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Abstract. In this paper we compute the hedging portfolio for the Russian
option as introduced by Shepp and Shiryayev (1993). It is also seen that
the derivation of the valuation formula in Shepp and Shiryayev (1993),
(1994) can be shortened by making use of a generalization of Lévy’s the-
orem for a Brownian motion with drift. The associated optimal stopping
problem is solved with the technique exploiting the represention theory
of excessive functions as presented in Salminen (1985). We conclude
by discussing valuation of some related contingent claims (or payment
functionals).
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1. Introduction. Let S = {S; : ¢t > 0} be a geometrical Brownian motion
started at z with parameters p and o, GBM(y, 0?). Then S can be realized by
defining

S =z exp((u — 0?/2)t +oW,), t >0,

where W is a standard Brownian motion, BM. We view S as the price process
of a stock, and assume that there exists also a riskless alternative to invest,
e.g., on bonds. Let r > 0 be the interest rate of the bonds. Then the price
process of a bond with the initial price y is B = {B;: t > 0}, where

B, =vye".



The Russian option as introduced by Shepp and Shiryayev (1993) is a perpetual
American contingent claim, ACC, with the payment functional (or process)

t = Gy := e~ max{sup S, Bz} (1)
s<t

where A > 0, f > 1, and So = z. In other words, the buyer of the Russian
option can choose a (random) time point 7 to excercise the option at which
time point she/he receives the payment G, from the seller of the option.

The solution to the pricing problem of the Russian option given in Shepp
and Shiryayev (1993) is considerably simplified in Shepp and Shiryayev (1994)
by using a trick which transforms the original 2-dimensional problem to a 1-
dimensional one. In economical terms, the trick is to use the stock price as the
numeraire instead of the bond price. This method is studied more generally in
Shiryayev et al. (1994), and the term ”dual martingale measure” is introduced
to describe it. Moreover, in Kramkov and Mordecky (1994) it is shown that
the method can also be applied to price the American option with the payment
process

t
tHe*M(/ S, ds + Ba),
0

where A > 0, 5 > 1, and Sy = .

In this note Section 2 we present a new approach to dual martingale mea-
sure based on excessive transforms (or Doob’s h-transforms). It is also seen
that making use of the following theorem which for BM is due to Lévy offers
a shortcut to the result of Shepp and Shiryayev (1994) on the Russian option.

Theorem 1. Let W be a Brownian motion with drift ¢, BM(c). Then
the process Z* defined by
ZF=sup W — W9, zr:=0
s<t
is a BM(—c) reflected at 0 and living in [0, 00), RBM(—c). Moreover, the fil-
tration generated by Z* is the same as the filtration generated by W (.

For a proof see Harrison (1990) p. 49-50, 81. The claim concerning the
filtrations follows from Skorokhod’s reflection equation.

To find the rational price of an American contingent claim (with infinite
horizon) is a problem in optimal stopping (see Karatzas (1988), Myneni (1992),
and Shiryayev et.al. (1994)). If the payment or reward function only depends
on the present state of the underlying process the optimal stopping problem
can be solved by exploiting the properties of excessive functions via their rep-
resentations in terms of the minimal excessive functions (see Salminen (1985)).



This approach also explains why the often used condition of smooth-fit must
hold.

In Section 4 we compute the hedging portfolio process associated to the
Russian option. It is seen that both the amount invested in the stock and the
bond are non-negative. In other words, the optimal strategy has the appealing
property that there is no short selling or borrowing.

We conclude the paper by indicating how to price American contingent
claims with the payment process of the type

t e MS%sup S?,
s<t
where A > 0 and a and b are arbitrary real numbers.
The main facts on the Russian options can be presented in a compressed
form as follows:

- The rational price of the option is xV*(8) where x is the initial prize of the
stock and V*(3) > 1 is independent of z. To give some numerical flavour, let
B=1, A=0.125, r = 0.025, and o = 0.3 then V* = 1.174.

- The rational time to exercise the Russian option is when the difference of
max{sup,,; Ss, Sz} and the present value S; compared to S; exceeds a thresh-
old depending on the parameters of the model. In our numerical example the
threshold value in precentages is 36.5%.

- Letting {X; : ¢t > 0} be the optimal wealth process and 7} the optimal
amount invested in the stock at time ¢ (in the case § = 1) then we have

X =e M, V*(sup S,/S;) =: e M F(S;,sup S).

s<t s<t

and
5 = S FJ (S, sup S).

s<t
Moreover, 0 < 7y < X} for all ¢t > 0 and 7y = X} if and only if S; = sup,, Ss.

2. Martingale measures. We introduce the martingale measure and the
dual martingale measure in the canonical space (C,C,{C;}) where C consists
of all continuous functions w : [0,00) — R, C; = o{w(s) : s < t} is the
smallest o—-algebra making coordinate mappings up to time ¢ measurable, and
C =o{w(s): s>0}.

Definition. (i) For given o > 0 and r > 0 the probability measure P* in
(C,C,{C;}) such that the process {e "w(t) : t > 0} is a GBM(0, 0?) started
at 1 is called the martingale measure.



(ii) For given ¢ > 0 and r > 0 the probability measure P~ in (C,C, {C;})
such that the process {e "w(t) : ¢t > 0} is a GBM(0?, 0?) started at 1 is called
the dual martingale measure.

From the first part of the definition we have the interpretation that un-
der P* the stock price process when the bond price is used as the numeraire
is a martingale. Below we use the notation P} (P, ) for the measure of
GBM(r,0?) ( GBM(r + 02,0?) ) started at z > 0.

Proposition 1. Under P~ the process {e*/w(t) : ¢ > 0} is a GBM(0, 0?)
started at 1, that is, under P~ the bond price process when the stock price is
used as the numeraire is a martingale.

Proof. By the definition
(et Jw(t): t>0},P7) ~ ({ete CFo/2t=0We . ¢ > 0}, Py)

where (W, Py) is a standard BM started at 0 and ~ means that the processes
are identical in law. Consequently,

({e/w(t): t>0},P7) ~ ({eT 27 We: >0}, Py).
Because —W ~ W the proof is complete. //

Remark. See Shiryayev et.al. (1994) and Shiryayev and Shepp (1994) for
a construction of the dual martingale measure via stochastic calculus.

Proposition 2. For every ¢t > 0 and z > 0 the measures P} and P, when
restricted to C; are equivalent, and

dP;

dP

T |Cy

Moreover, for a stopping time 7 let C, be the o-algebra containing events
”observed” before 7. Then
dP;}
dP

P_ —a.s. on the set {7 < oo}.

z e,



Proof. Let X be a GBM(0,0?). Then X is a 1-dimensional diffusion and
we may take s(z) = x to be its scale function. Let X' be the Doob’s h-
transform of X obtained by using s as h, that is, X' is the diffusion with the

semigroup

B (F(w(t)) = By @) F((1)

where F is a bounded and measurable function and E* is the expectation oper-
ator associated to X. Straightforward calculations (cf. Borodin and Salminen
(1996) 11.30) show that X' is a GBM(0?, 0?). Conversely, because s'(z) =
—1/x is the scale function of X' the h-transform of X' using —s' as A is
identical in law with X. Therefore,

E;(F(w(t) = EL(F(w(t)) /w(t)).

Combining this with the definitions of P* and P~ prove the claim at a fixed
time t. To extend the result for stopping times is a standard truncation argu-
ment, and the details are omitted. //

Remark. The notations above with 1 and | (borrowed from Pitman and
Yor (1981)) refer to the fact that XT may be viewed as X conditioned to have
lim X; = co a.s. and X as X' conditioned to have lim X} = 0 a.s.

3. Pricing Russian options. As pointed out in Introduction to find the
fair price of an ACC is a problem in optimal stopping. The basic result is that
the fair or rational price, denoted V, does not depend on the drift parameter
w1 of the modell, and is given by

V(2) = sup B (e, (w))

where t — Y} is the payment process assumed to be continuous and C;—adapted,
the supremum is taken with respect to all stopping times 7 in the natural fil-
tration {C,;} of the co-ordinate process w (interpreted as the stock price process
S). We refer to Shiryayev et. al (1994) p. 89 for a discussion about bounded,
finite and general stopping times in this context. Recall that we set

Yi(@) = limsup ¥;(w)

t—00

in the case 7(w) = oco. A rational exercise time of the option is any finite
stopping time realizing the supremum V. If the condition

Ef(supe™Y}) < oo. (2)
>0



holds it is known (see Karatzas (1991) p. 25-26) that a rational exercise time
exists and has a simple form in terms of the wealth process.

The technical condition (2) is checked in the next proposition for the Rus-
sian option. We remark, however, that this is not really needed for further
developments because it is possible to find the rational exercise time and the
corresponding wealth process explicitly, see Section 4.

Proposition 3. The condition (2) holds for the Russian option, i.e.,

Et(supe™Gy) < 00,

>0
where G is as given in (1).
Proof. Consider
Et (sup ef(r+)\)t sup ws) - ET* (sup ef(r+)\)t Sup(ef(r+)\)se(r+)\)sws))
>0 s<t >0 s<t
< Ef(supsup(e”"Vw,))
>0 s<t
= E*(supe "Niy,).
>0

Under the measure P+ the process D := {e~ "Ny, : t > 0} is a GBM(=), 02).
Let P, denote the law of D when started at y and 7, := inf{t : D, = z}.
Then we have for y < x

P;r(stliloj ey, > g) = P (1, < o0) = (%)1—19

where p = —2)\/0? < 0 is the parameter of GBM(—), 0?) (see Borodin and
Salminen (1996) p. 113). Because the function z — zP~! is integrable on
(y, 00) for any y > 0 the proof is complete. //

Consider now
E; (e7Gr (W) 1{res})

= EI(e_(H’\)Tl{KTBm}Bx) + E;’(e_(r+’\)71{73$<7<00} supw(s)),
s<T

where 7 is an arbitrary stopping time and 73, := inf{¢ : w(t) = fz}. Changing
to the dual martingale measure gives

E; (eirTGT (w) 1{T<00})

Supsgr C«J(S) )

=zE, (e_(r—M)T 1{T<Tﬂx} prey (7_)

m) + 2B (7T o)



We proceed with the following lemma where the notation 7, is used for the
first hitting time of z (in the canonical framework).

Lemma 1. Let 6 = (r + 02/2)/o and P? be the measure associated to
BM(6). Then the P;-distribution of 73, is the same as the P’ 5-distribution

of 7o with 8 = In /0.

Proof. Under P~ the coordinate process is GBM(r + o2, 02). Hence,

(740, P,) ~ (inf{t: ze@OHC+0* /2t — g1 Py
(7 :=inf{t : w(t) + 6t = 5}, Py),
~ (73, Py),
(0, P5)- //

From Lemma 1 it follows that for a fixed time ¢

Bz

{t<7’3$}m) — ﬁl‘Eo(eiAt 670w(t)7(r+02/2)t1{t<f})

JfE; (ef(T-F/\)tl

1icro})
— xE(iB(ef)\tfaw(t) 1{t<70}),

= PazE? B(efAtfa(w(t)w”)

and

SUPg<¢ w( ) ) — .TEg(e_)‘H—U(SHpSSt w(s)—w(t))

’TEE (6 (’r‘f‘)\) 1{T3m<t<00} —Ttw(t)

1{7[; <t<oo})
. :CEJ A(e_AH'U(SHPSSt w(s)—w(t)) 1{70<t<00})'

Consequently, for every fixed time ¢ we have by Theorem 1
Ef (e "Gy(w)) = 2 E 4(e Me™),

where P° governs a process which on (—o0,0) behaves like BM(J) and on
[0, +00) like RBM(—6). By symmetry we also have

E; (e "'Gy(w)) = 2 Ej(e Me™), (3)

where P* is the measure associated to RBM(—¢). Next we solve the optimal
stopping problem suggested by the right hand side of (3).



Theorem 2. For \, 7 and o in R, let v = v/2A + 42 and 6§ = (r+02/2)/0,
and introduce for > 0 the function

-9 0
T = P*(z) = %e(wm + %6(75)‘”.

The optimal stopping problem
sup E} (e 0) = V*(8)
has a solution if and only if A > 0 and an optimal time in this case is
T = inf{t : w(t) > a* },

where B = In /o and a* is the unique positive solution of the equation

d

(@) — o) =0,

that is

o = %111((1 -2 a-—2)

Moreover, T,» < 00 P/*éfa.s. and

B, otherwise.

Proof is given in Appendix.

The solution to the pricing problem of the Russian option is now obtained
from Theorem 2 and given in the following

Theorem 3. The rational price of the Russian option is

V(z, B) = supEf (e "GV (w)) = aV*(6),

and the rational time to exercise the option is

7 :=inf{t : max{supw(s), Bz} > e’ w(t)}.
s<t



Proof. Noting that S > 1 enters into the formulas as the initial state it is
enough to consider only the case § = 1. Because the filtrations generated by
t +— sup,,w(s) —w(t) and ¢t — w(t) are the same by the Skorokhod reflection
equation the solution of the optimal stopping problem in Theorem 2 gives also
the solution of the problem

sup E% (e—AT+a(supSST w(s)—w(T)))

the optimal stopping time being

7° =inf{t: supw(s) —w(t) > a*}.
s<t
Because the transformation from BM to GBM is one-to-one the filtrations they
generate are the same and the optimal stopping time 7° transforms to 7* for
the original price process (under P~ and PT). Further, because 7, < oo
Pj-a.s. it follows that 7* < co P}-a.s. and from (3)
zV*(1) = 2B (et = Ef (e Gr (W) //

T

Remarks. (i) The results in Theorems 1 and 2 are due to Shepp and
Shiryayev (1993) and (1994). Our formulation is, however, different and it
demands some elementary calculations to show that it equals with the solution
presented in Shepp and Shiryayev (1993). We leave the details to the reader
but display the expressions of Shepp and Shiryayev for use in the next section:
let

-0 0 « — 1)\ 1/z2—
T = 7 , o= vt and ¢, =€’ = (7332(361 )) [e2=a1
o o T1 (72 — 1)
then gm gos
x p—
C*i, ﬂ < C*,
V*(B) = ToC{' — X1C?
B, otherwise.

(ii) Shepp and Shiryayev (1994) study directly under the dual martingale
measure the process
SUPsgtw(S)

(t,w) — 0



and prove that it is Markov with respect to the filtration {C;}. This is a key
point. To higlight the problem slightly more consider the process

(t, ) — Supsst (“')2(8)

w(t)

By a theorem by Pitman and Rogers (1981) this is a Markov process in its own
filtration which, however, is strictly smaller than the Brownian filtration (see
Revuz and Yor (1991)). Consequently, we cannot proceed as above to price an
ACC with the payment process

(t,w) > supw?(s).
s<t

(iii) One interpretation of the parameter A in our models is via dividend
payments. Indeed, assume that the stock pays continuously dividends with
rate p, that is, the dividend yield process D is given by dD, = pS;dt. For
details of the model with dividends see, e.g., Wilmott et al. (1996) p. 90. As
pointed out in Duffie and Harrison [2], see also Shepp and Shiryayev (1994),
from the result without dividends we get the result with dividends by changing
AtoA+pandrtor—p.

4. Hedging the Russian option. The seller of an option must create,
using the money she/he obtains from the buyer, so much wealth that she/he
can cover the claim of the buyer at any future time point. Borrowing and short
selling are allowed. It is assumed that the wealth process, {X;: t > 0}, of the
seller obeys the stochastic differential equation

dXt = ’ﬂ't@ + (Xt — Wt)@ — dCt, (4)
St B,
where 7; is the amount invested in stock at time ¢t and C := {C; : ¢t > 0} is
the consumption process. The portfolio process m := {m : t > 0} is supposed
to be progressively measurable such that for all £ > 0 a.s.

t
/ |Ts|ds < o0.
0

The consumption process C' is assumed to be non-decreasing, right continuous,
C,—adapted and starting at 0. The solution of (4) satisfies

t t t
e "X — Xo=(u—r) / e Pryds + a/ e rydW, — / e "*dC.
0 0 0



By the fundamental pricing theorem (see Karatzas (1991) p. 26) of perpetual
ACC'’s there exist a (tame) portfolio process 7* and a consumption process C*
such that if the initial capital is

v, :=V(z) =supE;} (e7""G,(w))
then the corresponding wealth process X* is given by
X} = esssup,¢,, EN (e G, | C),

where M, is the class of stopping times taking values bigger than ¢. Moreover,
it holds that X} > G, for all ¢ > 0, and

™ :=inf{t : X; =G}

is the rational (or optimal) exercise time of the Russian option.

We compute now the processes X* and 7* for the Russian option in the
case 5 = 1. The case § > 1 is only notationally more complicated. Let 7 € M;
and consider

E* (e Ye ™ supw(s) | C)

s<T
= e MET (e "N max(supw(s), sup w(s)oby) | C)
s<t 0<s<7—t
= e MEF (e N max(Bw(t), sup w(s)oby) | C)
0<s<tT—t

where 3; = sup,, w(s)/w(t) and 6; is the usual shift operator. Taking ess sup
over M, gives (a.s.)

Xr = e MV (w(t), B) = e Mw(t)V*(By)
=: e_)‘tF(w(t),sslilt)w(s))

with the notation as given in Theorem 3. Using the expression for V from
Remark (i) in Section 3 and introducing
Cx

Cley) =

ToCil — x1CP?
the wealth process can be written as

Xt = C(er)e Muw(t) (mg(%)m -z (%)w), if sup;<; w(s) < cuw(t),

e Msup, ., w(s), if sup,, w(s) > cuw(t)-



The amount invested in the stock at time ¢ is obtained from the coefficient of
the martingale part of the wealth process. Hence, by Ito’s formula we have

m = w(t) Fw(t),supw(s))

= C(c*)e_)\tw(t) (xg(l — xl)(%)il _ 3:1(1 — JCQ) (%)wz)

= X7+ Cle)e Mu(t) m((is“zé)(s))“ - (st) E‘;)(S))“).

It follows that 77 = X} when w(t) = sup,,w(s), i.e., at these moments all
the wealth of the seller is in the stock. In particular, 7§ = X% = v,. Further,
X} > my for all ¢ because x; < 0 < x5. Next, consider the amount invested in
the stock at time 7*. Because X* = e~ sup,.,. w(s) we have

C(cy)

Cy

X2

’ﬂ':* = X:*(]. + xle(C* - Cfl))

and using the definition of ¢, it is seen that 7. = 0. From these considera-
tions it follows that the optimal hedging portfolio is constructed without short
selling or borrowing. The consumption process (or the cash-flow process) is
proportional to the time X* spends below the level sup,., w(s)/c, (note that
the level changes when the new maximum is attained). In other words, the
seller can consume the interest the amount X7, pays during the time the stock
price is below the level sup,., w(s)/cx-

5. Related contingent claims. Consider now an ACC with the payment

process
t e MSsup S?, (5)

s<t
where a and b # 0 are arbitrary real numbers. These can be analyzed by using
the multiplicative property of GBM, i.e., if S is a GBM(u,0?) then S° is a

GBM (s, b%0?) with
2

o
wy = by — 51)(1 —b).

First let a = 0. For a fixed time ¢ and in the canonical setting we have

Ef (e supuw(s)) = B (e supw(s)),
s<t s<t

where P governs a GBM(ry, b?02). The associated optimal stopping problem
can be solved using the dual martingale measure approach as presented in



Section 3 — only the parameters are different. In particular, it is seen that the
problem has a solution if (and only if)

2
o ::A+r—r,,:A+r_br+%b(1—b)>o.

Next let a = 1. Then

Ef (e "™Vi(t)supw(s)?) = zE, (e Msupw(s)’)
s<t s<t
= xE;,,’b(e_’\t supw(s)),
s<t

where P~% governs a GBM(#, b?0?) with
o2
o = b(r +0%) = Tb(1 — b).

The associated optimal stopping problem has a solution if A\ > 7.
Finally, let a be arbitrary but # 0 or 1. In this case we have

E; (e""Vu(t)* sup w(s)’) = Efa (" Vw(t) supw(s)”/?),
s<t s<t
and the problem is in the form "a = 1”.

Notice that because the problem with the payment process (5) can be trans-
formed to the problem with the payment process (1) (with 5 = 1) the optimal
stopping time is always of the form inf{¢ : sup,., Ss > ¢S;}. We leave it to
the reader to compute the hedging portfolio process for the payment process

(5).

6. Appendix. Here we prove Theorem 2 presented in Section 3. To start
with we recall some general facts from the theory of optimal stopping. The

function
V*(z) := sup EX (e AT How(m),

is called the value function and x +— 7(z) := e the reward function. Because
the reward function is non-negative and continous the value V* is the smallest
A—excessive majorant of r (see e.g. Shiryayev (1978) p. 118, 124). Moreover,
letting I', := {z : V*(x) = r(x)} the optimal stopping time is 7, := inf{¢ :
w(t) € [',} (Shiryayev (1978) p. 127).

We construct now V* using the representation theory of excessive functions.
This theory is usually called the Martin boundary theory. In Kunita and
Watanabe (1965) Hunt processes are treated, and this is clearly enough for
our case.



Let Z* be a RBM(—0) on [0, 00). To formulate the representation theorem
we need the Green function of Z*. This is given, e.g., in Borodin and Salminen
(1996) p. 110 in the following form

* *
gy = BOAW <o ey
Wx
where ¢%(y) = e~79 % = o* with ¢* as in Theorem 2, and w} is the
Wronskian. To simplify the notation we will omit the subindex A. Applying
Theorem 3 p. 509 and Theorem 4 p. 513 in Kunita and Watanabe (1965) for
Z* (see Salminen (1985) for the explicit form, given below, of the representing
measure) give us

Theorem 4. (i) The Martin compactification of the state space I = [0, 00)
of Z* with respect to the reference measure ¢,,, =, > 0, that is, the Dirac
measure at z,, is I := [0, +o0].

(ii) For a given finite A—excessive function h there exists a unique proba-
bility measure m;‘o on I such that for all z € T

h@) = h(z,) [ K*(y;2,30)m, (dy) (6)
where the so called Martin kernel K* is given by
5*(f’?)’ 0 S Yy < o0,
K* L, Ty) = % %
(y; z, ) ()
P*(,)
Moreover, the measure m’;o is given by
h V(@) (o dTR de*
_ RALLTPRN >
m (z,00]) = Lo (610 G () — h@) @), w2,
and
h ¢*(,) dy* RN L
_ _ - - <
m ([0,2)) = e () G (o) (@) ), @ <

where the differentiation is with respect to the scale function s(z) = (e2* —
1)/24 and d* (d™) stand for the right (left) derivative.

The idea is to study these expressions simultaneously for all z, when A is
replaced by r. We have the following preparatory result



Lemma 2. (i) The function

dip* . dr
() — 94 (2) S (a).

z = v(z) :=r(x)

is increasing, lim,_, v(z) = 0o, and v(0) < 0. The number a* given in Theo-
rem 2 is the unique positive solution of the equation v(z) = 0.
(ii) The function

v ule) = (@) oo 2) — (@) (@)

is non-negative and decreasing.
Proof — being straightforward and elementary — is omitted.

For z, > a* introduce

my, ((x,00]) := ul]li*f(r;z)u(x), T > T,
and .
P (Zo .
my, ([0, 7)) == mv(x), a* <1z <z,
0 0<z<a"

Further, set m},_({z,}) = 0. Then using Lemma 2 and the definition of the
Wronskian, see, e.g., Borodin and Salminen (1996) I1.11. p. 19, it is seen that
m? is for every z, > a* a probability measure on [0, cc]. Notice also that

my, ({0}) = my, ({a*}) = my, ({o0}) = 0.

Using m], in the representation formula (6) gives after some straightforward
computations a A\—excessive function x +— h; () such that

r(z)/r(z,), x> a*,

heal@) = { o o 0 (@i, o %

Clearly, the function z — h*(z) := r(z,)hs,(x) is independent of z,, and we
prove the following

Proposition 4. The function A* is the smallest A\—excessive majorant of
r, and, consequently, V* = h*.



Proof. From the construction it is clear that A* is A—excessive. Clearly, h*
is a majorant of r if A* > r on (0, a*). To prove this notice that = — ¢(x) :=
r(x)/v*(z) is increasing on (0,a*) because ¢'(z) = —v(z)/v¥*(z)*> > 0, and,
hence, for all z € (0, a*)

9(z) <q(@) & r(@)/P*@) <r@)/P*(a") & r(@) <h(2).

Assume now that there exists a A—excessive majorant h of r smaller than h*.
Because h* = h on [a*, 00) it follows from Lemma 2 that the representing mea-
sures of #* and h must be the same. Therefore, h* = h on [0,00) completing
the proof. //

Remark. From (6) it is seen (cf. Salminen (1985)) that every A—excessive
function h of Z* is continuous and has left and right derivatives which satisfy
h' (z) > K (x) for £ > 0. Therefore, if h is A-excessive and h(z) = r(z) for
x > a > a* then there exists ¢ > 0 such that h(z) < r(z) for z € (a — ¢, a),
and h is not a majorant of r.

To conclude the proof of Theorem 2 we notice that RBM(—4) is positively
recurrent and, therefore, 7, < oo P}-a.s.
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