsistent with the set of equations with the
?–product, so that the process is not a Markov process.
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A comparison

It is instructive to compare the traditional way of specifying a
Markov process with the one due to Darsow, Olsen and Nguyen. In
the traditional approach a Markov process is singled out by
specifying the initial distribution F0 a family of transition
probabilities P(s, x , t,A) that satisfy the Chapman–Kolmogorov
equations. Notice that in the classical approach, the transition
probabilities are fixed, so that changing the initial distribution
simultaneously varies all the marginal distributions. In the present
approach, a Markov process is specified by giving all the marginal
distributions and a family of 2–copulas that satisfies

Cst = Csu ∗ Cut

As a consequence, holding the copulas of the process fixed and
varying the initial distribution does not affect the other marginals.
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Copulæ and Conditional expectations–2

Definition
A copula C will be said to be idempotent (with respect to the
∗–product) if

C ∗ C = C ,

or, equivalently if, for all (u, v) ∈ I2, it satisfies the
integro–differential equation

C (u, v) =

∫ 1

0
D2C (u, t)D1C (t, v) dt.

Both the copulæ Π2 and M2 are idempotent.
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Pfanzagl’s characterization

Theorem

Let H be a subset of L1(Ω,F ,P) such that αf ∈ H
(f ∈ H, α ∈ R), 1 +H ∈ H (f ∈ H), f ∧ g ∈ H (f , g ∈ H) and
such that if (fn)n∈N is a decreasing sequence of elements of H that
tends to a function f ∈ L1, then f ∈ H. Then an operator
T : H → H is the restriction to H of a conditional expectation if,
and only if, (a) Tf ≤ Tg whenever f ≤ g (f , g ∈ H); (b)
T (αf ) = αTf (α ∈ R, f ∈ H; (c) T (1 + f ) = 1 + Tf (f ∈ H),
(d) E(Tf ) = E(f ) (f ∈ H), (e) T 2 := T ◦ T = T. when these
conditions are satisfied, then T = EG , where

G = {A ∈ F : T 1A = 1A} .
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Idempotent copulæ and Markov operators

Theorem
A Markov operator T : L∞(I)→ L∞(I) is the restriction to L∞(I)
of a CE if, and only if, it is idempotent, viz. T 2 = T; when this
latter condition is satisfied, then T = EG , where
G := {A ∈ B(I) : T 1A = 1A}.

Theorem
A Markov operator T is idempotent with respect to composition
T 2 = T, if, and only if, the copula CT ∈ C2 that corresponds to it
is idempotent, CT = CT ∗ CT .
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Copulæ and Conditional expectations–3

Theorem
For a copula C, the following statements are equivalent:
(a) the corresponding Markov operator TC is a CE restricted to

L∞(I,B(I), λ)

(b) the corresponding Markov operator TC is idempotent
(c) C is idempotent
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Copulæ and Conditional expectations–4

Theorem
To every sub–σ–field G of B, the Borel σ–field of I, there
corresponds a unique idempotent copula C (G) such that
EG = TC(G). Conversely, to every idempotent copula C there
corresponds a unique sub–σ–field G(C ) of B such that TC = EG(C).

TΠ2 f = E(f ) =

∫ 1

0
f (t) dt and TM2 f = f

for every f in L1(I). Therefore TΠ2 = EN , where N is the trivial
σ–field {∅, I}, and TM2 = EB; thus Π2 and M2 represent the
extreme cases of copulas corresponding to CE’s.

C. Sempi An introduction to Copulas. Tampere, June 2011.



An introduction to Copulas
Copulæ and stochastic processes

Extreme copulæ

Definition
Given a copula C ∈ C2, a copula A ∈ C2 will be said to be a left
inverse of C if A ∗ C = M2, while a copula B ∈ C2 will be said to
be a right inverse of C if C ∗ B = M2.

Definition
A copula C ∈ C2 is said to be extreme if the equality
C = αA + (1− α)B with α ∈ ]0, 1[ implies C = A = B .

Theorem
If a copula C ∈ C2 possesses either a left or right inverse, then it is
extreme.
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Inverses of copulas

Theorem
When they exist, left and right inverses of copulas in (C2, ∗) are
unique.

Theorem
For a copula C the following statements are equivalent:
(a) for every v ∈ I there exists a = a(v) ∈ ]0, 1[ such that

D1C (u, v) = 1[a(v),1](u), for almost every u ∈ I;
(b) C has a left inverse;
(c) there exists a Borel–measurable function ϕ : R→ R such that

Y = ϕ ◦ X a.e..
In either case the transpose CT of C is a left inverse of C .
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Kendall distribution function

If X is a random variable on the probability space (Ω,F ,P) and if
its d.f. F is continuous, then the random variable F ◦ X = F (X ) is
uniformly distributed on I. This is called the probability integral
transform (PIT for short)

Definition
Let (Ω,F ,P) be a probability space and on this let X and Y be
random variables with joinf d.f. given by H and with marginals F
and G , respectively. Then the Kendall distribution function of X
and Y is the d.f. of the random variable H(X ,Y ),

KH(t) := P (H(X ,Y ) ≤ t) = µH

({
(x , y) ∈ R2

: H(x , y) ≤ t
})

.
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Kendall distribution function–2

KH depends only on the copula C of X and Y :

KC (t) := P (C (U,V ) ≤ t) = µC
({

(u, v) ∈ I2 : C (u, v) ≤ t
})
.

Consider an Archimedean copula with inner generator f ,

Cf (u, v) = g (f (u) + f (v))

then
KCf (t) = t − f (t)

f ′(t)
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A characterization of Kendall d.f.

Theorem
For every copula C ∈ C2, KC is a d.f. in I such that, for every t ∈ I,
(a) t ≤ KC (t) ≤ 1
(b) `−KC (0) = 0
Moreover the bounds of (a) are attained, since KM2(t) = t and
KW2(t) = 1 for every t ∈ I.
For every d.f. F that satisfies properties (a) and (b) there exists a
copula C ∈ C2 for which F = KC .
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Kendall’s tau

Let (X1,Y1) and (X2,Y2) be a pair of independent random vectors
defined on (Ω,F ,P) with joint d.f. H; then the population version
of Kendall’s tau is defined as the difference of the probabilities of
concordance and discordance, respectively, namely

τX ,Y := P [(X1 − X2) (Y1 − Y2) > 0]−P [(X1 − X2) (Y1 − Y2) < 0] .
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The concordance function

Theorem
Let X1, Y1, X2, Y2 be continuous random variables on the
probability space (Ω,F ,P). Let the random vectors (X1,Y1) and
(X2,Y2) be independent, let H1 and H2 be their respective joint
d.f.’s and let the marginals d.f.’s satisfy FX1 = FX2 = F and
FY1 = FY2 = G, so that H1 and H2 both belong to the Fréchet
class Γ(F ,G ) and H1(x , y) = C1(F (x),G (y)) and
H2(x , y) = C2(F (x),G (y)), where C1 and C2 are the (unique)
copulæ of (X1,Y1) and (X2,Y2), respectively. Define

Q := P [(X1 − X2) (Y1 − Y2) > 0]− P [(X1 − X2) (Y1 − Y2) < 0] .

Then Q depends only on C1 and C2 and is given by

Q(C1,C2) = 4
∫
I2
C2(s, t) dC1(s, t)− 1
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Kendall’s tau and copulæ

Corollary
The Kendall’s tau of two continuous random variables X and Y on
the probability space (Ω,F ,P) depends only on the (unique) copula
C of X and Y and is given by

τX ,Y = 4
∫
I2
C (s, t) dC (s, t)− 1 .

In terms of the Kendall d.f.

τ(C ) = 3−
∫ 1

0
KC (t) dt
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Examples

τ(M2) = 1 τ(W2) = −1 τ(Π2) = 0

For the Farlie–Gumbel–Morgenstern copula Cθ

τθ =
2
9
θ ∈ τθ ∈

[
−2
9
,
2
9

]
For the Fréchet family of 2–copulas

Cα,β = αM2 + (1− α− β) Π2 + βW2,

where α ≥ 0, β ≥ 0 and α + β ≤ 1

τ(Cα,β) =
1
3

(α− β) (α + β + 2)
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The case of Archimedean copulas

Theorem
The population version of Kendall’s tau τ(Cf ) for an Archimedean
copula Cf with inner additive generator f is given by

τ(Cf ) = 1 + 4
∫ 1

0

f (t)

f ′(t)
dt
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Spearman’s rho

Let (X1,Y1), (X2,Y2) and (X3,Y3) there independent continuous
random vectors having a common joint distribution function H,
with marginals F and G and copula C . Then Spearman’s rho ρXY
is defined to be proportional to the difference between the
probability of concordance and the probability of discordance for
the two vectors (X1,Y1) and (X2,Y3); notice that the distribution
function of the second vector is F ⊗ G , since X2 and Y3 are
independent. Then

ρX ,Y := 3 (P [(X1 − X2) (Y1 − Y3) > 0]− P [(X1 − X2) (Y1 − Y3) < 0])
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Spearman’s rho and copulæ

Theorem
If C is the copula of two continuous random variables X and Y ,
then the population version of Spearman’s rho of X and Y depends
only on C, will be denoted indifferently by ρX ,Y or by ρC or by
ρ(C ), and is given by

ρX ,Y = ρC = 12
∫
I2
u v dC (u, v)− 3 = 12

∫
I2
C (u, v) du dv − 3

= 12
∫
I2
{C (u, v)− u v} du dv
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The Schweizer–Wolff measure of dependence

Let X and Y be continuous random variables and let F and G be
their d.f.’s, H their joint d.f., and C their (unique) connecting
copula. The graph of C is a surface over the unit square, which is
bounded above by the surface z = M2(u, v), and is bounded below
by the surface z = W2(u, v). If X and Y happen to be
independent, then the surface z = C (u, v) is the hyperbolic
paraboloid z = u v . The volume between the surfaces z = C (u, v)
and z = u v can be used as a measure of dependence. The
Schweizer–Wolff measure of dependence

σ(X ,Y ) := 12
∫
I2
|C (u, v)− u v | du du = 12

∫
I2
|C − Π2| dλ2

= 12
∫
I2
|H(u, v)− F (u)G (v)| dF (u) dG (v)
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Properties of then SW measure

(SW1) σ is defined for every pair of continuous random variables X
and Y defined on the same probability space (Ω,F ,P)

(SW2) σ(X ,Y ) = σ(Y ,X )

(SW3) σ(X ,Y ) ∈ [0, 1]

(SW4) σ(X ,Y ) = 0 if, and only if, X and Y are independent;
(SW5) σ(X ,Y ) = 1 if either X = ϕ ◦ Y or Y = ψ ◦ X for some

strictly monotone functions ϕ,ψ : R→ R
(SW6) σ(ϕ ◦ X , ψ ◦ Y ) = σ(X ,Y ) for strictly monotone if

ϕ,ψ : R→ R
(SW7) σ(X ,Y ) = 6/π arcsin(|ρ|/2) for the bivariate normal

distribution with correlation coefficient ρ
(SW8) if (Xn,Yn) has joint continuous d.f. Hn and converges in law

to the random vector (X ,Y ) with continuous joint d.f. H0,
then σ (Xn,Yn) −→ σ(X ,Y )
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Rényi’s axioms

(R1) R is defined for any pair of random variables X and Y that are
not a.e. constant

(R2) R is symmetric, R(X ,Y ) = R(Y ,X )

(R3) for every pair of non–constant random variables X and Y ,
R(X ,Y ) belongs to [0, 1]

(R4) R(X ,Y ) = 0 if, and only if, X and Y are independent
(R5) R(X ,Y ) = 1 if either x = f ◦ Y or Y = g ◦ X for some Borel

measurable functions f and g
(R6) if f , g : R→ R are Borel–measurable and one–to–one, then

R(f ◦ X , g ◦ Y ) = R(X ,Y )

(R7) if the joint distribution of X and Y is a bivariate normal
distribution with correlation coefficient ρ, then R(X ,Y ) = |ρ|
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Other measures of dependence

the L∞ norm:

σ∞(X ,Y ) := k∞ ‖C−Π2‖∞ = k∞ sup
(u,v)∈I2

|C (u, v)− Π2(u, v)| ;

the Lp norm:

σp(X ,Y ) := kp

(∫
I2
|C (u, v)− Π2(u, v)|p dλ2

)1/p
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Measures of non–exchangeability

Let H(F ) be the class of all random pairs (X ,Y ) such that X and
Y are identically distributed with continuous joint d.f. F .

Definition
A function µ̂ : H(F )→ R+ is called a measure of
non–exchangeability if
(A1) µ̂ is bounded, µ̂(X ,Y ) ≤ K
(A2) µ̂(X ,Y ) = 0 if, and only if, (X ,Y ) is exchangeable
(A3) µ̂ is symmetric:µ̂(X ,Y ) = µ̂(Y ,X )

(A4) µ̂(X ,Y ) = µ̂(f (X ), f (Y )) for every strictly monotone function
f

(A5) if (Xn,Yn) and (X ,Y ) are pairs of random variables with joint
d.f.’s Hn and H, respectively, and if Hn converges weakly to H,
then µ̂(Xn,Yn) converges to µ̂(X ,Y )
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In the language of copulas

Definition

A function µ : C → R+ is called a measure of non–exchangeability
for H(F ) if it satisfies the following properties:
(B1) µ(C ) ≤ K
(B2) µ(C ) = 0 if, and only if, C is symmetric;
(B3) µ(C ) = µ(C t)

(B4) µ(C ) = µ(Ĉ )

(B5) if Cn −−−−→
to+∞

C uniformly, then µ(Cn) −−−−→
to+∞

µ(C )
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An explicit measure

Theorem
The mapping µp : C → R+ defined by

µp(C ) := dp(C ,C t)

is a measure of non–exchangeability for every p ∈ [1,+∞].

Theorem
For every p ∈ [1,+∞[ and for every C ∈ C2, one has

µp(C ) ≤
(

2 · 3−p

(p + 1) (p + 2)

)1/p

≤ 1
3
.
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Quasi–copulæ

Definition

A track B in Id is a subset of unit cube Id that can be written in
the form

B := {(F1(t),F2(t), . . . ,Fd (t)) : t ∈ I}

where F1, F2, . . . , Fd are continuous d.f.’s such that Fj(0) = 0
and Fj(1) = 1 for j = 1, 2, . . . , d

Definition

A d–quasi–copula is a function Q : Id → I such that for every track
B in Id there exists a d–copula CB that coincides with Q on B ,
namely such that, for every point u ∈ B ,

Q(u) = CB(u).
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An equivalent definition

Theorem
A d–quasi–copula Q satisfies the following properties:
(a) for every j ∈ {1, 2, . . . , d}, Q(1, . . . , 1, uj , 1, . . . , 1) = uj

(b) Q is increasing in each place
(c) Q satisfies Lipschitz condition, if u and v are in Id , then

|Q(v)− Q(u)| ≤
d∑

j=1

|vj − uj |

Conversely if Q : Id → I satisfies properties (a), (b) and (b), then
it is a quasi–copula.
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An immediate consequence

For d > 2 the function Wd (u) := max{u1 + · · ·+ ud − d + 1, 0} is
a d–quasi–copula, but not a copula. For d > 2 consider the d–box

[1/2, 1] = [1/2, 1]× [1/2, 1]× · · · × [1/2, 1] .

Then Wd–volume of this d–box is, for d > 2,

VWd ([1/2, 1]) = 1− d
2
< 0,

so that Wd cannot be a copula for d > 2, but is a proper
quasi–copula.
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A surprising result

Let µQ the real measure induced by the quasi–copula Q on
(I2,B(I2)).

Theorem
For all given ε > 0 and M > 0, there exist a quasi–copula Q and a
Borel subset S of I2 such that
(a) µQ(S) < −M
(b) for all u and v in I, |Q(u, v)− Π2(u, v)| < ε
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Quasii–copulæ form a lattice

Given a set S of functions from Id into I one defines∧
S(u) := inf{S(u) : S ∈ S}.

Theorem
Both the upper and the lower bounds,

∨
Q and

∧
Q of every set Q

of d–quasi–copulas are quasi–copulæ,
∨

Q ∈ Qd and
∧

Q ∈ Qd .

Corollary

Both the upper and the lower bounds,
∨

C and
∧

C of every set C
of d–copulas are d–quasi–copulæ,

∨
C ∈ Qd and

∧
C ∈ Qd .
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An example

For θ ∈ I consider the copula

Cθ(s, t) =


min{s, t − θ}, (s, t) ∈ [0, 1− θ]× [θ, 1] ,

min{s + θ − 1, t}, (s, t) ∈ [1− θ, 1]× [0, θ] ,

W2(s, t), elsewhere,

If U and V are uniform rv’s with V = U + θ (mod 1); then Cθ is
their copula. Set C =

{
C1/3,C2/3

}
, then

∨
C is given by

∨
C(s, t) =

{
max{0, s − 1/3, t − 1/3, s + t − 1}, −1/3 ≤ t − s ≤ 2/3,
W2(s, t), elsewhere.

Notice
V∨

C

(
[1/3, 2/3]2

)
= −1/3 < 0
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Qd as a lattice

A partially ordered set P 6= ∅ is said to be a lattice if both the join
x ∨ y and x ∧ y of every pair x and y of elements of P are in P . A
lattice P is said to be complete if both ∨S and ∧S belong to P for
every subset S of P .

Theorem
The set Qd of d–quasi–copulas is a complete lattice under
pointwise suprema and infima.

Theorem
Neither the family Cd of copulas nor the family Qd \ Cd of proper
quasi–copulas is a lattice.
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An example: the tent map

Choose θ in ]0, 1[ and consider the probability mass θ spread on the
segment joining the points (0, 0) and (θ, 1) and the probability
mass 1− θ spread on the segment joining the points (θ, 1) and
(1, 1). It is now easy to find the expression for the copula Cθ of the
resulting probability distribution on the unit square:

Cθ(u, v) =


u, u ∈ [0, θ v ] ,

θ v , u ∈ ]θ v , 1− (1− θ) v [ ,

u + v − 1, u ∈ [1− (1− θ) v , 1] .
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The diagonal of a copula

The diagonal section δC of a copula C ∈ Cd is the function
δC : I→ I, defined by δC (t) := C (t, t, . . . , t).
The diagonal section has a probabilistic meaning. If U1, U2,. . . , Ud
are random variables defined on the same probability space
(Ω,F ,P), having uniform distribution on (0, 1) and C as their
(unique) copula, then

δC (t) = C (t, t, . . . , t) = P

 d⋂
j=1

{Uj ≤ t}


= P (max{U1,U2, . . . ,Ud} ≤ t) = P

 d∨
j=1

Uj ≤ t

 ,

Then δC is the d.f. of the random variable max{U1,U2, . . . ,Ud}
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Properties of the diagonal section

Theorem
The diagonal section δC of a copula C ∈ Cd , or of a quasi–copula
Q ∈ Qd , satisfies the following properties:
(D1) δC (0) = 0 and δC (1) = 1
(D2) ∀t ∈ I δC (t) ≤ t
(D3) the function I 3 t → δC (t) is isotone;
(D4) |δC (t ′)− δC (t)| ≤ d |t ′ − t| for all t and t ′ in I

The set of diagonals will be denoted by D
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Questions

(Q.1) whether, given a diagonal δ ∈ D, there exists a copula C
whose diagonal section δC coincides with δ, namely whether
the class Cδ is non–empty;

(Q.2) whether there exist bounds for the family Cδ; these, if they
exist, are necessarily sharper than the Fréchet–Hoeffding ones;

(Q.3) whether these bounds, when they exist, are the best possible.
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Answer to (Q.1)

Theorem

For every δ ∈ D, the function Kδ : I2 → I defined by

Kδ(u, v) := min
{
u, v ,

δ(u) + δ(v)

2

}
is a copula with diagonal δ, so that Kδ belongs to Cδ; it will be
called the diagonal copula associated with δ.
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The probabilistic meaning

Theorem
Let X and Y be continuous random variables on the same
probability space (Ω,F ,P), with a common d.f. F and copula C.
Then the following statements are equivalent:
(a) The joint d.f. of the random variables min{X ,Y } and

max{X ,Y } is the Fréchet–Hoeffding upper bound
(b) C is a diagonal copula.
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More probability

Lemma
For every diagonal δ and for every symmetric copula C ∈ Cδ one
has C ≤ Kδ.

Theorem
For a diagonal δ the following statements are equivalent:
(a) δ is the diagonal section of an absolutely continuous copula

C ∈ Cd
(b) the set {t ∈ I : δ(t) = t} has Lebesgue measure 0,

λ({t ∈ I : δ(t) = t}) = 0
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The Bertino copula

For a given diagonal δ defined δ̂(t) := t − δ(t)

Theorem

For every diagonal δ ∈ D, the function Bδ : I2 → I defined by

Bδ(u, v) := min{u, v} −min{δ̂(t) : t ∈ [u ∧ v , u ∨ v ]}

=

{
u −mint∈[u,v ]{t − δ(t)}, u ≤ v ,
v −mint∈[v ,u]{t − δ(t)}, v ≤ u

is a symmetric 2–copula having diagonal equal to δ, i.e., Bδ ∈ Cδ.
Bδ is called the Bertino copula of δ.
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Bounds for copulas with given diagonal–1

Theorem

For every diagonal δ ∈ D, the function Aδ : I2 → I defined by

Aδ(u, v) := min
{
u, v ,max{u, v} −max{δ̂(t) : t ∈ [u ∧ v , u ∨ v ]}

}
=

{
min

{
u, v −maxt∈[u,v ]{t − δ(t)}

}
, u ≤ v ,

min
{
v , u −maxt∈[v ,u]{t − δ(t)}

}
, v ≤ u

is a symmetric 2–quasi–copula having diagonal equal to δ, i.e.,
Aδ ∈ Qδ.
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Bounds for copulas with given diagonal–2

Theorem
For every diagonal δ and for every copula C ∈ Cδ one has
Bδ ≤ C ≤ Aδ.

Theorem
The quasi–copula Aδ is a copula if, and only if, Aδ = Kδ.

Theorem
For the quasi–copula Aδ the following statements are equivalent:
(a) Aδ = Kδ
(b) the graph of the function t 7→ δ(t) is piecewise linear; each

segment has slope equal to 0, 1 or 2 and has at least one of its
endpoints on the diagonal v = u.
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Statement of the problem

In its most general form, the problem runs as follows. If k and d
with 1 < k ≤ d are natural numbers, the d–copula C has

(d
k

)
k–marginals, which are obtained by setting d − k of its arguments
equal to 1. In the other direction, if at most

(d
k

)
k–copulæ are

given, there may not exist a d–copula of which the given k–copulæ
are the k–marginals. This may easily be seen in the case d = 3 and
k = 2; if, for instance, the three two copulæ are all equal to W2,
then, in view of the probabilistic meaning of the copula W2, there is
no 3–copula C of which they are the marginals. On the other hand,
if an d–copula exists of which the given copulæ are the
k–marginals, then these are said to be compatible.
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The special case d = 3 and k = 2

Let A and B be 2–copulæ, A,B ∈ C2, and denote by D(A,B) the
set of all 2–copulas that are compatible with A and B , in the sense
that, if C is in D(A,B), then there exists a 3–copula C̃ such that,
for all (u, v ,w) ∈ [0, 1]3,

C̃ (u, v , 1) = A(u, v), C̃ (1, v ,w) = B(v ,w), C̃ (u, 1,w) = C (u,w).

Theorem
Given any two 2–copulas A and B, there always exists a 2–copula
C that is compatible with A and B, namely D(A,B) 6= ∅, for
instance A ∗ B.
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Examples

CW2,W2(u, v ,w) = max{0, v + (u ∧ w)− 1},
CM2,M2(u, v ,w) = u ∧ v ∧ w = M3(u, v ,w),

CW2,M2(u, v ,w) = max{0, u + (v ∧ w)− 1},
CM2,W2(u, v ,w) = max{0, (u ∧ v)− 1 + w},

CΠ2,Π2(u, v ,w) = uvw = Π3(u, v ,w),

CΠ2,M2(u, v ,w) = u M2(v ,w),

CM2,Π2(u, v ,w) = w M2(u, v).
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Properties of D(A,B)

Theorem
The set D(A,B) of copulas that are compatible with two given
bivariate copulas A and B is convex and compact with respect to
the topology of uniform convergence in I2.
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Minimality of D(A,B)

The class D(A,B) is said to be minimal when D(A,B) = {A ∗ B}.
It is worth asking: when is this the case? The following theorem
provides a sufficient condition for this to happen.

Theorem
Let A and B be two bivariate copulas with A = Cf ,g and B = Cp,r ,
where f , g , p and r are measure–preserving transformations from I
into I, and either pair (f , g) or (p, r) is made of one–to–one
transformations. Then D(A,B) is minimal.

Corollary

If either A or B (or both) is a shuffle of Min, then

D(A,B) = {A ∗ B}.
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Gluing of two copulas–1

Let A and B be d–copulæ, A,B ∈ Cd , let i ∈ {1, 2, . . . , n}, and
choose θ in ]0, 1[. Define the (ui = θ)–gluing of A and B viaA

⊗
ui =θ

B

 (u1, . . . , ui−1, ui , ui+1, . . . , ud )

:= θA
(
u1, . . . , ui−1,

ui

θ
, ui+1, . . . , ud

)
for ui ∈ [0, θ]
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Gluing of two copulas–2

A
⊗
ui =θ

B

 (u1, . . . , ui−1, ui , ui+1, . . . , ud )

:= θA (u1, . . . , ui−1, 1, ui+1, . . . , ud )

+ (1− θ)B
(
u1, . . . , ui−1,

ui − θ
1− θ

, ui+1, . . . , ud

)
for ui ∈ [θ, 1].

Theorem
For every pair A and B of d–copulas, for every index
i ∈ {1, 2, . . . , d}, and for every θ ∈ ]0, 1[, A

⊗
ui =θ

B is a d–copula.
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