Supervised invariant coordinate selection

> Hannu Oja (with several coauthors)
20.10. 2010, Aalto University

The plan

- Introduction
- Dimension reduction: PCA, ICA, SIR
- Location and scatter functionals
- Invariant coordinate selection (ICS)
- Supervised location and scatter functionals
- Supervised invariant coordinate selection (SICS)
- Examples, some asymptotics

Main references

Nordhausen, K., Oja, H. and Tyler, D.E. (2008). Tools for exploring multivariate data. The package ICS. Journal of Statistical Software 28(6), 1-31.

Tyler, D., Critchley, F., Dümbgen, L. and Oja, H. (2009), Invariant coordinate selection. Journal of Royal Statistical Society B, 71, 549-592.

Nordhausen, K., Oja H. and Ollila, E. (2010). Multivariate models and first four moments.
Festschrift for T.P. Hettmansperger, to appear.
Ilmonen, P., Nevalainen, J. and Oja, H. (2010). Characteristics of multivariate distributions and the invariant coordinate system. Statistics \& Probability Letters, to appear.

Ilmonen, P., Serfling, R., and Oja, H. (2010). Invariant coordinate selection (ICS) functionals.
Submitted.
Liski, E., Nordhausen, K., and Oja, H. (2010). Supervised invariant coordinate selection.
Submitted.

Introduction

- Let \mathbf{x} be a p-variate random variable with cumulative distribution F_{x}.

We consider multivariate nonparametric/semiparametric models with few parameters of interest.

- Example 1: Dimension reduction.

Find a projection matrix \mathbf{P} such that you do not loose information if you transform $\mathbf{x} \rightarrow \mathbf{z}=\mathbf{P} \mathbf{x}$:
(i) $\mathbf{x} \mid \mathbf{P x}$ is not "interesting" (unsupervised)
(ii) $\quad \mathbf{y} \Perp\left(\mathbf{I}_{p}-\mathbf{P}\right) \mathbf{x} \mid \mathbf{P x} \quad$ (supervised)

- Example 2: Independent components problem.

$$
\mathbf{x}=\mathbf{A} \mathbf{z}
$$

where \mathbf{z} is a p-vector with independent components. This is a semiparametric model; note that parameter \mathbf{A} is not well-defined.

Dimension reduction

- The dimension of \mathbf{x} is reduced using a $k \times p$ matrix \mathbf{B}.

Then

$$
\mathbf{x} \rightarrow \mathbf{z}=\mathbf{B x}
$$

or

$$
\mathbf{x} \rightarrow \mathbf{z}=\mathbf{P}_{\mathbf{B}} \mathbf{x} \quad \text { where } \mathbf{P}_{\mathbf{B}}=\mathbf{B}^{\prime}\left(\mathbf{B B}^{\prime}\right)^{-1} \mathbf{B}
$$

- The idea is that $k \ll p$ and that "no information is lost" in the transformation.
- Dimension reduction methods (unsupervised and supervised):

PCA, ICA, SIR, SAVE, etc.

PCA, ICA, SIR

- Assume that $E(\mathbf{x})=\mathbf{0}$. In PCA, one then finds the $p \times p$ transformation matrix $\boldsymbol{\Gamma}$ such that

$$
\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\prime}=\mathbf{I}_{p} \quad \text { and } \quad \boldsymbol{\Gamma} E\left(\mathbf{x x}^{\prime}\right) \boldsymbol{\Gamma}^{\prime}=\boldsymbol{\Lambda}
$$

where $\boldsymbol{\Lambda}$ is a diagonal matrix (with diagonal elements in a decreasing order). Decompose $\boldsymbol{\Gamma}=\left(\boldsymbol{\Gamma}_{1}^{\prime}, \boldsymbol{\Gamma}_{2}^{\prime}\right)^{\prime}$ and transform $\mathbf{z}=\boldsymbol{\Gamma}_{1} \mathbf{x}$.

- In the independent component analysis (ICA), FOBI finds transformation matrix $\boldsymbol{\Gamma}$ such that

$$
\boldsymbol{\Gamma} E\left(\mathbf{x x}^{\prime}\right) \boldsymbol{\Gamma}^{\prime}=\mathbf{I}_{p} \quad \text { and } \quad \boldsymbol{\Gamma} E\left(\mathbf{x x}^{\prime} E\left(\mathbf{x x}^{\prime}\right) \mathbf{x x}^{\prime}\right) \boldsymbol{\Gamma}^{\prime}=\boldsymbol{\Lambda}
$$

where the diagonal elements $\boldsymbol{\Lambda}$ are given in a specified order.

- The sliced inverse regression (SIR) uses a dependent variable \mathbf{y}, and finds finds a transformation matrix $\boldsymbol{\Gamma}$ which satisfies

$$
\boldsymbol{\Gamma} E\left(\mathbf{x x}^{\prime}\right) \boldsymbol{\Gamma}^{\prime}=\mathbf{I}_{p} \quad \text { and } \quad \boldsymbol{\Gamma} E\left(E(\mathbf{x} \mid \mathbf{y}) E(\mathbf{x} \mid \mathbf{y})^{\prime}\right) \boldsymbol{\Gamma}^{\prime}=\boldsymbol{\Lambda}
$$

where the diagonal elements $\boldsymbol{\Lambda}$ are given in a specified order.

Location and scatter functionals

- A location vector $\mathbf{T}(F)$ is a p-vector valued functional which is affine equivariant in the sense that

$$
\mathbf{T}\left(F_{\mathbf{A x}+\mathbf{b}}\right)=\mathbf{A} \mathbf{T}\left(F_{\mathbf{x}}\right)+\mathbf{b}
$$

for all nonsingular \mathbf{A} and vector \mathbf{b}.

- A scatter matrix $\mathbf{S}(F)$ is a $p \times p$ matrix valued functional which is PDS and affine equivariant in the sense that

$$
\mathbf{S}\left(F_{\mathbf{A} \mathbf{x}+\mathbf{b}}\right)=\mathbf{A} \mathbf{S}\left(F_{\mathbf{x}}\right) \mathbf{A}^{\prime}
$$

for all nonsingular \mathbf{A} and vector \mathbf{b}.

- Examples: Mean vector, covariance matrix, M-functionals, S-functionals, and so on.
- A scatter matrix functional $\mathbf{S}(F)$ has the independent property if

$$
\mathbf{x} \text { has independent components } \Rightarrow \mathbf{S}\left(F_{\mathbf{x}}\right) \text { is a diagonal matrix. }
$$

Invariant coordinate selection (ICS)

- Let \mathbf{S}_{1} and \mathbf{S}_{2} be two different scatter functionals.
- Define transformation matrix functional $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}(F)$ (and an auxiliary diagonal matrix functional $\boldsymbol{\Lambda}=\boldsymbol{\Lambda}(F)$) as a solution of

$$
\boldsymbol{\Gamma} \mathbf{S}_{1} \boldsymbol{\Gamma}^{\prime}=\mathbf{I}_{p} \quad \text { and } \quad \boldsymbol{\Gamma} \mathbf{S}_{2} \boldsymbol{\Gamma}^{\prime}=\boldsymbol{\Lambda}
$$

where the elements of Λ are in a prespecified order.

- $\boldsymbol{\Gamma}$ and Λ give the eigenvectors and eigenvalues of $\mathbf{S}_{1}^{-1} \mathbf{S}_{2}$. If the eigenvalues are distinct then the eigenvectors are uniquely defined up to their signs.
- Invariant coordinate system (ICS): If the eigenvalues in $\boldsymbol{\Lambda}$ are distinct, then

$$
\boldsymbol{\Gamma}\left(F_{\mathbf{A x}}\right) \mathbf{A} \mathbf{x}=\boldsymbol{\Gamma}\left(F_{\mathbf{x}}\right) \mathbf{x}, \text { for all nonsingular } \mathbf{A} .
$$

- If \mathbf{S}_{1} and \mathbf{S}_{2} both have the independence property then $\boldsymbol{\Gamma} \mathbf{x}$ solves the ICA problem.

Figure 1: Iris data; original variables.

Figure 2: Iris data; principal components.

Figure 3: Iris data; invariant coordinates.

Figure 4: Dataset 2: Original variables.

Figure 5: Dataset 2: Principal components.

Figure 6: Dataset 2: Invariant coordinates.

Figure 7: Dataset 3: Original data.

Figure 8: Dataset 3: Principal components.

Figure 9: Dataset 3: Invariant coordinates (using Dümbgen and Huber).

Use of ICS

- Multivariate invariant/equivariant nonparametric tests and estimates based on transformation and retransformation:

1. Transform $\mathbf{X} \rightarrow \mathbf{Z}=\mathbf{B X}$
2. Construct marginal rank tests (Puri-Sen) and corresponding estimates for transformed \mathbf{Z}
3. Retransform estimates back to the original scale

- Optimal rank tests in the IC model - in the spirit of Hallin-Paindaveine tests in the elliptical case
- Hunting for clusters and outliers (using coordinates with high/low kurtosis) - a subset of invariant coordinates can be shown to correspond to Fisher's linear discriminant subspace (under regular assumptions)
- Reduction of dimension - components with high/low kurtosis are often most interesting
- Independent component analysis (ICA): If the two scatter matrices have the independence property then $\mathbf{X} \rightarrow \mathbf{B X}$ transforms to independent components (if the IC model is true)
- R-packages ICS and ICSNP available.

Some asymptotics for ICS functionals

- Let $\hat{\mathbf{S}}_{1}, \hat{\mathbf{S}}_{2}, \hat{\boldsymbol{\Gamma}}$ and $\hat{\boldsymbol{\Lambda}}$ be calculated from a random sample with corresponding population values $\mathbf{I}_{p}, \boldsymbol{\Lambda}, \mathbf{I}_{p}$ and $\boldsymbol{\Lambda}$.
$\boldsymbol{\Lambda}$ is a diagonal matrix with diagonal elements $\lambda_{1} \geq \ldots \geq \lambda_{p}>0$.
- Assume that $\sqrt{n}\left(\hat{\mathbf{S}}_{1}-\mathbf{I}_{p}\right)=O_{p}(1)$ and $\sqrt{n}\left(\hat{\mathbf{S}}_{2}-\boldsymbol{\Lambda}\right)=O_{p}(1)$
- Then using $\hat{\boldsymbol{\Gamma}} \hat{\mathbf{S}}_{1} \hat{\boldsymbol{\Gamma}}^{\prime}=\mathbf{I}_{p}$ and $\hat{\boldsymbol{\Gamma}} \hat{\mathbf{S}}_{2} \hat{\boldsymbol{\Gamma}}^{\prime}=\hat{\boldsymbol{\Lambda}}$ one can show that, if $\lambda_{i} \neq \lambda_{j}$ for all $j \neq i$, then

$$
\begin{aligned}
\sqrt{n}\left(\hat{\boldsymbol{\Lambda}}_{i i}-\lambda_{i}\right) & =\sqrt{n}\left(\left(\hat{\mathbf{S}}_{2}\right)_{i i}-\lambda_{i}\right)-\lambda_{i} \sqrt{n}\left(\left(\hat{\mathbf{S}}_{1}\right)_{i i}-1\right)+o_{p}(1), \\
\sqrt{n}\left(\hat{\boldsymbol{\Gamma}}_{i i}-1\right) & =-\frac{1}{2} \sqrt{n}\left(\left(\hat{\mathbf{S}}_{1}\right)_{i i}-1\right)+o_{p}(1), \\
\left(\lambda_{i}-\lambda_{j}\right) \sqrt{n} \hat{\boldsymbol{\Gamma}}_{i j} & =\sqrt{n}\left(\hat{\mathbf{S}}_{2}\right)_{i j}-\lambda_{i} \sqrt{n}\left(\hat{\mathbf{S}}_{1}\right)_{i j}+o_{p}(1) .
\end{aligned}
$$

- Regular PCA using S: Choose $\hat{\mathbf{S}}_{1}=\mathbf{I}_{p}$ and $\hat{\mathbf{S}}_{2}=\hat{\mathbf{S}}$

Supervised location and scatter functionals

- A supervised location vector $\mathbf{T}\left(F_{\mathbf{x}, \mathbf{y}}\right)$ is a p-vector valued functional which is affine equivariant in the sense that

$$
\mathbf{T}\left(F_{\mathbf{A x}+\mathbf{b}, \mathbf{y}}\right)=\mathbf{A} \mathbf{T}\left(F_{\mathbf{x}, \mathbf{y}}\right)+\mathbf{b}
$$

for all nonsingular \mathbf{A} and vector \mathbf{b}.

- A supervised scatter matrix $\mathbf{S}\left(F_{\mathbf{x}, \mathbf{y}}\right)$ is a $p \times p$ matrix valued functional which is PDS and affine equivariant in the sense that

$$
\mathbf{S}\left(F_{\mathbf{A x}+\mathbf{b}, \mathbf{y}}\right)=\mathbf{A} \mathbf{S}\left(F_{\mathbf{x}, \mathbf{y}}\right) \mathbf{A}^{\prime}
$$

for all nonsingular \mathbf{A} and vector \mathbf{b}.

Supervised location functionals: Examples

Conditional and weighted mean vectors

- $\mathbf{T}\left(F_{\mathbf{x}, \mathbf{y}}\right)=E\left(\mathbf{x} \mid \mathbf{y}=\mathbf{y}_{0}\right)$ for a fixed \mathbf{y}_{0}
- $\mathbf{T}\left(F_{\mathbf{x}, \mathbf{y}}\right)=E[w(\mathbf{y}) E(\mathbf{x} \mid \mathbf{y})]$
- $\mathbf{T}\left(F_{\mathbf{x}, \mathbf{y}}\right)=E_{w}(\mathbf{x})=E(w(\mathbf{y}) \mathbf{x})$
where the weight function satisfies $E(w(\mathbf{y}))=1$.

Supervised scatter functionals: Examples

Conditional and weighted covariance matrices

- $\mathbf{S}\left(F_{\mathbf{x}, \mathbf{y}}\right)=\operatorname{Cov}\left(\mathbf{x} \mid \mathbf{y}=\mathbf{y}_{0}\right)$ for a fixed \mathbf{y}_{0}
- $\mathbf{S}\left(F_{\mathbf{x}, \mathbf{y}}\right)=E[w(\mathbf{y}) \operatorname{Cov}(\mathbf{x} \mid \mathbf{y})]$
- $\mathbf{S}\left(F_{\mathbf{x}, \mathbf{y}}\right)=\operatorname{Cov}_{w}(\mathbf{x})=E\left[w(\mathbf{y})\left(\mathbf{x}-E_{w}(\mathbf{x})\right)\left(\mathbf{x}-E_{w}(\mathbf{x})\right)^{\prime}\right]$
where the weight function satisfies $E(w(\mathbf{y}))=1$.

Supervised invariant coordinate selection (SICS)

- Let \mathbf{S}_{1} be a scatter functional and \mathbf{S}_{2} a supervised scatter functional.
($\mathbf{S}_{1}=C o v$ and $\mathbf{S}_{2}=C o v_{w}$, for example.)
- Define transformation matrix functional $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}\left(F_{\mathbf{x}, \mathbf{y}}\right)$ (and an auxiliary diagonal matrix functional $\left.\boldsymbol{\Lambda}=\boldsymbol{\Lambda}\left(F_{\mathbf{x}, \mathbf{y}}\right)\right)$ as a solution of

$$
\boldsymbol{\Gamma} \mathbf{S}_{1} \boldsymbol{\Gamma}^{\prime}=\mathbf{I}_{p} \quad \text { and } \quad \boldsymbol{\Gamma} \mathbf{S}_{2} \boldsymbol{\Gamma}^{\prime}=\Lambda
$$

where the elements of Λ are in a prespecified order.

- Invariant coordinate system (ICS): If the eigenvalues (listed in $\boldsymbol{\Lambda}$) are distinct, then

$$
\boldsymbol{\Gamma}\left(F_{\mathbf{A x}, \mathbf{y}}\right) \mathbf{A} \mathbf{x}=\boldsymbol{\Gamma}\left(F_{\mathbf{x}, \mathbf{y}}\right) \mathbf{x}, \text { for all nonsingular } \mathbf{A} .
$$

- In dimension reduction, one is interested in eigenvectors deviating from zero or deviating from one depending on the choice of \mathbf{S}_{1} and \mathbf{S}_{2}. (If $\mathbf{S}_{1}=C o v$ and $\mathbf{S}_{2}=C o v_{w}$, then eigenvectors corresponding to the eigenvalues deviating from one are of interest.)

An example: Australian athletes data

- The response variable is lean body mass (LBM).
- $p=10$ explanatory variables: height, weight, red cell count, white cell count, hematocrit, hemoglobin, plasma ferritin concentration, body mass index, sum of skin folds, and percent body fat.
- Supervised ICS procedures were based on the regular covariance matrix $\mathbf{S}_{1}(F)$ and
(E1) $S_{2}\left(F_{\mathbf{x}, y}\right)=\operatorname{Cov}\left(\mathbf{x} \mid y>Q_{2}\left(F_{y}\right)\right)$
(E2) $S_{2}\left(F_{\mathbf{x}, y}\right)=\operatorname{Cov}\left(\mathbf{x} \mid Q_{1}\left(F_{y}\right)<y<Q_{3}\left(F_{y}\right)\right)$
(E3) $S_{2}\left(F_{\mathbf{x}, y}\right)=\operatorname{Cov}\left(\mathbf{x}_{i}-\mathbf{x}_{j}| | y_{i}-y_{j} \mid>F_{\left|y_{i}-y_{j}\right|}^{-1}(0.9)\right)$,
where $\left(\mathbf{x}_{i}, y_{i}\right)$ and $\left(\mathbf{x}_{j}, y_{j}\right)$ are two independent copies from the distribution of (\mathbf{x}, y).
- We consider $k=3$ supervised invariant coordinates with eigenvalues differing most from one.

Figure 10: Reduced dimension variables vs LBM. (E1) first row, (E2) second row, and (E3) third row.

E3. 1

E4.1

E3.9

E4.2

E3. 10

E4.3

Asymptotics for supervised ICS functionals

- Assume that $\sqrt{n}\left(\hat{\mathbf{S}}_{1}-\mathbf{I}_{p}\right)=O_{p}(1)$ and $\sqrt{n}\left(\hat{\mathbf{S}}_{2}-\boldsymbol{\Lambda}\right)=O_{p}(1)$
- Then using $\hat{\boldsymbol{\Gamma}} \hat{\mathbf{S}}_{1} \hat{\boldsymbol{\Gamma}}^{\prime}=\mathbf{I}_{p}$ and $\hat{\boldsymbol{\Gamma}} \hat{\mathbf{S}}_{2} \hat{\boldsymbol{\Gamma}}^{\prime}=\hat{\boldsymbol{\Lambda}}$ one can show that, if $\lambda_{i} \neq \lambda_{j}$ for all $j \neq i$, then

$$
\begin{aligned}
\sqrt{n}\left(\hat{\lambda}_{i}-\lambda_{i}\right) & =\sqrt{n}\left(\left(\hat{\mathbf{S}}_{2}\right)_{i i}-\lambda_{i}\right)-\lambda_{i} \sqrt{n}\left(\left(\hat{\mathbf{S}}_{1}\right)_{i i}-1\right)+o_{p}(1), \\
\sqrt{n}\left(\hat{\boldsymbol{\Gamma}}_{i i}-1\right) & =-\frac{1}{2} \sqrt{n}\left(\left(\hat{\mathbf{S}}_{1}\right)_{i i}-1\right)+o_{p}(1), \\
\left(\lambda_{i}-\lambda_{j}\right) \sqrt{n} \hat{\boldsymbol{\Gamma}}_{i j} & =\sqrt{n}\left(\hat{\mathbf{S}}_{2}\right)_{i j}-\lambda_{i} \sqrt{n}\left(\hat{\mathbf{S}}_{1}\right)_{i j}+o_{p}(1) .
\end{aligned}
$$

- Testing whether exactly $p-k$ eigenvalues are one: Use the test statistic

$$
n \cdot \sum_{i=k+1}^{p}\left(\hat{\lambda}_{i}-1\right)^{2} .
$$

- Testing whether exactly $p-k$ eigenvalues are zero (as in SIR): Use the test statistic

$$
n \cdot \sum_{i=k+1}^{p} \hat{\lambda}_{i}
$$

THANK YOU FOR YOUR ATTENTION!

