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1 Introduction and main results

It is well known that there are different constructions and definitions of local
times corresponding to different classes of stochastic processes. For a large
panorama of such definitions, see Geman and Horowitz [12].

The most common definition of the local times L = {Lx
t : x ∈ R, t ≥ 0}

of a given process {Xt : t ≥ 0} is as the Radon–Nikodym derivative of the
occupation measure of X with respect to the Lebesgue measure in R; precisely
L satisfies

∫ t

0

f(Xs) ds =

∫ ∞

−∞
f(x)Lx

t dx (1)

for every Borel function f : R 7→ R+.
There is also the well known stochastic calculus approach developed by

Meyer [16] in which one works with a general semimartingale {Xt : t ≥ 0},
and defines Λ = {λx

t : x ∈ R, t ≥ 0} with respect to the Lebesgue measure
from the formula

∫ t

0

f(Xs) d <Xc>s=

∫ ∞

−∞
f(x)λx

t dx. (2)
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Of course, in the particular case when d <Xc>s= ds, i.e., Xc is a Brownian
motion, then the definitions of L and λ coincide. In other cases, e.g., if Xc ≡ 0,
they will differ.

In this paper we focus on the potential theoretic approach applicable in
the Markovian case in which the local times are defined as additive function-
als whose p-potentials are equal to p-resolvent kernels of X. Local times can
hereby be interpreted as the increasing processes in the Doob-Meyer decom-
positions of certain submartingales. Considering the p-resolvent kernels and
passing to the limit, in an adequate manner, as p → 0, we obtain a formula (3),
which clearly extends Tanaka’s original formula for the local times of Brow-
nian motion to those of the symmetric α-stable processes, α ∈ (1, 2], already
obtained by T. Yamada [20] and further developed in K. Yamada [19]. Our
approach may be simpler and may help to make these results better known
to probabilists working with Lévy processes.

The formula (3) below and its counterparts about decompositions of pow-
ers of symmetric α-stable Lévy processes show at the same time similarities
and differences with the well known formulae for Brownian motion (see, in
particular, Chapter 10 in [23] concerning the principal values of Brownian
local times). We hope that the Tanaka representation of the local times in
(3) may be useful to gain some better understanding for the Ray-Knight the-
orems of the local times of X as presented in Eisenbaum et al. [6], since in
the Brownian case, Tanaka’s formula has been such a powerful tool for this
purpose, see, e.g., Jeulin [15].

We now state the main formulae and results for the symmetric α-stable
Lévy process X = {Xt}. To be precise, we take X to satisfy

E (exp(iλXt)) = exp(−t|λ|α), λ ∈ R,

in particular, for α = 2, X equals
√

2 times a standard BM. General criteria
can be applied to verify that X possesses a jointly continuous family of local
times {Lx

t } satisfying (1). The constants ci appearing below and later in the
paper will be computed precisely in Section 5; clearly, they depend on the
index α and/or the exponent γ.

1) For all t ≥ 0 and x ∈ R

|Xt − x|α−1 = |x|α−1 + Nx
t + c1 Lx

t , (3)

where Nx is a martingale such that for 0 ≤ γ < α/(α − 1), especially for

γ = 2,

E

(

sup
s≤t

|Nx
s |γ
)

< ∞. (4)

Moreover, the continuous increasing process associated with Nx is

<Nx>t := c2

∫ t

0

ds

|Xs − x|2−α
. (5)
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2) For α − 1 < γ < α the submartingale {|Xt − x|γ} has the decomposition

|Xt − x|γ = |x|γ + N
(γ)
t + A

(γ)
t , (6)

where N (γ) is a martingale and A(γ) is the increasing process given by

A
(γ)
t := c3

∫ t

0

ds

|Xs − x|α−γ
. (7)

3) For 0 < γ < α− 1 the process {|Xt − x|γ} is not a semimartingale but for

(α−1)/2 < γ < α−1 it is a Dirichlet process with the canonical decomposition

|Xt − x|γ = |x|γ + N
(γ)
t + A

(γ)
t , (8)

where N (γ) is a martingale and A(γ), which has zero quadratic variation, is

given by the principal value integral

A
(γ)
t := c4 p.v.

∫ t

0

ds

|Xs − x|α−γ
:= c4

∫

dz

|z|α−γ

(

Lx+z
t − Lx−z

t

)

. (9)

The paper is organized so that in Section 2 some preliminaries about sym-
metric Lévy processes including their generators and some variants of the Itô
formula are presented. In Section 3 we derive the Tanaka formula for general
symmetric Lévy processes admitting local times. The above stated results for
symmetric stable Lévy processes are proved and extended in Section 4. In
Section 5 we compute explicitly the constants ci featured above and also fur-
ther ones appearing especially in Section 4. This is done by exhibiting some
close relations between these constants and the known expressions of the mo-
ments E(|X1|γ) where X1 denotes a standard symmetric α-stable variable. In
Section 6, we consider, instead of |Xt − x|γ , the process {(Xt − x)γ,∗}, where

aγ,∗ := sgn(a) |a|γ ,

is the symmetric power of order γ, and we determine the parameter values
for which these processes are semimartingales or Dirichlet processes, thus
completing results 1), 2) and 3) above.

2 Preliminaries on symmetric Lévy processes

Throughout this paper, we consider a real-valued symmetric Lévy process
X = {Xt} and, if nothing else is stated, we assume X0 = 0. The Lévy exponent
Ψ of X is a non-negative symmetric function such that
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E (exp(iξXt)) = E (cos(ξXt)) = exp (−tΨ(ξ)) . (10)

The Lévy measure ν of X satisfies, as is well known, the integrability condition

∫ ∞

−∞
(1 ∧ z2) ν(dz) < ∞.

By symmetry, ν(A) = ν(−A) for any A ∈ B, the Borel σ-field on R; hence,

Ψ(ξ) =
1

2
σ2 ξ2 −

∫ ∞

−∞

(

ei ξ z − 1 − i ξ z 1{|z|≤1}
)

ν(dz)

=
1

2
σ2 ξ2 + 2

∫ ∞

0

(1 − cos(ξz)) ν(dz). (11)

Recall also (see, e.g., Ikeda and Watanabe [14] p. 65) that X admits the
Brownian-Poisson representation

Xt = σ Bt +

∫

(0,t]

∫

{|z|≥1}
z Π(ds, dz) +

∫

(0,t]

∫

{|z|<1}
z (Π − π)(ds, dz), (12)

where the Brownian motion B and the Poisson random measure Π with the
intensity

π(ds, dz) := E(Π(ds, dz)) = ds ν(dz)

are independent. Due to the symmetry of ν, the generator of X can be written
as

Gf(x) := GBf(x) + GΠf(x)

:=
1

2
σ2 f ′′(x) +

∫

R

(

f(x + y) − f(x) − f ′(x) y 1{|y|<1}
)

ν(dy)

=
1

2
σ2 f ′′(x) +

∫

R

(f(x + y) − f(x) − f ′(x) y) ν(dy). (13)

where G acts on regular functions f in particular those in the Schwartz space
S(R) of rapidly decreasing functions. Given a smooth function f, the pre-
dictable form of the Itô formula (see Ikeda and Watanabe [14] and K. Yamada
[19]) writes

f(Xt) − f(X0) −
∫ t

0

Gf(Xs) ds (14)

= σ

∫ t

0

f ′(Xs) dBs +

∫ t

0

∫

R

(f(Xs− + z) − f(Xs−)) (Π − π)(ds, dz).

The formula (14) connects with the Itô formula for semimartingales, as devel-
oped by Meyer [16], and displayed as
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f(Xt) = f(X0) +

∫ t

0

f ′(Xs−) dXs +
σ2

2

∫ t

0

f ′′(Xs) ds

+
∑

0<s≤t

(f(Xs) − f(Xs−) − f ′(Xs−)∆Xs) . (15)

The sum of jumps
∑

0<s≤t

(. . . ) may be compensated by

∫ t

0

GΠf(Xs) ds, and,

hence, we have recovered the integrated form of (13):

∫ t

0

Gf(Xs) ds =

∫ t

0

GBf(Xs) ds +

∫ t

0

GΠf(Xs) ds.

We record also a more general compensator formula employed later in the
paper. For this, let Φ : R×R 7→ R+ be a Borel measurable function. Then

E





∑

0<s≤t

Φ(Xs−, Xs)1{∆Xs 6=0}





= E

(

∫ t

0

∫

R\{0}
π(ds, dz)Φ(Xs, Xs + z)

)

. (16)

3 Local times for symmetric Lévy processes

From now on, we assume that

∫ ∞

−∞

1

1 + Ψ(ξ)
dξ < ∞. (17)

From standard Fourier arguments (see Bertoin [1] and, e.g., Borodin and
Ibragimov [2] p. 67) one can show the existence of a jointly measurable fam-
ily of local times {Lx

t : x ∈ R, t ≥ 0} satisfying for every Borel-measurable
function f : R 7→ R+ the occupation time formula

∫ t

0

ds f(Xs) =

∫ ∞

−∞
f(x)Lx

t dx.

For the condition (expressed in terms of the function v in (22)) under which
(t, x) 7→ Lx

t is continuous, see Bertoin [1] p. 148. In particular, the condition
holds for symmetric α-stable Lévy processes; in fact it was shown by Boylan
[3], see also Getoor and Kesten [13], that

|Lx+y
t − Lx

t | ≤ Kt |y|θ (18)

for any θ < (α − 1)/2 and some random constant Kt.
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Our approach toward a Tanaka formula for these local times is based on
the potential theoretic construction which we now develop. It is well known,
see Bertoin [1] p. 67, that for any p > 0

u(p)(x) =
1

π

∫ ∞

0

cos(ξx)

p + Ψ(ξ)
dξ (19)

is a continuous version of the density of the resolvent

U (p)(0, dx) = E0

(∫ ∞

0

e−p t1{Xt∈dx} dt

)

.

Moreover, for every x the local time {Lx
t } can be chosen as a continuous

additive functional such that

u(p)(y − x) = Ey

(∫ ∞

0

e−p tdtL
x
t

)

. (20)

From (20) we deduce the Doob-Meyer decomposition given in the next

Proposition 1. For every fixed x

u(p)(Xt − x) = u(p)(X0 − x) + M
(p,x)
t + p

∫ t

0

u(p)(Xs − x)ds − Lx
t , (21)

where M (p,x) is a martingale with respect to the natural filtration {Ft} of X.

Moreover, for every fixed t, both the martingale {M (p,x)
s : s ≤ t} and the

random variable Lx
t belong to BMO; in particular, Lx

t has some exponential
moments.

Proof. Straightforward computations using the Markov property show that
for y = X0

Ey

(∫ ∞

0

e−p tdtL
x
t | Fs

)

=

∫ s

0

e−p tdtL
x
t + e−p su(p)(Xs − x),

which together with an integration by parts yields (21). We leave the proofs
of the remaining assertions to the reader.

A variant of the Tanaka formula shall now be obtained by letting p → 0 in
(21). The result is stated in Proposition 2 but first we need an important
ingredient.

Lemma 1. For every x ∈ R

lim
p→0

(

u(p)(0) − u(p)(x)
)

=
1

π

∫ ∞

0

1 − cos(ξx)

Ψ(ξ)
dξ =: v(x). (22)
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Proof. The statement follows from (19) by dominated convergence because
(cf. (11))

∫ ∞

1

1

Ψ(ξ)
dξ < ∞, and

∫ 1

0

ξ2

Ψ(ξ)
dξ < ∞.

Notice also that v is continuous.

The formula (23) below generalizes in a sense the Tanaka formula for
Brownian motion to symmetric Lévy processes. In the next section we study
the particular case of symmetric stable processes.

Proposition 2. Let v be the function introduced in (22) and M (p,x) the mar-
tingale defined in Proposition 1. Then

v(Xt − x) = v(x) + Ñx
t + Lx

t , (23)

where Ñx
t := − limp→0 M

(p,x)
t defines a martingale.

Remark 1. Standard results about martingale additive functionals of X yield
the following representations

Ñx
t = σ

∫ t

0

v′(Xs − x) dBs

+

∫

(0,t]

∫

R

(v(Xs− − x + z) − v(Xs− − x)) (Π − π)(ds, dz),

and

< Ñx >t= σ2

∫ t

0

(v′(Xs − x))2 ds

+

∫ t

0

∫

R

(v(Xs − x + z) − v(Xs − x))
2

π(ds, dz),

where v′ is a weak derivative of v.

Proof. Consider the identity (21). Let therein p → 0 and use Lemma 1 to
obtain

v(Xt − x) = v(x) − lim
p→0

(

M
(p,x)
t + p

∫ t

0

u(p)(Xs − x)ds

)

+ Lx
t . (24)

From (19) u(p)(y) ≤ u(p)(0), and, consequently,

0 ≤ p

∫ t

0

u(p)(Xs − x)ds ≤ p u(p)(0) t. (25)

Next we show that
lim
p→0

p u(p)(0) = 0. (26)
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Indeed, using (19) again,

p u(p)(0) =
1

π

∫ ∞

0

p dξ

p + Ψ(ξ)

≤ 1

π

∫ 1

0

p dξ

p + Ψ(ξ)
+

p

π

∫ ∞

1

dξ

Ψ(ξ)
, (27)

and (26) results by dominated convergence. Hence, (24) yields (23) with Ñx

as claimed. It remains to prove that Ñx is a martingale. For this it is enough
to show that

E
(

|Ñx
t − M

(p,x)
t |

)

→ 0 as p → 0. (28)

To prove (28) consider

|Ñx
t − M

(p,x)
t | ≤ p

∫ t

0

u(p)(Xs − x)ds + |v(x) − (u(p)(0) − u(p)(x))|

+|v(Xt − x) − (u(p)(0) − u(p)(Xt − x))|.

From (25) and (26), the integral term goes to 0 as p → 0. Next, by Fubini’s
theorem and (10)

E
(∣

∣

∣v(Xt − x) − (u(p)(0) − u(p)(Xt − x))
∣

∣

∣

)

=
1

π
p

∫ ∞

0

1 −E(cos(ξ(Xt − x)))

Ψ(ξ)(p + Ψ(ξ))
dξ

=
1

π
p

∫ ∞

0

1 − cos(ξ x) exp(−tΨ(ξ))

Ψ(ξ)(p + Ψ(ξ))
dξ

≤ 1

π
p

(∫ ∞

0

1 − cos(ξ x)

Ψ(ξ)(p + Ψ(ξ))
dξ +

∫ ∞

0

t Ψ(ξ)

Ψ(ξ)(p + Ψ(ξ))
dξ

)

.

Applying the dominated convergence theorem for the first term above and
(27) for the second one give

lim
p→0

E
(∣

∣

∣v(Xt − x) − (u(p)(0) − u(p)(Xt − x))
∣

∣

∣

)

= 0,

completing the proof.

Example 1. For standard Brownian motion B we have

u(p)(x) =
1√
2p

e−√
2p|x|.

Consequently,

v(x) := lim
p→0

(

u(p)(0) − u(p)(x)
)

= |x|.

and the formula (23) takes the familiar form
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|Bt − x| = |x| + Nx
t + Lx

t

where

Nx
t = lim

p→0

∫ t

0

e−√
2 p|Bs−x| sgn(Bs − x) dBs

=

∫ t

0

sgn(Bs − x) dBs.

4 Symmetric α-stable Lévy processes

Let X = {Xt}, X0 = 0, denote the symmetric α-stable process with the Lévy
exponent

Ψ(ξ) = |ξ|α, α ∈ (1, 2).

We remark that the condition (17) is satisfied, and also that the local time of
X has a jointly continuous version, as is discussed in Section 3. For clarity,
we have excluded the Brownian motion from our study. However, the corre-
sponding results for Brownian motion may be recovered by letting α → 2.
Recall also that E(|Xt|γ) < ∞ for γ < α, and that the Lévy measure is

ν(dz) = c5(α) |z|−α−1 dz, α ∈ (1, 2). (29)

The function v introduced in Lemma 1 is in the present case given by

v(x) = c6(α) |x|α−1. (30)

The results announced in the Introduction are now presented again and
proven in a more complete form through the following three propositions. The
first one treats the claim 1) in the Introduction.

Proposition 3. a) For fixed x

c6(α)
(

|Xt − x|α−1 − |x|α−1
)

= Ñx
t + Lx

t (31)

where {Ñx
t } is a square integrable martingale. In fact, for all 0 ≤ γ < α/(α−

1), especially for γ = 2,

E

(

sup
s≤t

|Ñx
s |γ
)

< ∞. (32)

Moreover, the continuous increasing process associated with Ñx is

<Ñx>t:= c7(α)

∫ t

0

ds

|Xs − x|2−α
. (33)

b) For every t and x the variable Lx
t belongs to BMO; in fact, for all s ≤ t

E (Lx
t − Lx

s | Fs) ≤ Kα,t (34)

for some constant Kα,t which does not depend on s.
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Proof. The fact that Ñx is a martingale is clear from Proposition 2. Because
Lx

t has some exponential moments (cf. Proposition 1), it is seen easily from(31)
that for γ > 0

E(|Ñx
t |γ) < ∞

if
E
(

|Xt − x|γ(α−1)
)

< ∞,

which is true for γ(α − 1) < α. Consequently, an extension of the Doob-
Kolmogorov inequality, gives (32). The martingale Ñx has no continuous mar-
tingale part. Hence, letting

[Ñx]t :=
∑

s≤t

(∆Ñx
s )2 := (c6(α))2

∑

s≤t

(

|Xs − x|α−1 − |Xs− − x|α−1
)2

it holds that { (Ñx
t )2 − [Ñx]t } is a martingale. Consequently, <Ñx> can be

obtained as the dual predictable projection of [Ñx], and from the Lévy system
of X , e.g., (16), we get

<Ñx>t= (c6(α))2 c5(α)

∫ t

0

ds

∫

R

dy

|y|α+1

(

|Xs− − x + y|α−1 − |Xs− − x|α−1
)2

.

Putting z = Xs− − x and introducing y = zu the latter integral takes the
form
∫

R

dy

|y|α+1

(

|z + y|α−1 − |z|α−1
)2

=
1

|z|2−α

∫

R

du

|u|α+1

(

|1 + u|α−1 − 1
)2

.

Consequently, <Ñx> is as claimed. To prove the second part of the proposi-
tion, notice that by the martingale property

E (Lx
t − Lx

s | Fs) = c6(α) E
(

|Xt − x|α−1 − |Xs − x|α−1 | Fs

)

≤ c6(α) E
(

|Xt − Xs|α−1 | Fs

)

≤ c6(α) E
(

|Xt−s|α−1
)

≤ K ′
α t(α−1)/α,

where also the scaling property and the inequality

|xp − yp| ≤ |x − y|p, 0 < p ≤ 1,

are used.

The following corollary plays the same rôle for X as the classical Itô-
Tanaka formula plays for Brownian motion. In fact, a large part of this paper
discusses for which functions the identity (35), or some variant of it is valid.
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Corollary 1. Let f be a bounded Borel function with compact support and
define

F (y) :=

∫

dxf(x) |y − x|α−1.

Then

F (Xt) = F (0) +

∫

dxf(x) Nx
t + c1(α)

∫ t

0

ds f(Xs) (35)

expresses the canonical semimartingale decomposition of {F (Xt)} with
{
∫

dxf(x) Nx
t } a martingale.

Proof. It suffices to integrate both sides of (31) (or rather (3)) with respect
to the measure f(x) dx.

Remark 2. a) In K. Yamada [19] the representation (31) of the local time (or
Tanaka’s formula for symmetric α-stable processes) is derived using the so
called “mollifier” approach as in Ikeda and Watanabe [14] in the Brownian
motion case. In this case the martingale is given by

Ñx
t = c6(α)

∫

(0,t]

∫

R

(

|Xs− − x + z|α−1 − |Xs− − x|α−1
)

(Π − π)(ds, dz),

where Π and π are the Poisson random measure and the corresponding in-
tensity measure, respectively, associated with X .
b) The inequality (34) holds for all symmetric Lévy processes having local
times. Indeed, it is proved in Bertoin [1] p. 147 Corollary 14 that the function
v defined in (22), Lemma 1, induces a metric on R, and, in particular, the
triangle inequality holds. Consequently,

E (Lx
t − Lx

s | Fs) ≤ E(v(Xt − Xs)) = E(v(Xt−s)) ≤ E(v(Xt)) < ∞

because

E(v(Xt)) =
1

π

∫ ∞

0

1 − exp(−tΨ(ξ))

Ψ(ξ)
dξ

≤ 1

π

(

t +

∫ ∞

1

dξ

Ψ(ξ)

)

< ∞.

c) We leave it to the reader to establish a version of Corollary 1 for general
symmetric Lévy processes.

Proposition 4. For a given x and α − 1 < γ < α the submartingale {|Xt −
x|γ : t ≥ 0} has the decomposition

|Xt − x|γ = |x|γ + N
(γ)
t + A

(γ)
t , (36)

where N (γ) is a martingale and A(γ) is the increasing process given by
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A
(γ)
t = c3(α, γ)

∫ t

0

ds

|Xs − x|α−γ
. (37)

Moreover, when α − 1 ≤ γ ≤ α/2 the increasing process <N (γ)> is of the
form

<N (γ)>t= c8(α, γ)

∫ t

0

ds

|Xs − x|α−2γ
. (38)

Proof. Formula (36) is obtained by integrating both sides of equation (31)
(or (3) taken at level z with respect to the measure dz/|z − x|α−γ . The form
of the left hand side is obtained from the scaling argument. Because A(γ)

is continuous the computation for finding < N (γ) > is very similar to the
computation of <Ñx> in the proof of Proposition 3. We have

<N (γ)>t=

∫ t

0

ds

∫

R

ν(dy) (|Xs− − x + y|γ − |Xs− − x|γ)
2
, (39)

which easily yields (38).

For the next proposition, we recall the notion of Dirichlet process, that is
a process which can decomposed uniquely as the sum of a local martingale
and a continuous process with zero quadratic variation (see, e.g., Föllmer [10],
Fukushima [11]).

Proposition 5. a) For 0 < γ < α − 1 the process |X − x|γ is not a semi-
martingale.
b) For (α− 1)/2 < γ < α− 1 the process |X − x|γ is a Dirichlet process with
the canonical decomposition

|Xt − x|γ = |x|γ + N
(γ)
t + A

(γ)
t , (40)

where N (γ) is a martingale and A(γ) is given by the principal value integral

A
(γ)
t = c4(α, γ) p.v.

∫ t

0

ds

|Xs − x|α−γ

= c4(α, γ)

∫

R

dz

|z|α−γ

(

Lx+z
t − Lx−z

t

)

. (41)

Moreover, the increasing process <N (γ)> is as given in (38).

Proof. a) We take x = 0 and adapt the argument in Yor [21] applied therein
for continuous martingales. Assume that Yt := |Xt|γ , γ < α − 1, defines a
semimartingale. Then

|Xt|α−1 = Y θ
t

with θ = γ/(α − 1) > 1, and Itô’s formula for semimartingales (notice that
Y c ≡ 0) gives
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Y θ
t =

∫ t

0

θ Y θ−1
s− dYs + Σt, (42)

where
Σt :=

∑

0<s≤t

(

Y θ
s − Y θ

s− − θ Y θ−1
s− ∆Ys

)

.

The argument of the proof is that under the above assumption the local time

L0
t ≡

∫ t

0

1{Xs−=0} d|Xs|α−1 (43)

would be equal to zero. To derive this contradiction notice from (42) and (43)
that

L0
t =

∫ t

0

1{Ys−=0} dY θ
s =

∫ t

0

1{Ys−=0} dΣs.

But because Σ is a purely discontinuous increasing process and L0 is contin-
uous this is possible only if L0 ≡ 0, which cannot be the case; thus proving
that Y is not a semimartingale.
b) To prove (40) we consider formula (3) at levels x + z and x − z and write
∫

R

dz

|z|α−γ

(

|Xt − (x + z)|α−1 − |Xt − (x − z)|α−1
)

(44)

=

∫

R

dz

|z|α−γ

(

Nx+z
t − Nx−z

t

)

+ c1(α)

∫

R

dz

|z|α−γ

(

Lx+z
t − Lx−z

t

)

.

The integral on the left hand side is well defined since by scaling
∫

R

dz

|z|α−γ

(

|Xt − (x + z)|α−1 − |Xt − (x − z)|α−1
)

= |Xt − x|γ r(α, γ)

with

r(α, γ) :=

∫

R

dz

|z|α−γ

(

|1 − z|α−1 − |1 + z|α−1
)

,

which is an absolutely convergent integral. Next notice that the principal value
integral on the right hand side of (44) is well defined by the Hölder continuity
in x of the local times (cf. (18)). It also follows that the first integral on
the right hand side of (44) is meaningful and, by Fubini’s theorem, it is a
martingale. In Fitzsimmons and Getoor [8] it is proved that

H0
t :=

∫ ∞

0

dz

zα−γ

(

L−z
t − L0

t

)

.

has zero p-variation for p > po := (α − 1)/γ (notice 1 + γ in [8] corresponds

ours α − γ). Since po < 2 it is now easily seen that also {A(γ)
t } has zero

quadratic variation and the claimed Dirichlet process decomposition follows
with

c4(α, γ) = c1(α)/r(α, γ). (45)
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5 Explicit values of the constants

An important ingredient in the computation of the explicit values of the con-
stants is the formula for absolute moments of symmetric α-stable, α ∈ (1, 2),
random variables due to Shanbhag and Sreehari [18] (see also Sato [17] p. 163,
Chaumont and Yor [4] p. 110). To discuss this briefly let

◦ Z be an exponentially distributed r.v. with mean 1,
◦ U a normally distributed r.v. with mean 0 and variance 1,
◦ X(α) a symmetric α-stable r.v. with characteristic function exp(−|ξ|α),
◦ Y (α/2) a positive α/2-stable r.v. with Laplace transform exp(−ξα/2).

Assume also that these variables are independent. Then it is easily checked
that

(

Z/Y (α/2)
)α/2 d

= Z (46)

and

X(α) d
=

√
2U

(

Y (α/2)
)1/2

. (47)

From (46) we obtain for γ < α/2

E
((

Y (α/2)
)γ)

=
Γ (1 − 2γ

α )

Γ (1 − γ)
,

and, further, from (47) for −1 < γ < α

mγ := E
(

|X(α)|γ
)

= 2γ Γ (
1 + γ

2
) Γ (

α − γ

α
)/

(√
π Γ (

2 − γ

2
)

)

. (48)

The constants with the associated reference numbers of the formulae where
they appear in the paper are summarized in the following table.
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Constant Value Ref.

c1(α) ((α − 1) π mα−1) /Γ (1/α) (3), (56), (57)

c2(α) (2(α − 1) m2(α−1))/(α mα−2) (5)

c3(α, γ) (γ mγ)/(α mγ−α) (7), (37)

c4(α, γ) c1(α)/r(α, γ) (41), (45)

c5(α) α/(2 Γ (1 − α) cos(απ/2)) (29)

c6(α) (c1(α))−1 = (2πc5(α − 1))
−1

(30)

c7(α) c2(α) (c6(α)) 2 (33)

c8(α, γ) c3(α, 2γ) − 2c3(α, γ) (38)

We consider first the constant c3(α, γ) and, for clarity, recall formula (36):

|Xt − x|γ = |x|γ + N
(γ)
t + A

(γ)
t , (49)

with α − 1 < γ < α and

A
(γ)
t = c3(α, γ)

∫ t

0

ds

|Xs − x|α−γ
.

Notice that letting γ ↓ α − 1 yields, in a sense,

A
(α−1)
t = c1(α) Lx

t , (50)

although, using the value in the table, c3(α, γ) → 0. From (49) it is seen that
f(y) = |y − x|γ belongs to the domain of the extended generator G, and, by
scaling we obtain the following integral representation

c3(α, γ) =

∫

R

ν(dy) (|1 + y|γ − 1 − γy) .

On the other hand, taking x = 0 in (49), and using scaling again together
with (48), we get
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E (|Xt|γ) = c3(α, γ)

∫ t

0

dsE
(

|Xs|γ−α
)

,

which is equivalent with

tγ/α mγ = c3(α, γ)
α tγ/α

γ
mγ−α

hence,
c3(α, γ) = γ mγ/α mγ−α.

A similar argument leads to an expression for c1(α). From (50) we get

E
(

|Xt|α−1
)

= c1(α)E
(

L0
t

)

. (51)

We derive from (51) the existence of a constant c0(α) such that

E
(

dtL
0
t

)

= c0(α)dt t−1/α,

and it follows from (50) that

mα−1 = α c1(α) c0(α)/(α − 1). (52)

We now compute c0(α) to obtain c1(α) from (52). For this consider the identity
(20) for x = y = 0

u(p)(0) = E0

(∫ ∞

0

e−p sdsL
0
s

)

,

which in terms of c0(α) reads

1

π

∫ ∞

0

dξ

p + ξα
= c0(α)

∫ ∞

0

e−p ss−1/α ds.

An elementary computation reveals that

c0(α) =
1

π
Γ ((α + 1)/α),

hence,
c1(α) = ((α − 1) π mα−1) /Γ (1/α).

Next we find from formula (31) that

c6(α) = 1/c1(α). (53)

To compute c8(α, γ) for α − 1 ≤ γ ≤ α/2 and the limiting case c2(α) =
c8(α, α − 1) notice from (39) that

c8(α, γ) =

∫

R

ν(dy) (|1 + y|γ − 1)2 .
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Comparing the integral representations of c3 and c8 it is seen that

2c3(α, γ) + c8(α, γ) = c3(α, 2γ) (54)

which can also be deduced from the following formulae

(i) E
(

|Xt|2 γ
)

= 2E

(∫ t

0

|Xs|γ dsA
(γ)
s

)

+ E
(

<N (γ)>t

)

= (2c3(α, γ) + c8(α, γ)) E

(∫ t

0

ds

|Xs|α−2γ

)

,

(ii) E
(

|Xt|2 γ
)

= c3(α, 2γ)E

(∫ t

0

ds

|Xs|α−2γ

)

.

The first one of these is an easy application of the Itô formula for semimartin-
gales and the second one follows (49) because γ ≤ α/2. From equation (54)
we get

c8(α, γ) = c3(α, 2γ) − 2c3(α, γ)

=
2γ

α

(

m2γ

m2γ−α
− mγ

mγ−α

)

.

The constant c2 is now obtained by letting here γ → α − 1 and using m−1 =
+∞. Consequently

c2(α) =
2(α − 1)

α

m2(α−1)

mα−2
.

To find the constant c5(α), we use the relationship (11) between Ψ and ν
which yields after substitution y = ξz

c5(α) =

(

2

∫ ∞

0

1 − cos y

yα+1
dy

)−1

.

Integrating by parts and using the formulae 2.3.(1) p. 68 in Erdelyi et al. [7]
lead us to the explicit value of the integral

∫ ∞

0

1 − cos y

yα+1
dy =

Γ (1 − α)

α
cos(απ/2).

The constant c6(α) can also clearly be expressed in terms of c5

c6(α) = (2πc5(α − 1))−1 =
1

π

∫ ∞

0

1 − cos ξ

ξ α
dξ

=
1

π

Γ (2 − α)

α − 1
cos((α − 1)π/2).

It can be verified by the duplication formula for the Gamma function that
this agrees with (53). It holds also that c6(α) → 1/2 as α ↑ 2.
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The constant c7 is obtained by simply comparing the definitions of Nx in
(3) and Ñx in Proposition 3. We have

Nx
t =

1

c6(α)
Ñx

t

implying
c7(α) = c2(α) (c6(α)) 2.

6 Symmetric principal values of local times

Our previous results may be summarized as follows

1. for α − 1 ≤ γ < α the process {|Xt − x|γ} is a submartingale whose
Doob-Meyer decomposition is given by (36),

2. for (α − 1)/2 < γ < α − 1 the process {|Xt − x|γ} is a Dirichlet process
whose canonical decomposition is given by (40).

These results do not discuss whether {(Xt − x)γ,∗}, the symmetric power of
order γ, i.e.,

(Xt − x)γ,∗ := sgn(Xt − x) |Xt − x|γ , (55)

is or is not a semimartingale or a Dirichlet process. In the present section it
is seen that this question can be answered completely relying on some results
in Fitzsimmons and Getoor [8] and [9], see also K. Yamada [19]. Let x = 0 in
(55) and introduce the principal value integral (cf. (9))

p.v.

∫ t

0

ds

Xθ,∗
s

:=

∫ ∞

0

dz

zθ

(

Lz
t − L−z

t

)

,

where by the Hölder continuity (18) the integral is well defined for θ < (α −
1)/2.

Proposition 6. a) For α−1 < γ < α the process {Xγ,∗
t } is a semimartingale.

b) For (α − 1)/2 < γ ≤ α − 1 the process {Xγ,∗
t } is a Dirichlet process and

not a semimartingale.
c) In both cases the unique canonical decomposition of the process can be
written as

Xγ,∗
t r+(α, γ) = Nγ,∗

t + c1(α) p.v.

∫ t

0

ds

Xα−γ,∗
s

, (56)

where

r+(α, γ) =

∫ ∞

0

dx

xα−γ

(

|1 − x|α−1 − (1 + x)α−1
)

and

Nγ,∗
t =

∫ ∞

0

dx

xα−γ

(

Nx
t − N−x

t

)

.
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In particular, for γ = α − 1

Xα−1,∗
t r+(α, 1) = Nα−1,∗

t + c1(α) p.v.

∫ t

0

ds

Xs
. (57)

Proof. Because {Xt} is a martingale, it follows from the Ito formula for semi-
martingales (15) that for 1 ≤ γ ≤ α the process {Xγ,∗

t } is a semimartingale.
The other statements in a) and b) are derived from the decomposition (56)
which we now verify similarly as (40) in Proposition 5. Hence, we start again
from the identity (3) considered at x and −x, and write, informally

∫ ∞

0

dx

xα−γ

(

|Xt − x|α−1 − |Xt + x|α−1
)

(58)

=

∫ ∞

0

dx

xα−γ

(

Nx
t − N−x

t

)

+ c1(α)

∫ ∞

0

dx

xα−γ

(

Lx
t − L−x

t

)

,

To analyze the integral on the left hand side notice that

R(a; α, γ) =

∫ ∞

0

dx

xα−γ

(

|a − x|α−1 − |a + x|α−1
)

.

is absolutely convergent and

R(a; α, γ) = aγ,∗ r+(α, γ).

Now the rest of the proof is very similar to that of Proposition 5 b), and is
therefore omitted.

Remark 3. a) The increasing process associated with N γ,∗ is given by

<Nγ,∗
t >t = (r+(α, γ))2

∫ t

0

ds

∫

R

ν(dz)
(

(Xs + z)α−γ,∗ − Xα−γ,∗
s

)2

= (r+(α, γ))2
∫ t

0

ds

|Xs|α−2γ

∫

R

ν(dz)
(

(1 + z)α−γ,∗ − 1
)2

.

We also have by scaling

E

(∫ t

0

ds

|Xs|α−2γ

)

=

∫ t

0

s(2γ−α)/α dsE
(

|X1|2γ−α
)

=
α

2γ
t2γ/α E

(

|X1|2γ−α
)

.

b) Since
|Xt|γ = (X+

t )γ + (X−
t )γ

and
|Xt|γ,∗ = (X+

t )γ − (X−
t )γ
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it is straightforward to derive the decomposition formulae for {(X+
t )γ} and

{(X−
t )γ}, and we leave this to the reader.

c) Note how different (57) is in the Brownian case α = 2, for which on one
hand {Bt} is a martingale, and on the other hand

ϕ(Bt) =

∫ t

0

log |Bs| dBs +
1

2
p.v.

∫ t

0

ds

Bs

with ϕ(x) = x log |x| −x. For principal values of Brownian motion and exten-
sions of Itô’s formula, see Yor [22], [23] and Cherny [5].
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