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Abstract

Let B®") denote a Brownian motion with drift g. In this paper
we study two perpetual integral functionals of B®). The first one,
introduced and investigated by Dufresne in [5], is

o0
/ exp(2BM)ds, pu<O0.
0

It is known that this functional is identical in law with the first hitting
time of 0 for a Bessel process with index y. In particular, we analyze
the following reflected (or one-sided) variants of Dufresne’s functional

o
/0 exp(2 Bgﬂ)) 1{B§“)>0} d37

and ~
/0 exp(2 B_g“)) 1{B§“)<0} ds.

These functionals can also be connected to hitting times. Our second
functional, which we call Dufresne’s translated functional, is

Dyi= [ e+ exp(BY) ds,
0
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where ¢ and v are positive. This functional has all its moments fi-
nite, in contrast to Dufresne’s functional which has only some finite
moments. We compute explicitly the Laplace transform of D, in the
case v = 1/2 (other parameter values do not seem to allow explicit
solutions) and connect this variable, as well as its reflected variants,
to hitting times.

Keywords: Geometric Brownian motion, Brownian motion with drift,
Bessel process, Lamperti’s transformation, local time, hitting times,
occupation times.

AMS Classification: 60J65, 60J60, 60J55, 91B30.

1 Introduction

During the last decade, much interest has been devoted to geometric Brow-
nian motion GW = {G¥ : ¢ > 0} where

G = exp(B")) := exp(B, + pit)

with B a Brownian motion and p a real number. This is in part due to
the fact that G appears as the stock price process in the Black-Scholes
model. Unlike for Brownian motion, the quadratic variation of G* is not
deterministic but given by

(GWY, = /t(Gg“))st, t>0. (1)

As a matter of consequence, interest has been focused on this functional, in
particular, in relation with Asian options. Recall that the payoff of an Asian
option with strike price K and fixed maturity 7 is given by

X

A number of results about the pair (G® , (G®)) can be deduced from
Lamperti’s time change relationship (see, e.g., the papers in the monograph
[24]: no. 5 by Geman and Yor and no. 1 by Yor) given by

G =R, . >0, (2)
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where R(*) = {R,g“ Vit > 0} is a Bessel process with index p (or “dimension”
§ =2(1+ p)), i.e., R®™ is a diffusion on R associated to the generator

1d> 2u+14d

- — > 0.
2d:1:2+ 2¢ dz’ v

Here is a first application of Lamperti’s transformation: in the case y < 0,
we have Gg“) — 0 a.s. as t — 00, and it follows from (2) that

(GW) o, = inf{u : RW = 0}. (3)
Consequently, we have the following result for y < 0 due to Dufresne [5]

wy @ 1
@ 2 5 o

where 7, is a gamma-distributed random variable with parameter v = —pu > 0

and 9 reads "is identical in law with". The identity (4) has been recovered
in the paper no. 1 by Yor (in [24]), where a relationship with Getoor’s study
of last passage times for Bessel processes [6] is being used.

In this paper, (G"), is called Dufresne’s perpetuity, and, more generally,
{{GW), : t > 0} Dufresne’s functional or process.

Dufresne’s process plays a central role in the studies of the following ex-
ponential type processes associated with G®) :

t
{(Gﬁ“))’l / GW ds : ¢ > o}
0

and .
{(Ggm)—l/(agw)?ds >0},
0

These are, in fact, R -valued diffusions, and may be considered as, respec-
tively, analogues of the celebrated Lévy’s and Pitman’s theorems concerning
reflected Brownian motion and BES(3) process. We refer to the recent works
by the second author, jointly with H. Matsumoto, see [13], [14], and [15].
We present now shortly the contents of the paper.
In Section 2, the functionals (with p > 0)

D) ::/ exp(—2BW) 1 ds, (5)
0

{B"eRy}
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which we call Dufresne’s reflected perpetuities, are considered. Comparing
the definitions in (1) and (5) we have, obviously
<G(7u)>oo @ Dt o ple—),

Using again Lamperti’s time change (2) together with some results from
Pitman and Yor [16] it is relatively easy to obtain the joint Laplace transform
of D) and D) as presented in Theorem 2.2. From this result it may
be deduced that D®*) and D~) are identical in law with first hitting times
for some diffusions. In particular, we discuss the special case = 1/2 where
the descriptions take a very appealing form.

It follows from (4) that Dufresne’s perpetuity does not have all its mo-
ments finite; indeed, for y > 0

E ((G(f“)%”o) < 00

if and only if m < u. This fact may be undesirable from a financial point
of view, and, hence, motivated us to introduce, what we call Dufresne’s
translated perpetuity,

D = / (¢ + exp(BW))~2 ds, (6)
0
and, further, Dufresne’s translated and reflected perpetuities
00 1
D) = / BICRs} (7)
‘ o (c+ exp(BW))2

It follows from the general discussion in Salminen and Yor [20] that, for ¢ > 0,
the functional 13((;“ ) admits some exponential moments and is, in this respect,
“much smaller” than Dufresne’s perpetuity, 13(()“ ) = (G

On the other hand, we have not been able to compute an explicit formula
for the Laplace transform of D", and, a fortiori, for D¥ and D™ except
in the case p = 1/2. This result is given in Theorem 3.2, Section 3. The proof
is based on Lamperti’s time change (2), the It6-Tanaka formula and the so-
called Kennedy martingales. These functionals are also connected to first
hitting times, and it is surprising to see in Remarks 2.4 b) and 3.3 how similar
the descriptions for 13(()1/ 2 and D{"? are. The former can be expressed in
terms of first hitting times of BM and the latter in terms of hitting times
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of BM with drift 1/2. In a way, the parameter ¢ can be taken into the drift
(/2
term of D
for D§/?.
This paper has been excised from our more complete and more ambitious
work [19] under preparation in which we show that many perpetuities, that
is, Brownian functionals of the form

/ " F(BW) ds
0

may be interpreted as first hitting times of a level by a suitable diffusion;
besides, in [19], as well as here, we use Feynman-Kac type arguments to
compute, whenever possible, the Laplace transforms of these perpetuities.
In [19] we also review many results in the probabilistic literature stating that
an integral functional is identical in law with a hitting time; as a famous
example, we mention here the Ciesielski-Taylor identities (see Yor [23] p.
50). We refer also to Getoor and Sharpe [7| p. 98, and to Biane [2] (see
Remark 4.2) for a generalization to a vast class of pairs of diffusions.
Below, for a given process {X; : t > 0}, we often use the notations

) and letting ¢ — 0 removes the drift leading to the formulas

H,(X):=inf{t >0 : Xy =a}

and
Ao (X) :=sup{t >0 : X; =a},

with the usual conventions inf () = +o00 and sup () = 0.

2  Dufresne’s reflected perpetuities

In this section, we compute the joint distribution of the Dufresne’s reflected
functionals as defined in (5). In fact, we find the joint Laplace transform of
the triplet

<D(H7+) , Lgo(B(“)) , D(”’_)>, (8)

where p > 0 and L2 (B®W) is the total local time of B*) at 0 (normalized to
be the occupation time density with respect to the Lebesgue measure). Let,
further,

) AolBL) (1)
D—,:\o ::/0 eXp(—QBS’L)].{Bgu)M)} ds,
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and -
D) . / exp(—2 BW) 1 ds.
Ao, + 7o () p( &) (B >0}

Remark 2.1 The term L% (B®) is included in our study due to its struc-
tural importance arising from the fact that conditionally on L% (B®) the
variables D®*) and D®~) are independent. This property follows, e.g.,
from the Ray-Knight theorem for Brownian motion with drift and/or ex-
cursion theory. We refer also to Pitman and Yor [17] for a study of joint
distributions of occupation times and local times for general diffusions.

Theorem 2.2 a) The joint Laplace transform of Dufresne’s reflected per-
petuities is, for every a, 3 > 0,

Eo(exp ( _aDWH _ 3 D(u,—>)>
(V2a)" y
T (u+1)241,(vV20)
« 20 1,(V20) K,u(v/2B)
V21,1 (V20) Ku(v/28) + V2B 1,(V20) K,u—1(v2B)

b) The variable Df\’; i) is independent of

(D(u,;) L2 (BW) D(m—))
-0 ? o) ) )

and \/
—e (pst) — ( 2a)“
Eo(eXP( Do+ )> - I(p+ 1)2ujﬂ(\/2a)’

Eo(exp ( — aD(_“”;;) — ﬁD(“’_)))

_ 2u1,(v20) K, (v2B)
V2 1,-1(vV20) K, (V2B) + v/2B 1,(V2a) Koot (vV2B)

c) Under Py, the variable L (B™) is exponentially distributed (with pa-
rameter j1). The variables D(f‘ ’;;) and D"~) are conditionally independent



given L% (B®), and
B(exp (- D — g D0) | I8(BW) = u)
= exp ( —u (\I’u(\/Q_a, V2B) — u))
— exp ( —u (Q/u(\/Q_oz, 0) + ¥,(0,1/28) — u))

where
_a Iy1(e)

2 Lu(c)

\Ijﬂ(aa 0)
Proof Let for y>0andt >0
t
Gg“) = exp(—BE“)), and (GW), .= / (GW)2 ds.
0

With these processes Lamperti’s transformation takes the form

Al) _ p)
Gt - R(é(u))t’ (9)
where v = —y < 0 and R™ is a Bessel process with index v started from 1.

Applying this transformation we obtain

(D(“’+) ’ Lgo(B(“)) ’ D(“’_)> (10)

Ho(R™) o Ho(R™))
— 1 v
= (/0 1{Rgu)<1} ds , LHO(R ), A 1{R(Su)>1} ds).

By the well-known time reversal result (see, e.g., formula (2.g) in the paper
no. 1in [24] or I1.33 p. 35 in [3]):

—~
Nawg

{RY)_, - u<Hy(RM)} = {RW :u< A (RW)} (11)

0 U

where R(*) is a BES(u) process starting from 0. It follows now from (11) and
(10) that

(D(u,+) ’ Lgo(B(“)) : D(uﬂ) (12)

() A1(R(“)) . Al(R(“))
B ( /0 1ipucqyds Ly, (R¥), /0 L posny ds)‘
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To conclude the proof of part a), we recall that the joint Laplace-transform
of the pair of occupation times

AL(R(®)) A1 (R(H))
([) 1{R§‘”<1} ds y [) 1{R§‘”>1} dS.)

is computed in Pitman and Yor [16] Proposition 9.2 p. 341. The first claim
in part b) follows from the last exit decomposition, and the explicit formulae
are, hence, obtained from part a). Finally, part c) is now a plain restatement
of the result in Pitman and Yor [16] p. 347-348, see also [17] Section 3. O

Corollary 2.3 For u=1/2,

V2«
E (ex (—aD(1/2’+)— D<1/2=—>)) - . (13
o= b VvV 2a coshv/2a + /25 sinhy/2a (13)

In particular,

B exp (- ep0)) = a8
and o .
Eo(exp(—ﬁD(/’ ))):W' (15)

Proof  Recalling (see, e.g. Lebedev [11])

2
sinh z, I_y)(z) = cosh z,

11/2(.’13) = \/ﬁ

/X
and

Kijp(z) = Ko12(z) = \/% e %,

it is a simple computation to verify the formula (13) from the result in The-
orem 2.2 a). O

Remark 2.4 a) Take a = § in Theorem 2.2 and use the relationship (see

[11])
I,1(V20) K,(V2a) + I,(V20) K,_1(V2a) = 1/V2a



to obtain

Bo(exploa (G¥)a)) = CYI S0V (1)
- E1<exp(—aH0(R(”)))). (17)

From (16) we recover (4) using the classical integral representation of K.
The latter equality (17) can be verified by standard diffusion theory (see
[3] 4.2.0.1 p. 398). Moreover, for D**t) we have the description (for a
probabilistic explanation, see [19])

* ) _
A exp(—QBg“)) 1{B§“)>0} ds = H1(R(“ 1)),

where the Bessel process R* 1) is started at 0 and, in the case 0 < p < 1,
reflected at 0.

b) Letting B be a BM started at 0 and £ an exponentially (with parameter 1)
distributed random variable independent of B we obtain from (15)

pw2) 9@ g(p).
Furthermore, from (14) and (13)

pueh 9Qogp),

and

=

(G2, = pa2t) 4 paro) @ g gy

respectively, where B is as above and B is a reflecting BM started from 0
(cf. 3.2.0.1. p. 355 [3]).

3 Dufresne’s translated and reflected perpetu-
ities
Recall from (6) the definition of Dufresne’s translated perpetuity:

D = / (c + exp(BW)) 2 ds.
0
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As mentioned in the Introduction we have been able to find an explicit ex-

pression for the Laplace transform of f)ﬁ" )

hinges eventually upon the following

Proposition 3.1 Let a > 0 and p > 0. The process

{bg( - ) )ZtZO}
a+exp(B; ")
starting from z = log (a/(a + 1)) has the representation

a —u,b)
log ( ) =z
a + exp(BS) .

where

I t ds
¢t _ (—=w) 2
o (aexp(—Bs ") +1)
and 7 := Z(=mY golves the SDE

1 “ ds
7, = a1 /______
i.e., Z is a diffusion with infinitesimal generator
1d® /1 Tl R
=-—— - | — < 0.
g 2da? * (2 1 —exp(x)) dz’

Consequently,

o ds
/0 P Ho(2).

Proof By Ito’s formula

dB;

t
log (a + exp(BI™)) — log(a + 1) = /
0

aexp(—B{ ™) +1

+(1—M)/t ds _l/t ds
2 o aexp(—B™)+1  2Jo (aexp(=BS™M)+1)2

only when p = 1/2. This limitation

(18)

(19)

(20)

Performing here the random time change associated with the additive func-

tional I; yields the representation (18) with the process Z, as claimed.

10
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Notice that Z is started at z < 0 and killed when it hits 0. We remark
that although the drift term tends to —oo, in the case 0 < p < 1/2,as x — 0
the process anyway hits zero. It is, in fact, possible to compute explicitly
the scale function and the speed measure of the diffusion Z, and perform the
usual boundary point analysis.

Because of the complicated form of the drift term in (20), we have not
been able to compute the Laplace transform of Hy(Z), except if p =1/2. In
this case Z is identical in law to {z + BHH L u > 0} where (/2 is a BM
with drift 1/2. The distributions of the hitting times of any level by 5(/2
are, of course, well-known.

To proceed, we take y = 1/2 and consider the triplet

(D& 18,80y DL/0), (21)

where 139/ 2% denote Dufresne’s translated and reflected functionals as de-
fined in (7). For convenience (cf. the definition of I; in (19)), we slightly
change our notation, and write

AW = / R G SR (22)
o (aexp(B{?)+1)?

Clearly,
y a2 A@ — 39/2,1)_

Theorem 3.2 For non-negative o, 5 and vy

F(a,v,8) = Eo(exp ( —a AW —~ 10 (B2 ﬁA((;))) (23)
V8a+1 exp(2)
V8a + Tcosh(v/Ba+1) + (2y(a+1) + /8B + 1) sinh( 8o+ 1)

where b = log((a + 1)/a)(= —z, with the notation in Proposition 3.1). In
particular,

F(,0,0) = Eo( exp ( —a(A{ +A0))))

= exp ( — g(\/m — 1)), (24)

11



and

F(e,0,0) = Eo(exp ( _ aAgﬂ))

_ V8a+1 exp(g) (26)

v8a+1cosh(+/8a+1) +sinh(2Ba+1)

Moreover, AST and ALY are conditionally independent given L2 (BA/2) (cf.
Remark 2.1).

Proof To start with, notice that

(d_) /OO eXp(2 Bg_l/z)) 1{B§71/2)<0}
0 (a+ exp(Bg_l/Q)))2

Applying the Lamperti transformation (2) with 4 = —1/2 and recalling that
R1/2) is in fact a BM killed when it hits 0 we obtain

Hy(B")
O / " ey o
0 (a+ By)?

where B’ is a BM started at 1. By spatial homogeneity of BM,

Hi(B)
A @ / 1 LS
0 (a+1— By)?

where B is another BM starting from 0. Notice that the transforms we have
made for AEEL) could have been done simultanously for the triplet

(Agﬂ , L0 (BW2)y Ag—))

which, therefore, is found to be identical in law with

(/Hl(B) 1{Bs>0} 4 70 (B) /Hl(B) 1{BS<O} p ) (27)
o (ar1-B)2 W rm\Ele o 1By )

12



By the Ito-Tanaka formula (z* := max{z,0}, = := max{—z,0})

t 0
1B>0} Lt(B)
log(a+1—Bf) =1 +1—/{;st—7
o8 (a D) =leglet D)= TRy 2(a+1)
1 " 1,0
—— | —B2%gs fort < H,i(B), 28
2/0 @+1-B)2 " ™ +1(B) (28)
and
t 0
_ 1B, <0} L (B)
log(a+1+B;)=logla+1)— [ —2<% 4B 4
8 (a v) = logla )/O(a+1—Bs) 2(a+1)
L /t _ Lo ds (29)

In order to apply Skorohod’s reflection lemma, we write (28) and (29) in the
following equivalent forms

By . LY(B)
oo (1 By gy Li(B) 20
o8 ( a+1) BQH) * 2(a+1) (30)
and B 19(B)
log (14 —1—) = =4I/ 4 31
o8 ( +a+1) 7o +2(a+1)’ (31)

where [ = {/3’(1—1/2) :h>0}and vy = {7,(11/2) : h > 0} denote two BM’s with
drift —1/2 and 1/2, respectively, and

t
1ip,ery)
1<i);:/Ld_
t o a+1-B)2 "

In fact, 5 and ~ are independent by the classical result by Knight on orthog-
onal continuous martingales (see Revuz and Yor [18] p. 183). Let

oD = sup{ ).

s<t

Then Skorohod’s lemma applied to (30) gives for t = H{(B)

mE) LY (B)
{Bs>0} Hy (-1/2) _(-1/2)
(/0 (a+1— B,)? d8’2(a+1)) (0 20, ), (32)
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where
015_1/2) =inf{u: o{/? — B{7P =b}, b=log((a+1)/a).

Next we consider the third component in (27). From (31) it is seen that

Hi(B) 1 LY (B)
{Bs<0} _ . . (1/2) _ “H;
_ B0} g f{ : - } 33
/0 (a+1_Bs)2 S m u fY’u, 2(0/“1‘].) ( )

But, as we have just seen from (32), LY (B) is measurable with respect to
B1/2) and, hence, independent of 7{!/%. Consequently, because LY (B) is
exponentially distributed with parameter 1/2, we obtain from (33)

Hy(B) 1{BS<O} d (_) o B(1/2) a4
; m s = é( ) (34)

where B{"/? = 0 and ¢ is an exponentially (with parameter (a + 1)) dis-
tributed random variable independent of B(/2) (therefore, (25) holds). No-

tice also that from (32) and (33) it is immediate that ALY and A are
conditionally independent given L% (B(1/?)) (cf. Remark 2.1). In particular,

By ((exp(-8AL) | L%,(BY2) = u)

=exp (- (V8B+1-1)). (35)

To finish the proof of Theorem 3.2, it now remains essentially to compute
the joint Laplace transform of the variables on the right hand side of (32).
Firstly, recall that the process

4(1+ a)

2

KM = (q cosh(q(oy — B;)) + psinh(g(oy — ﬁt))) exp(—poy — % t),
where {8, : t > 0} is a BM starting at 0 and oy = sup{f; : s < t}, is a
martingale for all non-negative p and ¢ starting at ¢. This is due to Kennedy
[10], we refer also to Lehoczky [12] and Azéma and Yor [1], for generalizations
and applications. Because K?*? is bounded for ¢ < 0 := inf{t: o, — 5; = b}
we can use the optional sampling theorem at 6, to obtain

2

q—Hb)) =q (q cosh(g b) + psinh(q b)) _1. (36)

E(exp(—p op, — 5

14



By absolute continuity, this yields the corresponding result for a BM with
drift p :

2
q
B(exp (— poif - Lo)
2

2
—B(exp (i, 45 00) exp(—pow, - L6))
2 2
= B(exp (= p(on, — )~ (= wow, — -0 104,))
2 2
= exp(—u b)E(exp (= (@ —n)os, — %0,,))

V@ + p?exp(—pb)
V@ + 12 cosh(y/q% + 2 b) + (p — p) sinh(v/q2 + p2b)’

This formula is, in fact, due to Taylor [21]. We refer to Williams [22] for a
derivation which is in a manner similar to the one above, see also Pitman
and Yor [17]. We are now ready to conclude the computation. By (35), the
conditional independence, and (32)

F(o,7,8) = Eofexp(—aal? -y L4 (BY?) - 5A0)))
= Eo(exp(—a/oHl(B)(l{B;mds_,?L?Lh(B)>)

a+1— By)? 2(1+a)
= E0<exp(—a0 —1/2) 7?0,(,;1/2)))

where .
¥=201+a)y+ (V8 +1-1).
Using now (37) with ¢ = V2a, p = —1/2 and p = 7 gives the claim. O

Remark 3.3 Notice that (24) and (25) are equivalent to
)

AW L AG D g gy,

and

—

A 9@ g (B2

respectively, where B(!/?) ig started at 0 and € is an exponentially with param-
eter (1 + a) distributed random variable independent of B. For a discussion
about the functional ALY, we refer to [19].

?
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4 Concluding remarks

4.1. Notice that from (13) and (36) it follows that
E0<exp < —aDO/2T) ﬁD(l/Q’_)>> = E(exp(—a 0, — \/2ﬂ091)>.

This identity can be explained (and also proved) by proceeding similarly as
in the proof of Theorem 3.2 (cf. (28) through (31)). Indeed, we have by the
Ito-Tanaka formula

t
1
1 — exp ( —~ (B§“>)+) = / exp(=B{) 100 dBY + S L} (BW)
0

1 t
—5/0 exp(—BW) L 5050y ds

and
t

_ 1
exp ((BM) ) —1=- / exp(=B{) 1500 oy dBY + S L) (BY)

+%/0t exp(—B®) 1 g gy ds-
Putting here u = 1/2 we deduce (cf. (32)) that
(D(1/2’+) : %Lgo(B(l/Q))> = (61, 09, ),
and, further, (cf. (33))
Eo ((exp(— DU/27)) | L8 (B%®) = 2u) = Eo( exp(—4 Hu(B)))

:exp(—u\/%)

4.2. In [2] Biane studies reflected perpetual functionals of a general linear
diffusion living on an interval and drifting to the right hand side endpoint of
the interval. In particular, for B*) with x> 0 we obtain from [2] Remarque
p. 295 that

~ (BWY1 s @Y 38
a1 i [T g as 39)

where it is assumed that
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(i) ¢ is a positive C*-function,
(ii) X is a diffusion associated to the generator

s (- 1) &

dz’
(iii) Xy — 400 a.s. when ¢ — oo,

(iv) X, is exponentially distributed on (—o00,0) with parameter 2.

Taking in (38) g(z) = 1 gives, as discussed in [2], see also Imhof [8], and
Doney and Grey [4],

=

°° (
/ g gy ds = H¢(BW),
0

where ¢ is exponentially distributed with parameter 2y independent of B(®),
Further, letting g(z) = exp(2ax) the diffusion X in (38) has the generator
1 d? d

5@*‘(/1—@)@,

and, hence, the condition (iii) above holds when p > a. Connections with
Biane’s and our approaches will be discussed in more details in [19].
4.3. The Laplace transforms of the triplets (8) and (21):

(D(uﬂr) , Lgo(B(“)) , D(“’_)>,

and (for yp=1/2)
(ﬁﬁuﬂ-) , L (BW ﬁgur))

could have been computed “directly” using the Feynman-Kac method. In this
method the solutions of the associated differential equation are often found
by transforming the equation to a “new” equation the solutions of which are
known (or consulting Kamke [9]). These transformations are, in a sense, ana-
lytic counterparts of random time changes. Indeed, our analysis of the triplets
(8) and (21) can, in part, be considered as the probabilistic “viewpoint” of
change of variables in Feynman-Kac computations. Moreover, it gives us a
good understanding of the structure of the formulas and shows interesting
connections between our functionals and some earlier works, as pointed out
in the proofs above. In the forthcoming paper [19], we present some general
results following this approach, study many examples and discuss also the
Feynman-Kac formula for perpetual integral functionals.
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