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Problem Setting

e Financial market with two assets (for simplicity) on [0, T]:
constant bond B; = 1, a stock X; (adapted process with
continuous paths).

e Simple strategy (number of risky shares held by the investor):

n—1
o, = ¢01{0}(t) + Z ¢j1(7jﬂ'j+1]
j=0

where the 7;'s are a finite number of ordered stopping times
with values in [0, T] and the ¢;'s are F;,-measurable random
variables.

Corresponding wealth process with zero initial endowment:

n—1

Vi(®) =D &p (Xenry, — Xenr;)
=0
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Problem Setting

@ A simple arbitrage is a simple strategy which is an arbitrage:
Vr(®) >0 P-as., PHVr(®)>0})>0

@ Questions:
How to characterize absence of simple arbitrage?

What kind of easy sufficient conditions are available for
absence of arbitrage (for large subclasses of ) simple strategies?

@ Motivation: How about simple arbitrage for models driven by
fractional Brownian motion?
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Conditional full support

@ A continuous process S has conditional full support (CFS) if,
forevery time 0 <t < T

supp P(S € |]-"t5) =Cs,([t, T]) as.,

where F° denotes the augmented filtration generated by S.

@ Examples: Fractional Brownian motion B satisfies
conditional full support for every choice of the Hurst
parameter 0 < H < 1 and so does mixed fractional Brownian
motion B + W, where W is a Brownian motion independent
of W. Cf. Cherny (2008) or Gasbarra, Sottinen, van Zanten
(2011).
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A criterion based on conditional full support

Theorem (B./Sottinen/Valkeila, 2011)

Suppose log(X:) or X; satisfies (CFS). If the simple strategy ®
belongs to the Cheridito class, i.e. Tj11 > 7; + h for some constant
h >0 on {7j41 > 7}, then ® is not a simple arbitrage for

(Xe, F¥).

Remark: The delay between two stopping times can be localized in
a way that e.g. stopping times of the form

Tier=inf{t > 75 Xe — Xpy 2 B} AT

for positive continuous functions b/ are covered, and the above
theorem still holds.
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A criterion based on conditional full support

Example

Suppose X; = exp{W; + t®} for some 0 < o < 1/2. Then clearly,
log(X) satisfies (CFS). Define the stopping time

7 :=inf{t > 0; log(X:) <0} >0

by the law of the iterated logarithm. Then, ®; =1 11/ is 2
simple arbitrage for sufficiently large N.

Note that this arbitrage is 0-admissible, i.e.

Vi(®) >0 as.

Christian Bender Snapshots at Stochastic Frontiers at 180 Degrees, Helsinki



No obvious arbitrage

@ In the spirit of Guasoni, Rasonyi, Schachermayer (2010):

(Xt, Ft) has no obvious arbitrage (NOA), if for all stopping
times o with P({oc < T}) > 0 and every ¢ >0

P{c <T}N{ sup Xy <X,+¢€})>0
tefo, T

and
P{c < T}Nn{ inf Xy >X,—¢€})>0
te[o, T

o If (NOA) is violated, e.g. there are o, € such that

P({ sup X > X, +e€}|{c < T})=1,
te€lo, T]

then a simple arbitrage can be obtained by buying one share at
time ¢ and selling it, once the stock price has increased by e.
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No obvious arbitrage

o If X has (CFS), then (X;, FX) satisfies (NOA), because the
(CFS)-property extends automatically to stopping times, see
Guasoni, Rasonyi, Schachermayer (2008).

Lemma
(Xt, Ft) has (NOA) = Every simple arbitrage for (X;, F) is
0-admissible.

Idea: Suppose a simple arbitrage is not 0-admissible. Then its
wealth process drops with positive probability below some level .
Buying this strategy at such a time, the wealth process must
increase by 0 (because it is nonnegative at time T). This gives rise
to an obvious arbitrage.
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Two-way crossing

@ Question: How to exclude 0-admissible simple arbitrage?

@ Suppose o < T is a stopping time and
or = inf{t>0, £(Xe—X,)>0}AT.
(Xt, Ft) satifies two-way crossing (TWC), if o4 = o_ a.s. for
any stopping time o < T.
e (TWC) is a condition on the fine structure of the paths.

Whenever the stock price moves from X, it will cross the level
X, infinitely often in time intervals of length € for every € > 0.

(X, Ft) satifies (TWC) < (X, Ft) is free of 0-admissible simple
arbitrage.
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A characterization of simple arbitrage

Theorem

The following assertion are equivalent:
(i) (X¢, Ft) has no simple arbitrage.
(ii) (X¢, Ft) satisfies (NOA) and (TWC).
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A sufficient condition for (TWC)

Theorem

Suppose X; = M; + Y;, where M is continuous (F;)-local
martingale and Y; is an (F¢)-adapted process. We assume:

1) There is a strictly positive random variable € such that for every
0<s<t<T

(M)y — (M)s > e(t — s).

2) Y is 1/2-Hélder continuous, i.e. there is a positive random
variable C such that for every 0 < s <t < T

1Y: — Ys| < C|t — 5|2

Then, (X, Ft) satisfies (TWC).
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Example 1: Mixed fractional Black-Scholes model

Suppose

X: = xo exp{o B + nW; + a(t)}
where 0,1 > 0, BH is a fractional Brownian motion with Hurst
parameter H > 1/2, W is a Brownian motion independent of B"
and a(t) is a deterministic 1/2-Holder continuous function, e.g.
a(t) = pt — Ho?t?H — 0.59°t.
Then,

log(X;) = My + Yy, M, =nW:, Y =log(xo)+ a(t) +oBl.

(log(X:), F{) satisfies (NOA) (because it has conditional full
support) and (TWC) (because Y is 1/2-Hdlder continuous).

Consequently (log(X;), FX) is free of simple arbitrage and so is
(Xt’f‘tx)

Christian Bender Snapshots at Stochastic Frontiers at 180 Degrees, Helsinki



Example 2: Multi-asset mixed Black-Scholes model

Theorem

Suppose (W;, F;) is an N-dimensional Brownian motion and Z; is
a D-dimensional Fi-adapted process independent of W, which is
a-Hélder continuous for some o« > 1/2. Further assume that the
matrix oo™ is strictly positive definite, where

o = ((Td’,/)dzly,“’D7 v=1,...,N- Define D stocks by

N
X? = xf exp {Zadﬂ,W;’ + ztd}

v=1

with initial values Xg >0ford=1,...,D. Then, the
D-dimensional mixed Black-Scholes model (X, F¢) with
Xe = (X}, ..., XDP) is free of simple arbitrage on [0, T].
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More examples...

One can also treat:

@ 1-dimensional mixed stochastic volatility models (e.g. mixed
Heston models)

@ 1-dimensional mixed local volatility models.

Then, (CFS) for the log-prices can be derived from a result by
Pakkanen (2010) under suitable conditions and (TWC) follows
from the above sufficient condition under suitable conditions.
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A question

@ Does fractional Brownian motion satisfy (TWC)?
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Thank you for your attention

This talk was based on:

@ Bender, C., Sottinen, T., and Valkeila, E. (2011) Fractional processes as
models in stochastic finance. In: Di Nunno, @ksendal (eds.), AMaMeF:

Advanced Mathematical Methods for Finance.
@ Bender, C. (2011) Simple Arbitrage, Ann. Appl. Probab., forthcoming.
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