The censored process

Andreas E. Kyprianou¹ Juan-Carlos Pardo² Alex Watson¹

¹Unversity of Bath, UK.

²CIMAT, Mexico.

Stable processes

Definition I

A Lévy process X is called α -stable if it satisfies the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \quad c>0.$$

Necessarily $\alpha \in (0,2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]

The quantity $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$.

Stable processes

Definition I

A Lévy process X is called α -stable if it satisfies the scaling property

$$\left.\left(cX_{c^{-\alpha}t}\right)_{t\geq0}\right|_{\mathsf{P}_{x}}\stackrel{d}{=}\left.X\right|_{\mathsf{P}_{cx}},\quad c>0.$$

Necessarily $\alpha \in (0,2]$. $[\alpha=2 \to {\sf BM}, {\sf exclude this.}]$ The quantity $\rho = {\sf P}_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho}=1-\rho$.

Definition II

Let $\alpha,\,\rho$ be admissible parameters, X the Lévy process with Lévy density

$$c_{+}x^{-(\alpha+1)}\mathbb{1}_{(x>0)}+c_{-}|x|^{-(\alpha+1)}\mathbb{1}_{(x<0)}, \qquad x\in\mathbb{R},$$

no Gaussian part.

We make two assumptions:

- X does not have one-sided jumps,
- When $\alpha = 1$, X is symmetric.

Problem statement

The problem

Let

$$\tau_{-1}^1 = \inf\{t > 0 : X_t \in (-1,1)\}$$

be the first hitting time of (-1,1).

What is $P_x(X_{\tau_{-1}^1} \in dy, \, \tau_{-1}^1 < \infty)$?

The problem

Let

$$\tau_{-1}^1 = \inf\{t > 0 : X_t \in (-1,1)\}$$

be the first hitting time of (-1,1).

What is $P_x(X_{\tau^1} \in dy, \tau^1_{-1} < \infty)$?

Problem: history

- Blumenthal, Getoor, Ray (1961): symmetric, d-dimensional
- Port (1967): one-sided jumps

Problem

0000

- Blumenthal, Getoor, Ray (1961): symmetric, d-dimensional
- Port (1967): one-sided jumps

Theorem (B-G-R)

Let x > 1. Then, when $\alpha \in (0,1]$,

$$P_x(X_{\tau_{-1}^1} \in dy, \, \tau_{-1}^1 < \infty)/dy$$

$$= \frac{\sin(\pi\alpha/2)}{\pi} (x^2 - 1)^{\alpha/2} (1 - y^2)^{-\alpha/2} (x - y)^{-1}$$

for $y \in (-1, 1)$.

Problem: history

Problem

0000

- Blumenthal, Getoor, Ray (1961): symmetric, d-dimensional
- Port (1967): one-sided jumps

Theorem (B-G-R)

Let x > 1. Then, when $\alpha \in (1,2)$,

$$\begin{split} \mathsf{P}_x(X_{\tau_{-1}^1} \in \mathsf{d}y)/\mathsf{d}y \\ &= \frac{\sin(\pi\alpha/2)}{\pi} (x^2 - 1)^{\alpha/2} (1 - y^2)^{-\alpha/2} (x - y)^{-1} \\ &- (\alpha - 1) \frac{\sin(\pi\alpha/2)}{\pi} (1 - y^2)^{-\alpha/2} \int_1^x (t^2 - 1)^{\alpha/2 - 1} \, \mathsf{d}t, \end{split}$$

for $y \in (-1, 1)$.

lpha-pssMp

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_{cx}}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x,c>0$$

α -pssMp

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_{cx}}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x,c>0$$

α -pssMp

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_{cx}}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x,c>0$$

α -pssMp

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_{cx}}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x,c>0$$

Lamperti transform

$$(X, P_x)_{x>0}$$
 pssMp

$$X_t = \exp(\xi_{S(t)}),$$

S a random time-change

$$\leftrightarrow$$
 $(\xi, \mathbb{P}_{\nu})_{\nu \in \mathbb{R}}$ killed Lévy

$$\xi_s = \log(X_{T(s)}),$$

T a random time-change

Lamperti transform

$$(X, P_x)_{x>0}$$
 pssMp

Tools

000

$$\leftrightarrow$$

$$(\xi, \mathbb{P}_y)_{y \in \mathbb{R}}$$
 killed Lévy

$$X_t = \exp(\xi_{S(t)}),$$

$$\xi_s = \log(X_{T(s)}),$$

S a random time-change

T a random time-change

X never hits zero X hits zero continuously X hits zero by a jump

$$\leftrightarrow$$

$$\left\{ \begin{array}{c} \xi \to \infty \text{ or } \xi \text{ oscillates} \\ \xi \to -\infty \\ \xi \text{ is killed} \end{array} \right.$$

Lamperti-stable processes

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t < \tau_0^-)}, \qquad t \ge 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

Lamperti-stable processes

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t < \tau_0^-)}, \qquad t \ge 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

Then X^* is a pssMp, with Lamperti transform ξ^* .

Lamperti-stable processes

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t < \tau_0^-)}, \qquad t \ge 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

Then X^* is a pssMp, with Lamperti transform ξ^* . ξ^* has Lévy density

$$c_{+} \frac{e^{x}}{(e^{x}-1)^{\alpha+1}} \mathbb{1}_{(x>0)} + c_{-} \frac{e^{x}}{(1-e^{x})^{\alpha+1}} \mathbb{1}_{(x<0)},$$

and is killed at rate $c_-/\alpha = \frac{\Gamma(\alpha)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})}$.

• Start with X, the stable process.

Results

- Start with X, the stable process.
- Let $A_t = \int_0^t \mathbb{1}_{(X_t > 0)} dt$.

- Start with X, the stable process.
- Let $A_t = \int_0^t \mathbb{1}_{(X_t > 0)} dt$.
- Let γ be the right-inverse of A, and put $\check{Y}_t := X_{\gamma(t)}$.

- Start with X, the stable process.
- Let $A_t = \int_0^t \mathbb{1}_{(X_t > 0)} dt$.
- Let γ be the right-inverse of A, and put $\check{Y}_t := X_{\gamma(t)}$.
- Finally, make zero an absorbing state (needed in the case $\alpha \in (1,2)$): $Y_t = \check{Y}_t \mathbb{1}_{(t < T_0)}$. This is the censored stable process.

Censoring preserves self-similarity: Y is a pssMp.

Censoring preserves self-similarity: Y is a pssMp. Let ξ be the Lamperti transform of Y.

Censoring preserves self-similarity: Y is a pssMp. Let ξ be the Lamperti transform of Y.

Theorem

 $\xi \stackrel{d}{=} \xi^{L} + \xi^{C}$ (independent sum), with

- ξ^{L} equal in law to ξ^{*} with the killing removed,
- ξ^{C} a compound Poisson process with jump rate c_{-}/α .

Censoring preserves self-similarity: Y is a pssMp. Let ξ be the Lamperti transform of Y.

Theorem

 $\xi \stackrel{d}{=} \xi^{L} + \xi^{C}$ (independent sum), with

- ξ^{L} equal in law to ξ^{*} with the killing removed,
- ξ^{C} a compound Poisson process with jump rate c_{-}/α .

Proof.

By diagram.

Censoring preserves self-similarity: Y is a pssMp. Let ξ be the Lamperti transform of Y.

Theorem

 $\xi \stackrel{d}{=} \xi^{L} + \xi^{C}$ (independent sum), with

- ξ^{L} equal in law to ξ^{*} with the killing removed,
- ξ^{C} a compound Poisson process with jump rate c_{-}/α .

Proof.

By diagram.

Tricky element – show Δ independent of ξ^L .

Lamperti: $\Delta \leftrightarrow rac{X_{\sigma}}{X_{\tau-}}$. By Markov property, reduces to showing

 $\mathsf{P}_{x}ig(rac{X_{\sigma}}{X_{\tau-}}\in\cdotig)$ does not depend on x and this follows by scaling.

Wiener-Hopf factorisation

Recall: Wiener-Hopf factorisation

Let ξ be a Lévy process, $\mathbb{E}\left[e^{i\theta\xi_1}\right] = e^{-\Psi(\theta)}$. Then there exist κ , $\hat{\kappa}$, such that:

$$\Psi(\theta) = \kappa(-i\theta)\hat{\kappa}(i\theta),$$

 κ and $\hat{\kappa}$ Laplace exponents of increasing, possibly killed Lévy processes (subordinators) H and \hat{H} :

$$\mathbb{E}\big[e^{-\lambda H_1}\big] = e^{-\kappa(\lambda)}, \ \mathbb{E}\big[e^{-\lambda \hat{H}_1}\big] = e^{-\hat{\kappa}(\lambda)}, \qquad \lambda \geq 0.$$

- unique
- H and \hat{H} related to maxima and minima of ξ : ascending and descending ladder processes.

Wiener-Hopf factorisation for ξ : $\alpha \in (0,1]$

WHF for $\alpha \in (0,1]$

$$\kappa(\lambda) = \frac{\Gamma(\alpha\rho + \lambda)}{\Gamma(\lambda)}, \qquad \hat{\kappa}(\lambda) = \frac{\Gamma(1 - \alpha\rho + \lambda)}{\Gamma(1 - \alpha + \lambda)}, \qquad \lambda \ge 0.$$

H: Lamperti-stable subordinator with parameters $(\alpha \rho, 1)$, \hat{H} : Lamperti-stable subordinator with parameters $(\alpha \hat{\rho}, \alpha)$.

Lamperti-stable subordinators are nice! We can calculate:

- The Lévy measure of ξ ,
- The Lévy measures of H and \hat{H} ,
- The renewal measures, $\mathbb{E}\int_0^\infty \mathbb{1}_{(H_t \in \cdot)} \, \mathrm{d}t$ and $\mathbb{E}\int_0^\infty \mathbb{1}_{(\hat{H}_t \in \cdot)} \, \mathrm{d}t$.

Wiener-Hopf factorisation for ξ : $\alpha \in (1,2)$

WHF for $\alpha \in (1,2)$

$$\kappa(\lambda) = (\alpha - 1 + \lambda) \frac{\Gamma(\alpha \rho + \lambda)}{\Gamma(1 + \lambda)}, \qquad \hat{\kappa}(\lambda) = \lambda \frac{\Gamma(1 - \alpha \rho + \lambda)}{\Gamma(2 - \alpha + \lambda)},$$

for $\lambda \geq 0$.

•
$$\kappa(\lambda) = \frac{\lambda}{T_{\alpha-1}\psi(\lambda)}$$
, with ψ LSS $(1 - \alpha\rho, \alpha\hat{\rho})$.

•
$$\hat{\kappa}(\lambda) = \frac{\lambda}{\phi(\lambda)}$$
, with ϕ LSS $(1 - \alpha \hat{\rho}, \alpha \rho)$.

Not as nice, but we can still calculate Lévy measures and renewal measures.

Recall: the problem

Let X be a stable process and x > 1.

$$P_{x}(X_{\tau_{-1}^{1}} \in dy, \, \tau_{-1}^{1} < \infty) = \text{what?}$$

Recall: the problem

Let X be a stable process and x > 1.

$$\mathsf{P}_{\scriptscriptstyle X}ig(X_{ au_{-1}^1}\in\mathsf{d} y,\, au_{-1}^1<\inftyig)=\mathsf{what}?$$

As stable processes are self-similar and have stationary and independent increments, we can shift-and scale and reduce the probability of interest to:

$$\mathsf{P}_1ig(X_{ au_0^b} \in \mathsf{d}z, au_0^b < \inftyig), \qquad 0 < b < 1.$$

where $\tau_0^b = \inf\{t > 0 : X_t \in (0, b)\}.$

$$\mbox{Key fact 1: } \mathsf{P}_1\big(X_{\tau^b_0} \in \mathsf{d}z, \tau^b_0 < \infty\big) = \mathsf{P}_1\big(Y_{\eta^b_0} \in \mathsf{d}z, \eta^b_0 < \infty\big) \\ \mbox{where } \eta^b_0 = \inf\{t > 0: Y_t \in [0,b)\}.$$

 $\text{Key fact 1: } \mathsf{P}_1\big(X_{\tau^b_0} \in \mathsf{d}z, \tau^b_0 < \infty\big) = \mathsf{P}_1\big(Y_{\eta^b_0} \in \mathsf{d}z, \eta^b_0 < \infty\big) \\ \text{where } \eta^b_0 = \inf\{t > 0: Y_t \in [0,b)\}.$

Recall: Lamperti transform

$$Y_t = \exp(\xi_{S(t)}), \quad \text{and} \quad \xi_s = \log Y_{T(s)},$$

where S, T are random, mutually inverse time-changes.

Key fact 2: (0,b) for Y corresponds to $(-\infty, \log b)$ for ξ and η_0^b corresponds to $S_a^- = \inf\{s > 0 : \xi_s < \log b\}$. Then,

$$Y_{\eta_0^b}=\exp\bigl(\xi_{S_{\log b}^-}\bigr).$$

 $\text{Key fact 1: } \mathsf{P}_1\big(X_{\tau^b_0} \in \mathsf{d}z, \tau^b_0 < \infty\big) = \mathsf{P}_1\big(Y_{\eta^b_0} \in \mathsf{d}z, \eta^b_0 < \infty\big) \\ \text{where } \eta^b_0 = \inf\{t > 0: Y_t \in [0,b)\}.$

Recall: Lamperti transform

$$Y_t = \exp(\xi_{S(t)}), \quad \text{and} \quad \xi_s = \log Y_{T(s)},$$

where S, T are random, mutually inverse time-changes.

Key fact 2: (0,b) for Y corresponds to $(-\infty, \log b)$ for ξ and η_0^b corresponds to $S_a^- = \inf\{s > 0 : \xi_s < \log b\}$. Then,

$$Y_{\eta_0^b}=\exp\bigl(\xi_{S_{\log b}^-}\bigr).$$

So now we are looking for $\mathbb{P}\big(\xi_{S_a^-}\in \mathrm{d} w,\, S_a^-<\infty\big)$, for a<0.

Method for $\alpha \in (0,1]$

Use the ladder process:

$$\begin{split} \mathbb{P}(\xi_{S_a^-} \in \mathsf{d} w, \, S_a^- < \infty) &= \mathbb{P}(\underline{\xi}_{S_a^-} \in \mathsf{d} w, \, S_a^- < \infty) \\ &= \mathbb{P}(-\hat{H}_{S_{-a}^+} \in \mathsf{d} w) \\ &= \int_{[0,-a]} \hat{U}(\mathsf{d} z) \Pi_{\hat{H}}(-\mathsf{d} w - z), \end{split}$$

recalling that $-\hat{H}$ is a time-change of the running minimum ξ .

So now we are looking for $\mathbb{P}ig(\xi_{S_a^-}\in \mathrm{d} w,\, S_a^-<\inftyig)$, for a<0.

Method for $\alpha \in (1,2)$

Use the Pecherskii-Rogozin identity:

$$\int_0^\infty \int \exp(qa - \beta(a - \xi_{S_a^-})) \, \mathrm{d}\mathbb{P} \, \mathrm{d}a = \frac{\hat{\kappa}(q) - \hat{\kappa}(\beta)}{(q - \beta)\hat{\kappa}(q)},$$

for $a < 0, q, \beta > 0$.

The theorem

Theorem

Let x > 1. Then, when $\alpha \in (0,1]$,

$$\begin{aligned} \mathsf{P}_{x}(X_{\tau_{-1}^{1}} &\in \mathsf{d}y, \ \tau_{-1}^{1} < \infty)/\mathsf{d}y \\ &= \frac{\sin(\pi\alpha\hat{\rho})}{\pi} (x+1)^{\alpha\rho} (x-1)^{\alpha\hat{\rho}} (1+y)^{-\alpha\rho} (1-y)^{-\alpha\hat{\rho}} (x-y)^{-1}, \end{aligned}$$

for
$$y \in (-1, 1)$$
.

The theorem

Theorem

Let x > 1. Then, when $\alpha \in (1, 2)$,

$$\begin{split} \mathsf{P}_{x}(X_{\tau_{-1}^{1}} \in \mathsf{d}y)/\mathsf{d}y \\ &= \frac{\sin(\pi\alpha\hat{\rho})}{\pi}(x+1)^{\alpha\rho}(x-1)^{\alpha\hat{\rho}}(1+y)^{-\alpha\rho}(1-y)^{-\alpha\hat{\rho}}(x-y)^{-1} \\ &\quad - (\alpha-1)\frac{\sin(\pi\alpha\hat{\rho})}{\pi}(1+y)^{-\alpha\rho}(1-y)^{-\alpha\hat{\rho}} \\ &\quad \times \int_{1}^{x} (t-1)^{\alpha\hat{\rho}-1}(t+1)^{\alpha\rho-1}\,\mathsf{d}t, \end{split}$$

for
$$y \in (-1, 1)$$
.

Robustness

This method turns out to be robust enough to prove other identities, including explicit identities for:

Results 0000

Robustness

This method turns out to be robust enough to prove other identities, including explicit identities for:

The expected occupation measure for X of $(-1,1)^c$ until hitting (-1,1),

$$\mathsf{E}_{x} \int_{0}^{\tau_{-1}^{1}} \mathbb{1}_{(X_{t} \in \mathsf{d}y)} \, \mathsf{d}t \qquad x, y \not\in (-1, 1).$$

Robustness

This method turns out to be robust enough to prove other identities, including explicit identities for:

The expected occupation measure for X of $(-1,1)^c$ until hitting (-1,1),

$$\mathsf{E}_{x} \int_{0}^{\tau_{-1}^{1}} \mathbb{1}_{(X_{t} \in \mathsf{d}y)} \, \mathsf{d}t \qquad x, y \not\in (-1, 1).$$

When $\alpha \in (1,2)$, the law of first entry into $(1,\infty)$ of X on avoiding the origin,

$$P_x(X_{\tau_1^+} \in du, \, \tau_1^+ < \tau_0), \qquad x \le 1,$$

where $\tau_1^+ = \inf\{t > 0 : X_t > 1\}.$