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Abstract

In this paper we study integrability properties of the random vari-
able

Lo(f) = /0 B,

where {Bg” Vit > 0} is a Brownian motion with drift 4 > 0 and f
is a non-negative, Borel measurable function. In particular, we find
conditions under which I (f) (i) is finite a.s., (ii) has all the moments,
(iii) has some exponential moments, and (iv) has bounded potential.

Keywords: Local time, Green function, Kac’s moment formula, Khas’minskii’s
lemma, last exit time.

AMS Classification: 60J65, 60J60, 60J70.



1 Introduction

Let BW = {BIE“) := B;+pt : t > 0} be a Brownian motion with drift 4 > 0,
BM(u), for short, and f a non-negative measurable function. In this paper
we study integrability properties of the functionals of the type

Lo(f) = / " F(BW) ds.

We take p > 0 only to simplify the presentation. Corresponding properties
of functionals for a Brownian motion with negative drift are easily deduced
from the case with positive drift.

The above kind of functionals appear in many applications. We have in
mind especially financial mathematical framework where I, (f) is interpreted
as a continuous perpetuity. We refer to Dufresne [7] where it is seen how the
functional

/00 exp(—2BW) ds (1)

arises as a perpetuity after a limiting procedure in a discrete model.
It is of great importance to have clear and easy-to-apply criteria in terms
of f under which I (f)

(i) is finite a.s.,

(ii) has all the moments,
(iii) has some exponential moments,
(iv) has a bounded potential.

In some cases, it is possible to compute explicitly the distribution or the
Laplace transform of I (f) and from this, of course, to check the validity of
(i)-(iv). For instance, we have (see Dufresne [7])

* 1
/ exp(—2BW) ds @ —,
0

d
where 7, is a gamma-distributed random variable with parameter p and @
reads "is identical in law with". Consequently, Dufresne’s functional (1) has



finite mth moment if and only if m < p. We remark also that in Yor [29] (see
[30] for an English translation) it is shown that

/ exp(—2BW) ds 9 inf{t : R = o},
0

where R is a Bessel process of dimension § = 2(1 — p) started at 1. One
motivation for the present paper was, indeed, the desire to find “natural”
functionals which could serve as a perpetuity having some exponential mo-
ments. Our criteria show that a suitable candidate is the functional

/ (1+aexp(B™W))2ds, a>0. (2)
0

We noticed, independently of the present study, that the Laplace transform
of this functional can be computed explicitly only in the case p = 1/2.
However, we postpone to a forthcoming paper [24] the detailed discussions of
the different methods of computing the distributions of perpetual functionals
using, in particular, some connections between perpetual functionals and first
hitting times, while, in the present paper, we address only the question of
finding criteria for (i) to (iv).

We now shortly review the literature known to us on the questions (i)-(iv).

Firstly, in Engelbert and Senf [13] a necessary and sufficient condition for
(i) to hold is found. The result is proved in [13| by formulating the problem
for ordinary Brownian motion and applying Shepp’s dichotomy theorem (see
Shepp [25]). Our proof, presented in Section 3, is based on Jeulin’s lemma
[16] and is, perhaps, more straightforward in the sense that we work directly
with B® and its local time.

Secondly, we remark that there has been much interest focused on find-
ing conditions for a.s. finiteness of integral functionals of Bessel processes
(see, e.g., Engelbert and Schmidt [10], Pitman and Yor [23], Engelbert and
Schmidt [12], Xue [28], Csorgs, Horvath and Shao [5], and Cherny [3]). In
particular, Jeulin’s lemma is applied in [22]| and [23].

Thirdly, recall that if

sup E; (I(f)) < oo,

that is, I (f) has a bounded potential, then I (f) has some exponential mo-
ments. This result is usually called Khas'minskii’s lemma (see Simon [26],
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Durrett [8], and Chung and Zhao [4]). For a recent discussion and generaliza-
tions of Khas’minskii’s lemma, see Stummer and Sturm [27]. Our approach
is, however, based on a more general result (see Lemma 5.2) presented in
Dellacherie and Meyer [6], Chap. VI, Théoréme 105, p. 108.

Finally, we are not aware of any works where conditions in terms of f for
(ii), (iii) and (iv) are discussed. However, for exponential moments of integral
functionals of Brownian motion over a finite time interval, see Engelbert and
Schmidt [11] whose result is shortly explained in Remark 5.3.(4) below.

The paper is organised so that in the next section we introduce some
notation, summarize our results in a table form, and make some further
comments. The proofs of the criteria for (i), (ii), (iii) and (iv) are then given
in the sections 3, 4, 6, and 5, respectively.

2 Notation and summary of the results

It is assumed throughout the paper that x> 0 and the function f appearing
in the functional

L) = [ "B ds,

satisfies the condition

(A) f is a non-negative and locally integrable function.



The main results are summarized in the following table

Class Criterion
Ki: Io(f) <oo as. & [ f(z)dz < 00
Ky: VneN, Vx <= [* f(z)dz < oo and
B, (Io(f)") < o0 3 >0 f(2) = 0(a™)as o
Ks: Iy>0, Va <= [ f(z)dz < 0o and
E, (exp(1I(f)) < o0 F@) = O(1)ars o
Ky sup, Es(Ioo(f)) < 00 & Joo f(@) do < o0

The classes indicated in the table consist of the functions f satisfying (A)
and for which the condition in the first column holds. For instance, f is in
K4 if it is non-negative and locally integrable and has bounded potential, i.e.,

sgp E;(I(f)) < oc.

Because of the criterion for Ky, a necessary condition for a function f to
belong to K;, ¢ = 2, 3,4, is that it is integrable at +oo :

/Oof(x)d$<oo.

Thus, as seen from the table, for f to belong to IC;, + = 2,3,4, only its
behaviour at —oo is of interest.
It is clear from the definitions that

}C3 CICQ C’Cl.

Notice from the table that /4 contains functions for which the sufficient
criterion for ICz (or for KCy) does not hold. However, we still have

Ks C Ks.
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This fact is a special case of a more general result, often called Khas’'minskii’s
lemma (see Lemma 5.2 below and discussion therein).

Moreover, the table shows that 'y and K4 do not depend on the particular
value of the positive drift parameter . In fact, letting [,5“), 1=1,2,3,4, be
the family of the distributions of the functionals

/ f(Bgu)) dS, f € ICZ', 1= 1,253a4,
0

respectively, we have the following
Proposition 2.1 The families EZ(”), 1=1,2,3,4, do not depend on i > 0.

Proof By the scaling property of Brownian motion we have for any ¢ > 0

/ f(Bs + ps) ds 9 02/ f(cBs + uc®s) ds.
0 0

Choosing here ¢ = 1/p gives

/O F(B, + ps)ds & u2/0 F(Bo+ 9)ds

but this means that £ = £

7

1 =1,2,3,4, proving the claim. U

3 Finiteness — Class K,

We now prove the characterization of K; given in the first row of the table
above. As stated in the Introduction, the result can be found in Engelbert
and Senf [13]. Their proof is based on Shepp’s dichotomy theorem (see Shepp
[25]). Our proof is different and, perhaps, simpler, and we think that it is
worthwhile - also to make the paper more readable and self-contained - to
present it. An important tool in our proof is the following lemma due to
Jeulin (see [16], p. 254 Proposition 4, or [15]) formulated here in a slightly less
general form. We also refer to Pitman and Yor [22] and [23] for applications
of Jeulin’s lemma for integral functionals of Bessel processes.

Lemma 3.1 Let {Z, : y > 0} be a stochastic process such that the law
of Z, does not depend on y and is absolutely continuous with respect to
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the Lebesgue measure. Assume also that E|Z,| < co. Then for any o-finite
measure v on R, (:= the set of non-negative real numbers)

P(/Ooo Z|v(dy) <o) =1 & b(Ry) < oc.

The proof of Proposition 3.3 below is based on the properties of local
time of Brownian motion with drift. The Ray-Knight theorems form a rich
source of information for the local time processes. Although we here only
need a small fragment of this information, it is perhaps good to recall the
complete statement (taken from [2], V.11 p. 90) of the Ray—Knight theorem
(formulated here as a lemma) for the total local time process of Brownian
motion with drift. We let L) (¢,y) denote the local time of B® at level y
and at time ¢ (taken with respect to the Lebesgue measure). The total local
time is defined via

LW (00, y) := lim LW(t,y).
t—00

Lemma 3.2 Conditionally on inf{B% : s >0} =m and B = 0 it holds

{L¥W(co,m+y): 0<y < —m} 9 (X" 0<y<—m},
and
d
(LW (oc,y): y>0} L {xP: y >0},
where X s a diffusion with the generator
2

d d
22— 4 —2 —
Zdz2+( Mz)dz

and X is a diffusion with the generator

2

d d
22— 2—2 —_.
Zd22 + 'uz)dz

The process X is started from the location of X at time —m, but oth-
erwise X*) and X® are independent.

We now apply Lemmas 3.1 and 3.2 to characterize the class ;.



Proposition 3.3 (K;) Assume that the function f satisfies the assumption
(A). Then

/f Jdt < oo as. & /f ) dy < 0.

Proof  The starting point is the occupation time formula for BM(p)

/f u)ds_/f LU (¢, y) dy

Letting here ¢ — oo we obtain by monotone convergence

/f BW) ds—/f L9 (00, ) dy, (3)

In view of (3) we wish to use Lemma 3.1 with Z, = L® (00, y) and v(dy) =
f(y) dy. Firstly, because f is assumed to be locally integrable and non-
negative, it is clear that v is a o-finite measure. Secondly, it follows from
Lemma 3.2 (see also 2], p. 90 and 2.1.3.4.(2) p. 253)

() _ e ™ y >z,
PSE(L g (OO,y) > U) - {e—2u(x—y) e—uv’ y < z. (4)
In particular, the Py—distribution of L) (co,y) for y > 0 is independent of
y. Setting

oy @), >0,

f(”)'_{o, z <0,
we obtain

z) dz < oo.

/ f(BMW)ds) < 00) =1 / x)dr < oo
o



where \g := sup{¢: Bg“) = 0}. Because \g < oo a.s., the first integral on the
right hand side of (5) is a.s. finite. For the second integral we have (because

f>0)
f(BW)ds < / f(BW) ds.
Ao 0

On the other hand,

/ " F(BW)ds < / " F(BW)ds,
0 0

and this completes the proof. (I

Remark 3.4 Let v be a measure on R, which is finite on compacts, and
define

Lo(v) = /R v(dy) LW (0o, ).

Then it can be proved similarly as above that

I.(v) <0 as < /00 v(dy) < oo.

4 Moments — Class Ko

Proposition 4.1 (KCy ) Assume that the function f satisfies (A), is inte-
grable at +o00, and for some positive integer m

f(@) = O(|2]™) 2 ~co- (6)
Then for all x andn =1,2,...
v (z) := E;(Io(f)") < 0.

Proof We first compute v(!), the mean of I.(f). Let p® be the transition
density of BM(u) such that

P.(B" € dy) = p¥ (t; z,y) m(dy),

where m(dy) = 2 exp(2uy) dy is the speed measure of BM(u). As is well
known, the Green kernel is given by
1

Go(z,y) := / p W (t;z,y) dt = ﬂe_Q’“ﬂ for z > v, (7)
0
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and this determines the value of the integral also for x < y due to the fact
that p (¢; z,y) = p™(¢;y, z). Consider now

@) = B [ B a) = [ TR (15) a
= /0 Car /R m(dy) p* (t;z,y) f (y)

— /Rm(dy)f(y) /Ooodtp(“)(t;x,y),

@) =Belln) =, [ 1) dy+ / fly)emvdy.  (8)

and so, from (7),

Due to (6) and the integrability of f at +oo it is clear that v()(x) is finite
for all z. Further, for any real number N

1 x
limsupv® (z) = limsup—e_z’”/ fy)e*¥dy

T—+00 z—+oo M 00

1 X
= limsup —e 2’”/ fy)e*¥dy

z—+oo M
< 10
which gives
wli}rj{loov(l)(x) = 0. 9)
Because f is locally integrable and satisfies (6) it follows from (8) that
v (@) = O(la[™*) s —oo- (10)

Next recall the Kac moment formula (see Fitzsimmons and Pitman [14], or
[2], 11.27 p.31)

/™(z) = n / Gola, ) v (y) F(y) m(dy), (11)
R
or, equivalently,
() =2 ;oof()v(” M)y [ )0 vy, 12
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Take here n = 2 and use (9) and (10) to show that v (z) is finite. Proceeding
inductively, it is seen that

lim v™(z) =0 and v™(z) = O(|z]™™)sss_co, (13)

T—+00

which implies, from (11), the existence of ¥™*1) and, further, (13) holds by
a recurrence argument, thus completing the proof. [l

Next examples show that if the polynomial growth condition (6) is not valid
then the functional does not, in general, have all the moments.

Example 4.2 (1) For f(z) = exp(—ux) we have (cf. (8))

o0 2
E, ( / exp(—p B{") dt) = — exp(—uxz)
0 H

and from (11) (or (12)) with n =2

Em((/ooo exp(—,uBg“))dt)Z) = +00.

(2) Dufresne’s functional (1), i.e., f(z) = exp(—2z), is also easy to analyze
via (12). In particular, it is seen - without knowing the explicit law - that
this functional has a finite mth moment if and only if m < p.

5 Bounded potential — Class K,

We discuss the class Iy before the class K3 to be able to use these results
when analysing KCs.

Proposition 5.1 (k) (i) The integral functional I(f) has bounded poten-
tial, that is,
Po := sup Eg(Ioo(f)) < 00, (14)

if and only if .
| twiy <o

In this case,

1 o0
Po = p/_oof(y)dy-
11



(71) Io(f) has exponential moments for v < 1/p,, i.e., for all x

E.(exp(7/s(f))) < 0. (15)

More precisely, for all x and e € (0,1)

E. ((exp ( L-e Io(f))) <& (16)

The statement that (14) implies (15) can be proved directly using the Kac
moment formula. We remark also that it is a special case of Khas'minskii’s
well-known lemma (see Khas'minskii [19], Simon [26], Durrett [8], and Chung
and Zhao [4]). For a more recent discussion and generalizations of Khas'-
minskii’s lemma, see Stummer and Sturm [27]. However, we want to point out
here that this statement (as well as Khas’minskii’s lemma) can be deduced

from the following more general result presented in Dellacherie and Meyer
[6], Chap. VI, Théoréme 105, p. 108.

Lemma 5.2 Let A be a continuous, (F;)-adapted, non-decreasing process
starting at 0 such that there exists a constant C > 0 satisfying

Vi>0 E(Aw—Ai|F) <C. (17)
Then
(i) VneN, t>0, E((Aw—A4)"|F) <nlC",
(i) VneN, B(A%)<n!C",

1
(iii) E(exp(A Ax)) < o for A < 1/C, and, consequently,

1—

E(exp < 156 Aoo>) <e lforee(0,1).

Proof  Clearly, (ii) follows from (i) by taking ¢ = 0, and (iii) from (ii) using
the series expansion of the exponential function. To prove (i) consider the
case n = 2

B((Aw— 4)°|7) = E(( / T A | F)

~ 9 E(/ dAsl/ dA,, | F)
t S1
2

1



. E(/ dA,, (A — Ay)) | o)
t
= 2B(] dA B - A, | F) | F)
t
< 207,
where the next to the last step is obtained by replacing the process { Aw— A, :
u > 0} by its optional projection {E(Ax — Ay |Fu) : u > 0}. The general

case is only notationally more complicated, and we skip the details. O

Proof of Proposition 5.1. To compute the supremum in (14) consider (cf.

(8))

Bu(f) = 1 ) g+ tes [* sy

Y
|
~
—
~—

Hence,

sup{E M} > = / Iy

From (18) it also follows that
1 o0
<= fly)dy,
1 o

and so, as claimed,

Po = Slip{Em(IOO(f))} = ; f(y) dy

Ay = /tf(By‘)) ds
0

Then (17) holds with C' = p,, and from (iii) in Lemma 5.2 we obtain (16). O

Take now in Lemma 5.2

13



Remark 5.3 (1) As in Remark 3.4, consider the functional

L) = /R v(dy) LW (00, y).

Then it can be proved similarly as above that

Po(v) == sup E;(Io(v)) = p v(R)

Notice that if we take v(dx) = e,(dz), Dirac’s measure at y > 0, then
Po = 1/p. Therefore, from (15), for v < p

Eo(exp(y L (00, y)) < o0
which is the best possible bound since
Po(LW (00,7)) € dl) = pe #4dl.

(2) Leto={o;: t>0},00 =0, be asubordinator and A : [0, 00) > [0, 00)
a decreasing function. In Bertoin [1], p. 28 it is proved that the following
three statements are equivalent

(i) E(/Ooo h(o) dt) < o0,
(ii) P(/OOo h(oy) dt < oo) —1,

(i) P(/Ooo h(oy) dt < oo) > 0.

From Lemma 5.2 it follows that (i) (and hence also (ii) and (iii)) are equiv-
alent with

(iv) E(exp(fy /000 h(ot) dt)) < oo for some v > 0.

Indeed, consider

E(/tooh(au)du\]-"t) - E(/tooh(au)du\ot)
- Em( /O " h(ow) du)
< E(/Oooh(au)du),
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because o is increasing and h is decreasing. Therefore, the condition (17)
with

Ay ::/ h(oy) du
0

holds implying the existence of some exponential moments.
(3) A version of Lemma 5.2 can be found already in Meyer [20], Chap-
ter VII, Section 6: Quelques résultats sur ’energie; see, in particular, the
inequality (59.2) p. 182

E(AZ) < nlC™,
where {A;} denotes an increasing integrable predictable process (called “nat-
ural” by Meyer in 1966), whose potential is bounded by C. The special case
with n = 2 appears as a Corollary (formula (24.1)) to Théoréme 23 which
gives an integral expression for E(A2).
(4) Lemma 5.2 plays also an important role in the studies of BMO-martin-
gales, see e.g. Kazamaki and Sekiguchi [18], Emery [9] and Kazamaki [17],
Theorem 2.2 p. 29. We also refer to Engelbert and Schmidt [11] where (17)
is used to derive more explicit sufficient conditions for an exponential local
martingale associated with a diffusion martingale to be a martingale. In par-
ticular, for a Brownian motion B and a fixed ¢t > 0, it follows from Corollary

(3.16) in [11] that t
/o f(By)ds

has some exponential moments if f is locally integrable and bounded at
infinity.
6 Exponential moments — Class ;3

Proposition 6.1 (KC3) Assume that the function f satisfies (A), is integrable
at +o0, and

f(@) =0(1)zs oo (19)
Then there exists v > 0 such that for all x
E,(exp(11(f))) < oo (20)

In particular, if f(x) < Cy for all z < N then (20) holds for

7 %

2 [y flz)dz’ 4CN}'

v < min { (21)
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Proof By (19), there exists N such that f is bounded in (—oo, N). We prove
first that (20) holds for a function f satisfying the stated assumptions and
for which there exists z* such that {f > 0} C (—o0,z*) and f is bounded in
(—o0,z*) by a constant C. Let

Ap- 1= sup{t: B = z*}.
Then \
/ F(BWYat = F(BWYdt < C Ape. (22)

0
The P,-distribution of A+ with z < z* has the Laplace transform (see Pit-

man and Yor [21] and Borodin and Salminen 2], p. 27)

Gol(z,x¥)

E,(exp(—alz)) = m

(23)

where the Green kernel G,, a > 0, is given for z < z* by (cf. Borodin and
Salminen [2], A1.14 p. 127, see also (7))

Gl 3%) 1= — e (/RaTi e (/2 s
2y/20 + 2

Consequently, studying (23), it is seen that for v < p?/2
E;(exp(yAs+)) < o0,
and this implies, using (22), for v < p?/(2C)

E.(exp(71e0(f))) < oo

Consider next a function f for which the made assumptions hold and for
which there exists z* such that {f > 0} C (2*,00). Then f € K4 and
we have (20) by Proposition 5.1 (ii). Let now f be an arbitrary function
satisfying the assumptions and introduce

fi(@) = f(2)lcop(@), and  fo(z) = f(2)1(0400)(2)-

Then, as explained above, fo € K4 C K3, and also f; € K3 because, with-
out loss of generality, we may assume that f; is bounded on (—o00,0). The
Cauchy—Schwarz inequality implies that f € K3. The bound given in (21) is
obtained with a similar reasoning as above (using N instead of 0) combined
with the bound in Proposition 5.1, details are left to the reader. O
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Remark 6.2 Notice that if f is bounded then, writing

f(@) = f(2)1(o0,m)(7) + F(2)1(,100) (7)

with N large as in the proof above but using the LP-inequality instead of the
Cauchy—Schwarz, it follows

Em(exp(v/ooo f(Bt(“))dt)) < 00,

for v < u?/(2C) where C :=sup{f(z) : = € R}.

Example 6.3 Consider the functional in (2), that is, f(z) = (14+aexp(z)) 2.
Then f € K3. Because f is bounded by 1, the functional I (f) has exponen-
tial moments for v < p?/2.

Acknowledgement. We thank Hans-Jiirgen Engelbert for sending us
the paper [13] and also for comments on our work.
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