Independence properties of the Matsumoto-Yor type and characterization of Kummer, gamma and beta distributions

Pierre VALLOIS

Institut Elie Cartan, Université Henri Poincaré, CNRS, INRIA, Boulevard des Aiguillettes, B.P. 239, F54506 Vandoeuvre les Nancy Cedex

e.m. : vallois@iecn.u-nancy.fr

Joint work with E.A. Koudou (Nancy).

We define Letac-Wesolowski-Matsumoto-Yor functions as decreasing functions from $(0, \infty)$ onto $(0, \infty)$ with the following property: there exist independent, positive random variables X and Y such that the variables f(X+Y) and f(X) - f(X+Y) are independent. We prove that, under additional assumptions, there are essentially four such functions. The first one f(x) = 1/x has been treated by Matsumoto-Yor (2001) and Letac and Wesolowski (2000) and is referred in the literature as the Matsumoto-Yor property. In that case, the law of X is generalized inverse Gaussian while Y is gamma-distributed. As for the three other cases, under the weak assumption that X and Y have densities functions whose logarithm is locally integrable, we prove that the distribution of (X, Y) is unique. This leads to Kummer, gamma and beta distributions and as a byproduct we obtain a new relation of convolution involving gamma distributions and Kummer distributions of type 2.