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In the talk we consider a wide class of homogeneous diffusions with jumps.
The extreme points of this class are homogeneous diffusion processes and the
Poisson processes with variable intensity. The diffusions with jumps have
many good properties inherited both from classical diffusion processes and
from Poisson ones. This class is closed with respect to a composition with the
invertible twice continuously differentiable functions. A special random time
change gives us again a diffusion with jumps. A result on transformation of
the measure of the process analogous to Girsanov’s transformation is valid for
this class. There are an effective results for the computation of distributions
of certain functionals of diffusions with jumps.
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1 Diffusion with jumps

Let N(t), t ≥ 0, be a Poisson process with the parameter of intensity 1. The
process N(t) can be represented in the following form

N(t) = max
{

l :
l∑

k=1

τk ≤ t
}

,

where the τk, k = 1, 2, . . . , are independent exponentially distributed with
parameter 1 random variables (P(τk ≥ t) = e−t).

Let Yk, k = 1, 2, . . . , be i.i.d. random variables that are independent of the
process N . Assume that the Brownian motion W (t), t ≥ 0, is independent of
the variables τk and Yk, k = 1, 2, . . . .

The process

Nc(t) :=
N(λ1t)∑

k=1

Yk

is called a compound Poisson process with the intensity of jumps λ1.
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This process can be interpreted as a degenerate diffusion with jumps for
which the diffusion is a constant process. The most interesting diffusion with
jumps is the process

J (µ)(t) := µt + σW (t) +
N(λ1t)∑

k=1

Yk, W (0) = x,

where W (t), t ≥ 0, is a Brownian motion which is independent of the process
N and the variables Yk, k = 1, 2, . . . . The process J (µ) is called Brownian
motion with linear drift with jumps. This process is a homogeneous process
with independent increments.

One of the main points of a wide class of diffusions with jumps under
consideration is that the values of jumps may depend not only on the variables
Yk, k = 1, 2, . . . , but also on the position of the diffusion before a jump.
Therefore the value of a jump is defined by a measurable function ρ(x, y),
where the first argument is reserved for values of the diffusion before the jump
and the second one corresponds to the variables Yk. It is assumed that the
function ρ(x, y) is right-continuous in x uniformly in y and has the left-limits
uniformly in y.
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The next generalization is connected with the moments of jumps. In usual
situation, these moments are the jumping moments of the Poisson process N ,
i.e., the moments follow each other over the intervals τk, k = 1, 2, . . . . It is
possible to consider the more general jumping moments which depend on the
behavior of the diffusion between the jumps. These moments are the first
hitting times of the levels τk by some integral functional of the diffusion.

Consider a homogeneous diffusion X. Such a diffusion is the solution of
the following stochastic differential equation

X(t) = X(s) +
∫ t

s

µ(X(u)) du +
∫ t

s

σ(X(u)) dW (u) a.s. (1)

for any s ≤ t ≤ T , where the functions µ(x) and σ(x) satisfy the Lipschitz
condition, σ(x) 6= 0 for all x ∈ R and X(0) = x.

For a nonnegative piecewise continuous function h the moment

κ1 := min
{

s :
∫ s

0

h(X(v)) dv = τ1

}

is the moment inverse to the integral functional of the diffusion X.
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A diffusion with jumps (denoted J) is defined recurrently as follows.
For 0 = κ0 ≤ t ≤ κ1, set J(t) := X(t), where X is the solution of (1). For
l = 1, 2, . . . , the process J is the solution of the following stochastic differential
equation:

J(t) = ρ
(
J(κl−), Yl

)
+

∫ t

κl

µ(J(u)) du +
∫ t

κl

σ(J(u)) dW (u) (2)

on the time interval κl ≤ t < κl+1, where

κl+1 := min
{

s ≥ κl :
∫ s

κl

h(J(v)) dv = τl+1

}
.
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Consider the family Xs,x(t), x ∈ R, t ∈ [s, T ], of solutions of the stochastic
differential equations

Xs,x(t) = x +
∫ t

s

µ(Xs,x(u)) du +
∫ t

s

σ(Xs,x(u)) dW (u).

Then
X(t) = Xs,X(s)(t), s ≤ t ≤ T, a.s.

for every fixed s. It is clear that if κl ≤ t < κl+1, then

J(t) = Xκl,ρ(J(κl−),Yl)(t), (3)

where

κl+1 := min
{

s ≥ κl :
∫ s

κl

h(Xκl,ρ(J(κl−),Yl)(v)) dv = τl+1

}
.

At any moment κl, the diffusion J is started anew as a usual diffusion X
from the point ρ

(
J
(
κl −

)
, Yl

)
.
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The mechanism of appearance of the moments of jumps corresponds to the
Poisson process with varying intensity and it consists of the following.

After a jumping moment we consider a sample path of the diffusion. Since
a diffusion with jumps starts anew at moments of jumps, it is possible to
consider the mechanism at the initial time moment.

We decompose the time interval [0, t] into infinitely small disjoint subin-
tervals [s, s + ds). Assume that under a fixed sample path X(·) on each such
a subinterval independently of others the moment of jump can appear with
probability h(X(s)) ds. It means that the diffusion X continue its movement
without jumps with probability (1 − h(X(s)) ds ≈ e−h(X(s)) ds. Then, for a
fixed sample path of the diffusion, the tail probability of the moment of the
first jump has the form

P(κ1 > t|X(·)) ≈ exp
(
−

∫ t

0

h(X(v)) dv
)

= P
( ∫ t

0

h(X(v)) dv ≤ τ1

∣∣∣X(·)
)
.

This exactly corresponds to the conditional distribution of the moment inverse
to the integral functional of the diffusion X at the level τ1.
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A diffusion with jumps J is characterized by the following pa-
rameters:

coefficients of the diffusion µ(x) and σ(x), the function of jumps
ρ(x, y), the distribution F (x), x ∈ R, of the random variables Yk,
k = 1, 2, . . . , and the intensity function h(x), which specifies the time
intervals between jumps.

The process C(t) = max
{
l : κl ≤ t

}
, t ≥ 0, similarly to the Poisson

process, counts the number of jumps performed by the diffusion J up to time t,
and dC(t) equals one if κl belongs to the interval [t, t+dt) for some l = 1, 2, . . . ,
and equals zero otherwise.

It is easy to understand that counting process can be represented as follows
C(t) = N(A(t)), where A(t) :=

∫ t

0
h(J(v)) dv.

The differential form of the equation (2) is the following

dJ(t) = µ(J(t)) dt + σ(J(t)) dW (t) +
(
ρ
(
J(t−), YC(t)

)− J(t−)
)
dC(t). (4)

(Gihman, Skorohod (1968) considered in nonhomogeneous case such a SDE
for h ≡ 1 and for more general Poisson random measure ν(dt, dx). Gihman,
Skorohod (1975) derived a more general equation).
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Let b(x), x ∈ R, be a twice continuously differentiable function. The
following generalization of Itô’s formula holds

db(J(t)) = b′(J(t))(µ(J(t)) dt + σ(J(t)) dW (t)) +
1
2
σ2(J(t))b′′(J(t)) dt

+
(
b(ρ(J(t−), YC(t)))− b(J(t−))

)
dC(t). (5)

The result of applying the expectation to the Itô formula is of key impor-
tance. For the diffusion with jumps we deduce that

dExb(J(t)) = Ex{b′(J(t))µ(J(t))} dt +
1
2
Ex{σ2(J(t))b′′(J(t))} dt

+Ex

{
h(J(t))

(
b(ρ(J(t), Y1))− b(J(t))

)}
dt. (6)
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Compositions of diffusions with jumps with invertible functions.
Let b(x) be a twice continuously differentiable function with the inverse

function b(−1)(x), i.e., b(−1)(b(x)) = x. Then J̃(t) := b(J(t)) is again the
diffusion with jumps. Its parameters are the following:

ρ̃(x, y) := b(ρ(b(−1)(x), y)), σ̃(x) := b′(b(−1)(x))σ(b(−1)(x)),

µ̃(x) := b′(b(−1)(x))µ(b(−1)(x)) +
1
2
b′′(b(−1)(x))σ2(b(−1)(x)).

Therefore the class of diffusions with jumps is closed with respect
to the compositions with invertible twice continuously differentiable
functions.
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2 Examples of diffusions with jumps

2.1 Geometric Brownian motion with jumps

Assume that the Brownian motion W , the Poisson process N , and the variables
{Yk}∞k=1 are independent. Set ν := µ− σ2/2 and

J (ν)(t) := (µ− σ2/2)t + σW (t) +
N(t)∑

k=1

Yk, W (0) = 0. (7)

Let b(x) = ex. By Itô’s formula (5) the process V (t) = eJ(ν)(t) is the
solution of the following linear equation

dV (t) = µV (t) dt+σV (t) dW (t)+V (t−)
(
eYN(t)−1

)
dN(t), V (0) = 1, (8)

since ρ̃(x, y) = exp(log x + y) = xey.
It is natural to call the process V a geometric (exponential) Brownian

motion with jumps by analogy with a diffusion without jumps. These processes
are often used in different models connected with financial mathematics.
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2.2 Bessel process with jumps

Next example arises by analogy with the Bessel process, which is the radial
part of the multidimensional Brownian motion with independent coordinates.

Let {Wl(s), s ≥ 0}, l = 1, 2, . . . , n, be a family of independent Brownian
motions. The process R(n) defined by the formula

R(n)(t) :=
√

W 2
1 (t) + W 2

2 (t) + · · ·+ W 2
n(t), t ≥ 0,

is called an n-dimensional Bessel process or a Bessel process of the order n
2 −1.

Let diffusions {Jl(s), s ≥ 0}, l = 1, 2, . . . , n, be defined by the following
equations

dJl(t) = dWl(t) +
(√

αJ2
l (t−) + Y

(l)
N(t) − Jl(t−)

)
dN(t),

where (Y (1)
k , Y

(2)
k , . . . , Y

(n)
k ), k = 1, 2, . . . , are i.i.d. random vectors with non-

negative coordinates and α is an arbitrary nonnegative constant. The choice
of the jump function ρ(x, y) =

√
αx2 + y is preset by our wish to obtain the

following result.
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Proposition 1 The radial part of the multidimensional diffusion with jumps
~J(t) = (J1(t), J2(t), . . . , Jn(t)) is a diffusion with jumps.

Indeed. Set Zn(t) :=
√

J2
1 (t) + J2

2 (t) + · · ·+ J2
n(t), t ≥ 0.

Then Zn is the diffusion with jumps defined by the equation

dZn(t) =
n− 1
2Zn(t)

dt + dW (t) +
(√

αZ2
n(t−) + SN(t) − Zn(t−)

)
dN(t), (9)

where Sk :=
n∑

l=1

Y
(l)
k .

To prove this, we apply Itô’s formula (5) (where b(x) = x2) to each term
of the process Ln(t) := Z2

n(t). In this case,

dLn(t) = 2
n∑

l=1

Jl(t) dWl(t) + ndt +
n∑

l=1

(
(α− 1)J2

l (t−) + Y
(l)
N(t)

)
dN(t).

Again applying Itô’s formula (5) (where b(x) =
√

x) we obtain (9).
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3 Distribution of integral functionals and of in-
fimum and supremum functionals

Let µ(x) and σ(x), x ∈ R, be continuously differentiable functions, satisfying
the following conditions:

|µ(x)|+ σ(x) ≤ C(1 + |x|), for all x ∈ R,

and inf
x∈R

σ(x) > 0. Assume also that the derivative
(

µ(x)
σ2(x)

)′
is bounded.

Consider the method of computing the distribution of the functional

A(t) :=
∫ t

0

f(J(s)) ds, f ≥ 0,

and of the infimum and supremum functionals inf
0≤s≤t

J(s), sup
0≤s≤t

J(s).

Let τ be the random moment that is independent of the process J and
exponentially distributed with parameter λ > 0.
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The random time τ corresponds to the Laplace transform with respect to
the fixed time t.

We denote by Px and Ex the probability and expectation with respect to
the process J under the condition J(0) = x.

Assume that inf
x∈R

h(x) > 0. This guarantee that κ1 < ∞ a.s.

Theorem 1 Let Φ(x), f(x), and h(x), x ∈ [a, b], be piecewise continuous
functions. Assume that f ≥ 0, q(x, y), (x, y) ∈ [a, b] × R, is a non-negative
function, which is right-continuous in x uniformly in y, and has the left-limits
uniformly in y. Then the function

Q(x) :=Ex

{
Φ(J(τ)) exp

(
−

∫ τ

0

f(J(s)) ds−
∫

[0,τ ]

q
(
J(s−), YC(s)

)
dC(s)

)

1{
a≤ inf

0≤s≤τ
J(s), sup

0≤s≤τ
J(s)≤b

}}

is the unique bounded solution of the equation

Q(x) = M(x) +
∫ ∞

−∞
Gz(x)E{e−q(z,Y1)Q(ρ(z, Y1))} dz, (10)
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where M(x), x ∈ (a, b), is the unique solution of the problem

σ2(x)
2

M ′′(x) + µ(x)M ′(x)− (λ + h(x) + f(x))M(x) = −λΦ(x), (11)

M(a) = 0, M(b) = 0, (12)

and Gx(z), z ∈ (a, b) \ {x}, is the unique solution of the problem

σ2(x)
2

G′′(x) + µ(x)G′(x)− (λ + h(x) + f(x))G(x) = 0, (13)

G′(z + 0)−G′(z − 0) = −2h(z−)/σ2(z), (14)
G(a) = 0, G(b) = 0. (15)

It is set M(x) = 0, Gx(z) = 0 if x, z 6∈ (a, b).
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The probabilistic expressions for the functions M(x) and Gx(z), x ∈ R,
z ∈ R, are the following:

M(x) = Ex

{
Φ(X(τ)) exp

(
−

∫ τ

0

(h(X(s)) + f(X(s))) ds
)

1{
a≤ inf

0≤s≤τ
X(s), sup

0≤s≤τ
X(s)≤b

}}
,

Gz(x) =
d

dz
Ex

{
exp

(
−

∫ κ1

0

(λ + f(X(s))) ds
)

1{
a≤ inf

0≤s≤κ1
X(s), sup

0≤s≤κ1

X(s)≤b, X(κ1)<z
}}

.
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4 Random time change

Let a diffusion with jumps J(t), t ≥ 0, be specified by parameters
(
µ(x),

σ(x), ρ(x, y),
{
Yk

}
, h(x)

)
, i.e. this diffusion is the solution of the stochastic

differential equation

dJ(t) = µ(J(t)) dt+σ(J(t)) dW (t)+
(
ρ
(
J(t−), YC(t)

)−J(t−)
)
dC(t), J(0) = x,

with σ(x) > 0 and space state R. Let g(x), x ∈ R, be a twice continuously dif-
ferentiable function with g′(x) 6= 0 (thus this function has the inverse g−1(x),
x ∈ g(R)). Consider the integral functional

At :=
∫ t

0

(
g′(J(s))σ(J(s))

)2
ds, t ∈ [0,∞),

as the function of the upper limit. Assume that A∞ = ∞. Define the inverse
process:

at := min
{
s : As = t

}
, t ∈ [0,∞).

Since At is the strictly increasing function, α0 = 0.
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Theorem 2 The process J̃(t) defined by the formula

J̃(t) = g
(
J(at)

)
, t ∈ [0,∞), (16)

is the diffusion with jumps specified by parameters
(
µ̃(x), 1, ρ̃(x, y),

{
Yk

}
, h̃(x)

)
,

where

µ̃(x) = D(g−1(x)),
g′′(x)

2(g′(x))2
+

µ(x)
g′(x)σ2(x)

,

ρ̃(x, y) = g(ρ(g−1(x), y)), h̃(x) =
h(g−1(x))

(g′(g−1(x))σ(g−1(x)))2
,

i.e. J̃(t) is the solution of the stochastic differential equation

dJ̃(t) = dW̃ (t) + µ̃(J̃(t)) dt +
(
ρ̃
(
J̃(t−), YC̃(t)

)− J̃(t−)
)
dC̃(t), J̃(0) = g(x),

where W̃ (t) is a Brownian motion and

C̃(t) = N
( ∫ t

0

h̃(J̃(v)) dv
)
.
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5 Transformation of the measure

Consider two homogeneous diffusions:

dXl(t) = σ(Xl(t))dW (t) + µl(Xl(t))dt, Xl(0) = x, l = 1, 2,

and two sequences of i.i.d. random variables Y
(l)
k with absolutely continuous

distributions dF2(y)
dF1(y) = p(y). Let Jl, l = 1, 2, be two diffusions with jumps

defined by Xl, Y
(l)
k , intensity functions hl(x), l = 1, 2, and having the same

function ρ(x, y). Denote by Cl the process which counts the number of jumps
performed by the diffusion Jl up to time t.

Let D[0, t] be the space of functions on [0, t] without discontinuities of
the second type. The result about the transformation of the measure of the
diffusions with jumps can be formulated as follows. Under some conditions,
for each t and any bounded continuous function ℘(Z(s), 0 ≤ s ≤ t) on D[0, t]

E℘(J2(s), 0 ≤ s ≤ t) = E
{
℘(J1(s), 0 ≤ s ≤ t)Θ(t)}, (17)
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where

Θ(t) =
C1(t)∏

k=1

p(Y (1)
k ) exp

(
−

∫ t

0

(
h2(J1(s))−h1(J1(s))

)
ds+

∫

[0,t]

ln
h2(J1(s−))
h1(J1(s−))

dC1(s)
)

× exp
(∫ t

0

µ2(J1(s))− µ1(J1(s))
σ(J1(s))

dW (s)−
∫ t

0

(µ2(J1(s))− µ1(J1(s)))2

2σ2(J1(s))
ds

)
.

Remark For ρ(x, y) = x the processes Jl have no jumps and they are homo-
geneous diffusions. In this case formula (17) is transformed into the classical
one.

One can check this in the following way. Since in this case the Poisson pro-
cess N independent of the diffusion J1 and the process C1(t) has the intensity
function h1(J1(t)), then the following equalities hold

EN exp
( ∫

[0,t]

ln
h2(J1(s−))
h1(J1(s−))

dC1(s)
)

= exp
(∫ t

0

(
exp

(
ln

h2(J1(s))
h1(J1(s))

)
− 1

)
h1(J1(s)) ds

)
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= exp
( ∫ t

0

(
h2(J1(s))− h1(J1(s))

)
ds

)
,

where subindex N denotes that the expectation is computed only with respect
to the process N . Besides that Ep(Y 1

k ) = 1. Now, using an independence of
the processes J1, N , Y 1

k , k = 1, 2, . . . , and applying Fubini’s theorem, one can
check that (17) is transformed into the classical one.

Using the formula of stochastic differentiation, it is possible to rewrite the
derivative Θ(t) without the stochastic integral.

Set

δ(x) :=
1

σ2(x)
(µ2(x)− µ1(x)) and ∆(x) :=

∫ x

0

δ(y) dy.

Assume that δ is a continuously differentiable function. Then

Θ(t) = e∆(J1(t))−∆(J1(0)) exp
(
−

∫ t

0

(
h2(J1(s))− h1(J1(s))

)
ds

)

× exp
(
−

∫ t

0

µ2
2(J1(s))− µ2

1(J1(s))
2σ2(J1(s))

ds−
∫ t

0

σ2(J1(s))
2

δ′(J1(s)) ds
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−
∫

[0,t]

(
∆

(
ρ
(
J1(s−), Y (1)

C1(s)

))−∆(J1(s−))− ln
h2(J1(s−))
h1(J1(s−))

)
dC1(s)

)

×
C1(t)∏

k=1

p(Y (1)
k ).

The statement given by formula (17) is equivalent to the following one:
for an arbitrary λ > 0 and for a random moment τ that is exponentially
distributed with parameter λ and independent of the processes Jl, l = 1, 2,
the following equality holds

Ex℘(J2(s), 0 ≤ s ≤ τ) = Ex

{
℘(J1(s), 0 ≤ s ≤ τ)Θ(τ)

}
. (18)
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