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Introduction

• Let x be a p-variate random variable with cumulative distribution Fx.

We consider multivariate nonparametric/semiparametric models

with few parameters of interest.

• Example 1: Dimension reduction.

Find a projection matrix P such that you do not loose information

if you transform x → z = Px:

(i) x|Px is not “interesting” (unsupervised)

(ii) y ⊥⊥ (Ip − P)x | Px (supervised)

• Example 2: Independent components problem.

x = Az,

where z is a p-vector with independent components. This is a semiparametric model;

note that parameter A is not well-defined.
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Dimension reduction

• The dimension of x is reduced using a k × p matrix B.

Then

x → z = Bx

or

x → z = PBx where PB = B′(BB′)−1B.

• The idea is that k << p and that “no information is lost” in the transformation.

• Dimension reduction methods (unsupervised and supervised):

PCA, ICA, SIR, SAVE, etc.
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PCA, ICA, SIR

• Assume that E(x) = 0. In PCA, one then finds the p × p transformation matrix Γ such

that

ΓΓ′ = Ip and ΓE(xx′)Γ′ = Λ

where Λ is a diagonal matrix (with diagonal elements in a decreasing order). Decompose

Γ = (Γ′
1,Γ

′
2)

′ and transform z = Γ1x.

• In the independent component analysis (ICA), FOBI finds transformation matrix Γ such

that

ΓE(xx′)Γ′ = Ip and ΓE(xx′E(xx′)xx′)Γ′ = Λ

where the diagonal elements Λ are given in a specified order.

• The sliced inverse regression (SIR) uses a dependent variable y, and finds finds a

transformation matrix Γ which satisfies

ΓE(xx′)Γ′ = Ip and ΓE(E(x|y)E(x|y)′)Γ′ = Λ

where the diagonal elements Λ are given in a specified order.
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Location and scatter functionals

• A location vector T(F ) is a p-vector valued functional which is affine equivariant in the

sense that

T(FAx+b) = AT(Fx) + b

for all nonsingular A and vector b.

• A scatter matrix S(F ) is a p × p matrix valued functional which is PDS and affine

equivariant in the sense that

S(FAx+b) = AS(Fx)A′

for all nonsingular A and vector b.

• Examples: Mean vector, covariance matrix, M-functionals, S-functionals, and so on.

• A scatter matrix functional S(F ) has the independent property if

x has independent components ⇒ S(Fx) is a diagonal matrix.
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Invariant coordinate selection (ICS)

• Let S1 and S2 be two different scatter functionals.

• Define transformation matrix functional Γ = Γ(F ) (and an auxiliary diagonal matrix

functional Λ = Λ(F )) as a solution of

ΓS1Γ
′ = Ip and ΓS2Γ

′ = Λ

where the elements of Λ are in a prespecified order.

• Γ and Λ give the eigenvectors and eigenvalues of S−1

1 S2. If the eigenvalues are distinct

then the eigenvectors are uniquely defined up to their signs.

• Invariant coordinate system (ICS): If the eigenvalues in Λ are distinct, then

Γ(FAx)Ax = Γ(Fx)x, for all nonsingular A.

• If S1 and S2 both have the independence property then Γx solves the ICA problem.
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Figure 1: Iris data; original variables.
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Figure 2: Iris data; principal components.
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Figure 3: Iris data; invariant coordinates.
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Figure 4: Dataset 2: Original variables.
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Figure 5: Dataset 2: Principal components.
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Figure 6: Dataset 2: Invariant coordinates.
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Figure 7: Dataset 3: Original data.
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Figure 8: Dataset 3: Principal components.
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Figure 9: Dataset 3: Invariant coordinates (using Dümbgen and Huber).
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Use of ICS
• Multivariate invariant/equivariant nonparametric tests and estimates based on transformation and

retransformation:

1. Transform X → Z = BX

2. Construct marginal rank tests (Puri-Sen) and corresponding estimates for transformed Z

3. Retransform estimates back to the original scale

• Optimal rank tests in the IC model - in the spirit of Hallin-Paindaveine tests in the elliptical case

• Hunting for clusters and outliers (using coordinates with high/low kurtosis) - a subset of invariant

coordinates can be shown to correspond to Fisher’s linear discriminant subspace (under regular

assumptions)

• Reduction of dimension - components with high/low kurtosis are often most interesting

• Independent component analysis (ICA): If the two scatter matrices have the independence property

then X → BX transforms to independent components (if the IC model is true)

• R-packages ICS and ICSNP available.
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Some asymptotics for ICS functionals

• Let Ŝ1, Ŝ2, Γ̂ and Λ̂ be calculated from a random sample

with corresponding population values Ip, Λ, Ip and Λ.

Λ is a diagonal matrix with diagonal elements λ1 ≥ ... ≥ λp > 0.

• Assume that
√

n(Ŝ1 − Ip) = Op(1) and
√

n(Ŝ2 − Λ) = Op(1)

• Then using Γ̂Ŝ1Γ̂
′ = Ip and Γ̂Ŝ2Γ̂

′ = Λ̂ one can show that, if λi 6= λj for all j 6= i, then

√
n(Λ̂ii − λi) =

√
n((Ŝ2)ii − λi) − λi

√
n((Ŝ1)ii − 1) + op(1),

√
n(Γ̂ii − 1) = −1

2

√
n((Ŝ1)ii − 1) + op(1),

(λi − λj)
√

nΓ̂ij =
√

n(Ŝ2)ij − λi

√
n(Ŝ1)ij + op(1).

• Regular PCA using S: Choose Ŝ1 = Ip and Ŝ2 = Ŝ
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Supervised location and scatter functionals

• A supervised location vector T(Fx,y) is a p-vector valued functional which is affine

equivariant in the sense that

T(FAx+b,y) = AT(Fx,y) + b

for all nonsingular A and vector b.

• A supervised scatter matrix S(Fx,y) is a p × p matrix valued functional which is PDS

and affine equivariant in the sense that

S(FAx+b,y) = AS(Fx,y)A′

for all nonsingular A and vector b.
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Supervised location functionals: Examples

Conditional and weighted mean vectors

• T(Fx,y) = E(x|y = y0) for a fixed y0

• T(Fx,y) = E[w(y)E(x|y)]

• T(Fx,y) = Ew(x) = E(w(y)x)

where the weight function satisfies E(w(y)) = 1.
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Supervised scatter functionals: Examples

Conditional and weighted covariance matrices

• S(Fx,y) = Cov(x|y = y0) for a fixed y0

• S(Fx,y) = E[w(y)Cov(x|y)]

• S(Fx,y) = Covw(x) = E[w(y)(x− Ew(x))(x− Ew(x))′]

where the weight function satisfies E(w(y)) = 1.
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Supervised invariant coordinate selection (SICS)

• Let S1 be a scatter functional and S2 a supervised scatter functional.

(S1 = Cov and S2 = Covw , for example.)

• Define transformation matrix functional Γ = Γ(Fx,y) (and an auxiliary diagonal matrix

functional Λ = Λ(Fx,y)) as a solution of

ΓS1Γ
′ = Ip and ΓS2Γ

′ = Λ

where the elements of Λ are in a prespecified order.

• Invariant coordinate system (ICS): If the eigenvalues (listed in Λ) are distinct, then

Γ(FAx,y)Ax = Γ(Fx,y)x, for all nonsingular A.

• In dimension reduction, one is interested in eigenvectors deviating from zero or deviating

from one depending on the choice of S1 and S2. (If S1 = Cov and S2 = Covw , then

eigenvectors corresponding to the eigenvalues deviating from one are of interest.)
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An example: Australian athletes data

• The response variable is lean body mass (LBM).

• p = 10 explanatory variables: height, weight, red cell count, white cell count,

hematocrit, hemoglobin, plasma ferritin concentration, body mass index,

sum of skin folds, and percent body fat.

• Supervised ICS procedures were based on the regular covariance matrix S1(F ) and

(E1) S2(Fx,y) = Cov(x|y > Q2(Fy))

(E2) S2(Fx,y) = Cov(x|Q1(Fy) < y < Q3(Fy))

(E3) S2(Fx,y) = Cov
(

xi − xj

∣

∣ |yi − yj | > F−1

|yi−yj |
(0.9)

)

,

where (xi, yi) and (xj , yj) are two independent copies from

the distribution of (x, y).

• We consider k = 3 supervised invariant coordinates with eigenvalues differing most from

one.
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Figure 10: Reduced dimension variables vs LBM. (E1) first row, (E2) second row, and (E3)

third row.

−5 −3 −1 0 1

40
60

80
10

0

E1.1

LB
M

−2 −1 0 1 2

40
60

80
10

0

E1.2

−4 −2 0 1 2

40
60

80
10

0

E1.3

−5 −4 −3 −2 −1 0 1

40
60

80
10

0

E3.1

LB
M

−4 −2 0 2

40
60

80
10

0

E3.9

−2 −1 0 1 2 3

40
60

80
10

0
E3.10

−4 −3 −2 −1 0 1

40
60

80
10

0

E4.1

LB
M

−6 −4 −2 0

40
60

80
10

0

E4.2

−3 −1 0 1 2 3

40
60

80
10

0

E4.3

25



Asymptotics for supervised ICS functionals
• Assume that

√
n(Ŝ1 − Ip) = Op(1) and

√
n(Ŝ2 − Λ) = Op(1)

• Then using Γ̂Ŝ1Γ̂
′ = Ip and Γ̂Ŝ2Γ̂

′ = Λ̂ one can show that, if λi 6= λj for all j 6= i, then

√
n(λ̂i − λi) =

√
n((Ŝ2)ii − λi) − λi

√
n((Ŝ1)ii − 1) + op(1),

√
n(Γ̂ii − 1) = −1

2

√
n((Ŝ1)ii − 1) + op(1),

(λi − λj)
√

nΓ̂ij =
√

n(Ŝ2)ij − λi

√
n(Ŝ1)ij + op(1).

• Testing whether exactly p − k eigenvalues are one: Use the test statistic

n ·
p

∑

i=k+1

(λ̂i − 1)2.

• Testing whether exactly p − k eigenvalues are zero (as in SIR): Use the test statistic

n ·
p

∑

i=k+1

λ̂i.
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