Simple Arbitrage

Motivated by and partly based on a joint work with T. Sottinen and E. Valkeila

Christian Bender

Saarland University

December, 8, 2011

Christian Bender Snapshots at Stochastic Frontiers at 180 Degrees, Helsinki

Problem Setting

- Financial market with two assets (for simplicity) on [0, T]: constant bond B_t = 1, a stock X_t (adapted process with continuous paths).
- Simple strategy (number of risky shares held by the investor):

$$\Phi_t = \phi_0 \mathbf{1}_{\{0\}}(t) + \sum_{j=0}^{n-1} \phi_j \mathbf{1}_{(\tau_j, \tau_{j+1}]}$$

where the τ_j 's are a finite number of ordered stopping times with values in [0, T] and the ϕ_j 's are \mathcal{F}_{τ_j} -measurable random variables.

Corresponding wealth process with zero initial endowment:

$$V_t(\Phi) = \sum_{j=0}^{n-1} \Phi_{ au_{j+1}}(X_{t\wedge au_{j+1}}-X_{t\wedge au_j})$$

• A simple arbitrage is a simple strategy which is an arbitrage:

$$V_T(\Phi) \ge 0 \ P$$
-a.s., $P(\{V_T(\Phi) > 0\}) > 0$

• Questions:

How to characterize absence of simple arbitrage?

What kind of easy sufficient conditions are available for absence of arbitrage (for large subclasses of) simple strategies?

• Motivation: How about simple arbitrage for models driven by fractional Brownian motion?

 A continuous process S has conditional full support (CFS) if, for every time 0 ≤ t ≤ T

$$\mathsf{supp}\ P(S\in\ \cdot\,|\mathcal{F}_t^S)=C_{S_t}([t,T])$$
 a.s.,

where \mathcal{F}^{S} denotes the augmented filtration generated by S.

Examples: Fractional Brownian motion B^H satisfies conditional full support for every choice of the Hurst parameter 0 < H < 1 and so does mixed fractional Brownian motion B^H + W, where W is a Brownian motion independent of W. Cf. Cherny (2008) or Gasbarra, Sottinen, van Zanten (2011).

Theorem (B./Sottinen/Valkeila, 2011)

Suppose log(X_t) or X_t satisfies (CFS). If the simple strategy Φ belongs to the Cheridito class, i.e. $\tau_{j+1} \ge \tau_j + h$ for some constant h > 0 on $\{\tau_{j+1} > \tau_j\}$, then Φ is not a simple arbitrage for (X_t, \mathcal{F}_t^X) .

Remark: The delay between two stopping times can be localized in a way that e.g. stopping times of the form

$$\tau_{j+1} = \inf\{t > \tau_j; \ X_t - X_{\tau_j} \ge b_t^j\} \land T$$

for positive continuous functions b^{j} are covered, and the above theorem still holds.

Example

Suppose $X_t = \exp\{W_t + t^{\alpha}\}$ for some $0 < \alpha < 1/2$. Then clearly, $\log(X_t)$ satisfies (CFS). Define the stopping time

$$\tau := \inf\{t > 0; \ \log(X_t) < 0\} > 0$$

by the law of the iterated logarithm. Then, $\Phi_t = \mathbf{1}_{(0,\tau \wedge 1/N]}$ is a simple arbitrage for sufficiently large N.

Note that this arbitrage is 0-admissible, i.e.

$$V_t(\Phi) \ge 0$$
 a.s.

No obvious arbitrage

• In the spirit of Guasoni, Rasonyi, Schachermayer (2010): (X = T) has no obvious subitumes (NOA) if for all starsing

 (X_t, \mathcal{F}_t) has no obvious arbitrage (NOA), if for all stopping times σ with $P(\{\sigma < T\}) > 0$ and every $\epsilon > 0$

$$P(\{\sigma < T\} \cap \{\sup_{t \in [\sigma, T]} X_t < X_\sigma + \epsilon\}) > 0$$

and

$$P(\{\sigma < T\} \cap \{\inf_{t \in [\sigma, T]} X_t > X_{\sigma} - \epsilon\}) > 0$$

• If (NOA) is violated, e.g. there are σ , ϵ such that

$$P(\{\sup_{t\in[\sigma,T]}X_t\geq X_{\sigma}+\epsilon\}|\{\sigma< T\})=1,$$

then a simple arbitrage can be obtained by buying one share at time σ and selling it, once the stock price has increased by ϵ .

No obvious arbitrage

If X has (CFS), then (X_t, F^X_t) satisfies (NOA), because the (CFS)-property extends automatically to stopping times, see Guasoni, Rasonyi, Schachermayer (2008).

Lemma

 (X_t, \mathcal{F}_t) has (NOA) \Rightarrow Every simple arbitrage for (X_t, \mathcal{F}_t) is 0-admissible.

Idea: Suppose a simple arbitrage is not 0-admissible. Then its wealth process drops with positive probability below some level δ . Buying this strategy at such a time, the wealth process must increase by δ (because it is nonnegative at time T). This gives rise to an obvious arbitrage.

・ 同 ト ・ ヨ ト ・ ヨ ト

Two-way crossing

- Question: How to exclude 0-admissible simple arbitrage?
- Suppose $\sigma \leq T$ is a stopping time and

$$\sigma_{\pm} = \inf\{t \geq \sigma, \quad \pm(X_t - X_{\sigma}) > 0\} \land T.$$

 (X_t, \mathcal{F}_t) satifies two-way crossing (TWC), if $\sigma_+ = \sigma_-$ a.s. for any stopping time $\sigma \leq T$.

 (TWC) is a condition on the fine structure of the paths. Whenever the stock price moves from X_σ, it will cross the level X_σ infinitely often in time intervals of length ε for every ε > 0.

Lemma

 (X_t, \mathcal{F}_t) satifies $(TWC) \Leftrightarrow (X_t, \mathcal{F}_t)$ is free of 0-admissible simple arbitrage.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

The following assertion are equivalent:

(i) (X_t, \mathcal{F}_t) has no simple arbitrage.

(ii) (X_t, \mathcal{F}_t) satisfies (NOA) and (TWC).

Theorem

Suppose $X_t = M_t + Y_t$, where M is continuous (\mathcal{F}_t) -local martingale and Y_t is an (\mathcal{F}_t) -adapted process. We assume: 1) There is a strictly positive random variable ϵ such that for every $0 \le s \le t \le T$

$$\langle M \rangle_t - \langle M \rangle_s \geq \epsilon(t-s).$$

2) Y is 1/2-Hölder continuous, i.e. there is a positive random variable C such that for every $0 \le s \le t \le T$

$$|Y_t - Y_s| \leq C|t - s|^{1/2}$$
.

Then, (X_t, \mathcal{F}_t) satisfies (TWC).

Suppose

$$X_t = x_0 \exp\{\sigma B_t^H + \eta W_t + a(t)\}$$

where $\sigma, \eta > 0$, B^H is a fractional Brownian motion with Hurst parameter H > 1/2, W is a Brownian motion independent of B^H and a(t) is a deterministic 1/2-Hölder continuous function, e.g. $a(t) = \mu t - H\sigma^2 t^{2H} - 0.5\eta^2 t$.

Then,

$$\log(X_t) = M_t + Y_t; \quad M_t = \eta W_t, \quad Y_t = \log(x_0) + \sigma B_t^H.$$

 $(\log(X_t), \mathcal{F}_t^X)$ satisfies (NOA) (because it has conditional full support) and (TWC) (because Y is 1/2-Hölder continuous). Consequently $(\log(X_t), \mathcal{F}_t^X)$ is free of simple arbitrage and so is (X_t, \mathcal{F}_t^X) .

ヨッ イヨッ イヨッ

Theorem

Suppose (W_t, \mathcal{F}_t) is an N-dimensional Brownian motion and Z_t is a D-dimensional \mathcal{F}_t -adapted process independent of W, which is α -Hölder continuous for some $\alpha > 1/2$. Further assume that the matrix $\sigma\sigma^*$ is strictly positive definite, where $\sigma = (\sigma_{d,\nu})_{d=1,\dots,D, \nu=1,\dots,N}$. Define D stocks by

$$X_t^d = x_0^d \exp\left\{\sum_{\nu=1}^N \sigma_{d,\nu} W_t^\nu + Z_t^d\right\}$$

with initial values $x_0^d > 0$ for d = 1, ..., D. Then, the D-dimensional mixed Black-Scholes model (X_t, \mathcal{F}_t) with $X_t = (X_t^1, ..., X_t^D)$ is free of simple arbitrage on [0, T].

高 と く ヨ と く ヨ と

One can also treat:

- 1-dimensional mixed stochastic volatility models (e.g. mixed Heston models)
- 1-dimensional mixed local volatility models.

Then, (CFS) for the log-prices can be derived from a result by Pakkanen (2010) under suitable conditions and (TWC) follows from the above sufficient condition under suitable conditions.

• Does fractional Brownian motion satisfy (TWC)?

同 ト イ ヨ ト イ ヨ ト

References

- Cheridito, P. (2003) Arbitrage in fractional Brownian motion models. *Finance Stoch.* **7**, 533–553.
- Cherny, A. (2008) Brownian moving averages have conditional full support. *Ann. Appl. Probab.* **18**, 1825–1830.
- Gasbarra, D., Sottinen, T., and van Zanten, H. (2011) Conditional full support of Gaussian processes with stationary increments. *J. Appl. Probab.* **48**, 561–568.
- Guasoni, P., Rasonyi, M., and Schachermayer, W. (2008) Consistent price systems and face-lifting pricing under transaction costs. *Ann. Appl. Probab.* **18**, 491–520.
- Guasoni, P., Rasonyi, M., and Schachermayer, W. (2010) The fundamental theorem of asset pricing for continuous processes under small transaction costs. *Ann. Finance* **6**, 157–191.
- Pakkanen, M. S. (2010) Stochastic integrals and conditional full support. *J. Appl. Probab.* **47**, 650–667.

This talk was based on:

- Bender, C., Sottinen, T., and Valkeila, E. (2011) Fractional processes as models in stochastic finance. In: Di Nunno, Øksendal (eds.), AMaMeF: Advanced Mathematical Methods for Finance.
- Bender, C. (2011) Simple Arbitrage, Ann. Appl. Probab., forthcoming.