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Abstract

In this paper we consider first range times (with randomised range
level) of a linear diffusion on R.. Inspired by the observation that the ex-
ponentially randomised range time has the same law as a similarly ran-
domised first exit time from an interval, we study a large family of non-
negative 2-dimensional random variables (X, X’) with this property.
The defining feature of the family is F¢(z,y) = F(z + y,0), Vz >
0, y > 0, where F¢(z,y) := P(X >z, X' > y).

We also explain the Markovian structure of the Brownian local time
process when stopped at an exponentially randomised first range time.
It is seen that squared Bessel processes with drift are serving hereby
as a Markovian element.

Keywords: Bessel bridges, Bessel functions, Brownian motion,
h—transforms, infimum, Ray-Knight theorem, supremum.



1 Introduction

One aim of this paper is to increase understanding of the interplay between
the first range time and the first exit time from an interval for a linear
diffusion with state space R. Our main result in this direction is Proposition
3.3 which generalizes Théoréme 4 in Vallois [32]. To explain the result shortly,
consider a Brownian motion {W; : ¢t > 0}, Wy = 0, and define

Sy := sup W, and I;:=— inf W,.

0<s<t 0<s<t

Introduce also a random variable U which is uniformly distributed on (0, a),
a > 0, and independent of the Brownian motion. Then it is proved in [32]
(see also Vallois [33] for further developments) the Brownian motion stopped
when S; + I; exceeds U for the first time is identical in law with the Brownian
motion stopped when it exits the interval (U,U — a).

The result in Proposition 3.3 below states that there exists a large class
of random variables (X, X') which can be used instead of (U,a — U) so that
the identity in law remains valid. In particular, we may take X and X' to
be independent and identically exponentially distributed random variables.
It is also seen that the result is valid for all diffusions on R.

The starting point of our study was not, however, the desire to generalize
the result in [32] but the observation that the two seemingly different formulae
in Borodin and Salminen [5] are, in fact, identical. Indeed, the Laplace
transforms in No. VI.14 p. 112 and No. VI.23 p. 118 in [5] (for the latter
formula, see Corollary 4.5 below) are the same when in the first one we take
B = «. This can be proved directly, but it is also seen to be an immediate
consequence of our main identity in law, see Section 4.

The formulae mentioned above concern the joint distribution of local times
on different levels of Brownian motion stopped at the first exit time from an
interval and stopped at the first range time, respectively. The results in No.
VI.14 and No. VI.23 are due to Borodin, see [3] and [4], where, however,
the results are presented in another form. These formulae are derived via
the Ray-Knight theorems presented, e.g., in No. V.8 and No. V.7 in [5],
respectively. We refer also to Vallois [31] for further generalizations of the
Ray—-Knight theorems.

Taking Laplace transforms means that we randomise, using exponential
variables, on the one hand, the length of the interval and, on the other hand,
the range width. The simple and nice structure of, especially, the formula



in No. VI.23 and the surprising cancellations when deriving it made us to
seek a generalisation of the formula by lifting it to the level of processes.
As a result, it is seen that the local time of Brownian motion stopped at
randomised range time and considered as a process in space parameter is a
Markov process expressed in terms of squared Bessel processes of dimensions
2 and 4 with drift. By the main identity in law, Proposition 3.3, the local
time process of Brownian motion stopped at randomised first exit time has
the same description. We remark that the Brownian motion stopped at these
random times is not Markovian.

Range and the first range time of a stochastic process are well studied
objects. For fixed time and asymptotical results in discrete time concerning
the range, see, for instance, Dvoretsky and Erdés [9], Feller [10], Jain and
Orey [18], Jain and Pruitt [19], Chosid and Isaac [7], [8], Glynn [12]|, and
Vallois [34]. The distribution of the range of Brownian motion was computed
by Feller [10], see also Imhof [16], especially, for the Laplace transform of the
first range time. Other works in continuous time are, e.g., Hsu and March
[15], Imhof [17|, Pitman and Yor |23], and Cheng, Cowan and Holst |6]. For
some applications, see Troutman [29], Hooghiemstra [14|, and Tapiero and
Vallois [28].

The paper is organised so that in the next section we present and analyse
the class of 2-dimensional random variables which are used to randomise the
length of the interval associated with the first exit time. In Section 3 we
discuss the main identity in law. In Section 4 we present our Ray—-Knight
theorem for Brownian motion stopped at randomised range time. Further,
using this theorem we give a new proof of the result in No. VI.23 p. 118 in
[5], which explains well the structure of the result.

2 The class K of random variables

In this section we analyse a class of 2-dimensional random variables used in
the next section to randomise the first range time and the first exit time from
an interval for a diffusion. The basic property we are after in this respect
is that these random times should be identical in law. Roughly speaking,
this class consists of mixtures of uniformly distributed variables. Our exact
definition is as follows

Definition 2.1 K is the set of 2-dimensional positive random variables



(X, X') such that
x, x) 2 @wv,a-vyw),

where the random variable U is uniformly distributed on [0,1] and V is an
arbitrary positive random variable independent of U.

Remark 2.2 a) The class K can also be constructed by taking

—
Nawg

(X,X") = (U,V -1),

where U is uniformly distributed on [0, f/] and V is an arbitrary positive
random variable.

b) Notice that if (X, X') € K then X 4+ X’ and X/(X 4 X') are independent.
Moreover,

@ X @

V, and = U

X+ X'
N X+ X’

Definition 2.3 M is the set of measures ¥ on R such that

/Ooovu(dv):l.

Below we use the notation F'x for the distribution function of a random
variable X. If the derivative F'% exists almost everywhere we say that X has
a density, and the density is then taken to be equal to FY%.

In the next proposition we give a characterization of the class IC from which
many distributional properties can be derived. Another characterization,
which is used in Section 3, is presented in Proposition 2.6.

Proposition 2.4 The non-negative random variable (X, X') is in K if and
only if

P(X € da, X' € db) = daw(a,db) =dbw(b,da), a>0,b>0, (1)

where 7(a,-) is for every a > 0 a positive and finite measure on R repre-
sentable for all @ > 0 in terms of a measure v € M via

w(a,B) =v(a+ B), a+B:={a+b: b€ B},

where B is a Borel set in R, in other words, w(a,db) is for every a € R,
the image of v(dv), v > a, under the mapping x +— x — a. Moreover, if
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(X, X") € K then X and X' are identical in law, the density of X exists, and
is given by
Fi@) =vllo.o0) = [ v Fuldv), (2
[,00)

where Fy (dv) = v v(dv) determines the distribution of V.= X+ X' associated
with (X, X").

Proof Assume (X, X') € K, and let Fy, denote the distribution of V. Then
E(p(X, X)) = E(UV,1-U)V))

= / o(uv, (1 —u)v)ly<y du Fy(dv).
R?2

+

Introducing new integration variables ¢ = uv and b = (1 — u)v gives

E(p(X, X")) =/ o(a,b) dar(a,db),

2
R+

where
m(a,db) := (a + b) "' Fy(a + db).

This relation defines the measure
v(dv) = v~ Fy(dv), (3)

and, conversely, F\/(dv) = vv(dv). It is clear that v € M because Fy is a
distribution function.

Let (X, X’) a 2-dimensional random variable satisfying (1). It is easily
seen that the law of the 2-dimensional random variable (%,X + X') is
1{u<1yvduv(dv) and then, putting % = U and X + X' =V, we see
that the random variables U and V are independent and U is uniformly
distributed on [0, 1]. As a result, (X, X') € K.

The claim (2) concerning the density of X follows immediately from (1)

and the identification of the measure v given in (3). O

It is practical to specify the contents of Proposition 2.4 to the case when
(X, X") has a density.



Corollary 2.5 Let (X, X') be a 2-dimensional random variable.
1. Suppose there exists a measurable function (a,b) — m(a,b) such that

P(X € da, X' € db) = 7(a,b)dadb, a > 0,b>0.

Then (X, X'") € K if and only if there exists a function p satisfying

/Ooovp(v)dv: 1

such that for almost everywhere in R?
m(a,b) = p(a+b).

2. Suppose (X,X') € K. Then (X,X') has a density if and only if the
corresponding variable V' has a density. In this case, the latter is given by

F,(v) =vp(v), v>0."

The next result gives a clean and very useful characterization of the class
K in terms of the distribution function of (X, X").

Proposition 2.6 Let (X, X') be a 2-dimensional non-negative random vari-
able. Then
(X, XYeKk <& F(r,y)=F(x+y,0),

where for x >0, y >0
F(z,y) :=P(X >z, X' >y).

Proof  Assume that (X, X’) € K. From (1) we obtain for z,y > 0

PX>z, X' >y) = / da/ 7(a, db)
z (y,00)

= / da / v(du)
z (aty,00)
u—y
= / v(du) / da
(z+y,00) T

_ /(+ urld) = (5 + (@ +3,00)
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proving that (z,y) — F°(x,y) is a function of the sole variable x + y and
then F(z,y) = F°(z + y,0).
To prove the opposite implication, consider for Az > 0
0 < Pa<X<z+Az, z<X <z+Ax)
= F(z,z) — F(z + Azx,z) — F(z,x + Az) + F(x + Az, z + Ax)
= F°(2z,0) — 2 F°(2z + Az, 0) + F°(2z + 2Ax, 0).

Consequently,

1
5 (FC(zx, 0) + F°(2z + 2Ax, 0)) > F¢(2z + A, 0). (4)

It follows from (4) that z — F*°(x,0) is convex. Therefore, its second deriva-

tive exists as a measure. Letting vr denote this measure we have from the
definition of F*°

P(X € da, X' € db) =davp(a+db), a>0,b>0
and, hence, by Proposition 2.4, (X, X') € K. O

Corollary 2.5 implies that I contains the set of mixtures of exponentially
distributed variables (but is bigger because uniformly distributed random
variables are not mixtures of exponentially distributed variables).

Proposition 2.7 Let £ and & be independent and exponentially identically
(with mean 1) distributed random variables. Further, let Z be a positive
random variable independent of £ and &', and define X = Z & and X' = Z ¢'.
Then

(X, X') e K.

Proof Letting ¢ be a bounded and positive Borel function consider

E(p(X,X") = E(p(Z¢ 2¢))
- / ©(zu, 2v) e~ W) dy dv Fy(dz)
R3

= / o(a e @z do db Fy(dz)
R3
+

= / ¢(a,b) p(a + b) da db,
R



where
p(s) :== E<Z_2 exp(—s/Z)), s> 0.

Consequently, using Corollary 2.5, it is seen that (X, X') € K, as claimed. [J

Example 2.8 If X and X' are two independent and exponentially (with
identical means, 1/« say) distributed random variables, then (X, X') € K by
Proposition 2.7 (take Z = 1/«). In this case, the variable V' in Definition
2.1 is I'(2, av)-distributed, i.e.,

Fy(dv) = o ve " do.

3 Stopping a diffusion at randomised
first range time

In this section it is seen that the basic result in Vallois [32] Théoréme 4 proved
for Brownian motion when (X, X’) = (U,1 — U) is valid for all variables in
K and all diffusions on R.

Let Z be a linear diffusion started at 0 and having the state space R. Let
{F;} denote the natural filtration of Z. Define

= I,:=— inf Z = I.
St Ossligtzs, t olgggt sy Ry =5 +1

Further, introduce the right continuous inverse of ¢t — R;
O(r) :=inf{t : Ry >r}, r>0. (5)
For a fixed r > 0 we call §(r) the first range time of the level r. Let
H(a,b) :=inf{t : Z; ¢ (—a,b)}, a,b>0,

and . )
) ini{t @ Z; > cf, c>0,
H(e) = {inf{t c Z,<c}, <0,

Notice that H(a,b) = min(H(—a), H(b)).

Proposition 3.1 Assume that (X, X') is a positive 2-dimensional random
variable independent of the diffusion Z. Then

X, xXVek = 6x) <2 HXX). (6)



Proof Let for s,t > 0
Fe(s,t) =P(X > s, X' > t).
Because (X, X') and Z are assumed to be independent we have a.s.
PO(X)>t|Fe) =P(R < X | Fso) = F(R;,0)
and

PH(X,X') > t|F P(min{H(—X),H(X")} > t| Fs)

) =

P(H(-X) >t H(X') > t| F)
=P, <X, S < X'| Fup)

= F(I,, Sy).

From Proposition 2.6 we know that
F¢(s,t) = F°(s+1,0),
and, consequently, as claimed
POX)>1t)=PHX,X') >1).

0

Remark 3.2 From the proof of Proposition 3.1 it is seen that the identity (6)
holds, in fact, conditionally given the whole trajectory of Z. For a converse of
Proposition 3.1, notice that if we have a diffusion on R and a pair of random
variables (X, X') such that the conditional laws of #(X) and H (X, X') given
Foo are the same then a.s.

Fc(_lt, St) = FC(Rt, 0) = Fc(.[t + St, 0)
It can be proved that this implies that for all x and y
Fé(z,y) = F(z +y,0),

that is, (X, X") € K.



Proposition 3.3 Assume that the 2-dimensional random variable (X, X')
belongs to K, and is independent of the diffusion Z. Then

(Z, - s<0(X)} 2 (7, : s < HX, X}, (7)

Proof  For simplicity, we prove the result in the case (X, X') has a density.
According to Corollary 2.5 there exists a function p such that

P(X € da, X' € db) = p(a + b) da db.

For a non-negative integernlet 0 < 51 < sy < ... <spand ¢ : R"xR; — R
be a bounded and measurable function. Consider

A+ = / / QD(ZSI, cee an, H(a, b))l{sn<H(a,b), ZH(a,b):b}
0 0
x p(a+0b) dadb

= / / o(Zs,, - ..,an,H(b))1{5n<H(b), Ty <a} p(a + b) dadb
0 0

= / / (P(ZSU RIS ana t)]-{sn<t, Ii<a} p(a + St) da dSt,
0 0

where in the last step we have substituted b = S;. Integrating with respect
to a gives

A+ = / (p(ZSU"-aanat)]-{sn<t}(/ ,O(G-i-St) da)dSt
0

I
= / (,O(Zsla---aan;t)]-{sn<t} ,Ol(It+St) dSt
0
= / SD(ZSU IRRE ZSn’ t) 1{8n<t} pl(Rt) dSta
0
where

piw = [ pta+uda= [~ pls)as

is the density of X. Because t — S; can only increase when Z; > 0 and in
this case also dS; = dR; it follows that

Ay :/ O(Zsyy -y Zgys t) Lis,cry 1izy501 pr(Re) dRy.
0
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Substituting » = R; and recalling the notation r +— 6(r) for the right conti-
nous inverse of t — R; we obtain

A+ = / (p(ZSl, ceey an, 0(7‘))1{5n<0(,«), Zo(f)>0}p1(7') dr.
0

This completes the proof in the case Zp(q5 = b.
In the similar manner, for the case Zy (. = —a, considering

A = / / ¢(Z51ﬂ Ce ,an,H(a,b))1{sn<H(a,b),ZH(a‘b):fa} Io(a’+b) da db
0 0
leads to
A_ = / ¢(Zs1: ceey an, 0(T))1{5n<9(,«),za(r)<0} pl(T) d?”.
0

The proof is now completed by adding the expressions of A, and A . ]

4 Ray—Knight theorem for Brownian motion
stopped at the randomised range time

4.1 Results

In this section we state the Ray-Knight theorem for the randomised range
time, announced in the introduction. It is seen that the result in [5] No.
VI1.23 p. 118 follows from this as a corollary. The proof of the main result,
Theorem 4.1, its generalization and the corollary are postponed to Section
4.2, 4.3, and 4.4, respectively. Throughout this section, it is assumed the
underlying Brownian motion W is started from 0, and we let Py and Ej
denote the probability measure and the expectation, respectively, associated
with W.

Let {L(t,y), t > 0, y € R} denote the bicontinuous family of Brownian
local times. We use the normalisation with respect to the Lebesgue measure,
that is, we take

.1
L(tay)Zlglﬁ)l%/o 1y—yie)(Ws)ds as.
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The squared Bessel processes of dimension 2 and 4 play important roles
in our study. We use notation SQBESi, with § = 2 and 4, respectively, for
these processes when started at x. When the initial point is of no importance
we write simply SQBES®. The generator of a SQBES’ is

d? d
g5:2xd—$2+5%, z > 0.

For 0 = 2 or 4 the boundary point 0 is entrance-not-exit and +oc is natural
(attracting) (see [5] A1.23 p. 135). In fact, the diffusions appearing in
Theorem 4.1 are squared Bessel processes with downward drift. We use for
these processes the notation SQBESi"“, where o > 0 is the drift parameter
and | indicates that the process drifts towards 0. Many properties of squared
Bessel processes with drift can be studied using (ordinary) Bessel processes
with drift. The latter ones have been investigated, e.g., in the papers by
Watanabe [35], Pitman and Yor |21], and Vallois [30].

For the proof of Theorem 4.1 it is important to know that SQBES®®¥
can be constructed as an h-transform of SQBES?. To explain this recall that
the increasing and decreasing fundamental solutions of the ODE G°f = o f
associated to SQBES® are (cf. [5] No. A1.23 p. 135)

Valz) = x_y/QII/(m)

and

Pa() = 22K, (V2a2), (8)

respectively, where a > 0, v = (6 — 2)/2, and I, and K, are modified Bessel
functions of order v (see Abramowitz and Stegun [1| p. 374). Consider now
SQBES’ killed at an exponential time 7" having parameter «; these are called
killed SQBES® processes. As usual, it is assumed that 7" is independent of
SQBES®. The function ¢, is excessive for killed SQBES’. Now SQBES>**
is defined as the h-transform (cf. [5] IL.31 p. 33) of killed SQBES’ when we
take h = ¢,. Consequently, the generator of SQBES*** is obtained as

1

g5’“¢(f) — E (G — a)(paf)
- Po(T) df
= G(f)(e) + 4z 22 5 5 (0)

- Qx%(x) +(2+2v2az %@) Iy o

12



It can be verified (cf. [5] II.6 p.14) that 0 is an exit-not-entrance boundary
point for SQBES**. We remark also that SQBES** can interpreted as
killed SQBES® conditioned to hit 0 (where the process is (really) killed).

Theorem 4.1 Let 6(r) be the first range time at level r > 0 (cf. (5)) and T
an exponentially distributed random variable with parameter o > 0. Assume
that T is independent of the Brownian motion W. Let {L(0(T),y) ; y € R}
be the local time process of W stopped at 6(T). Then for [ > 0

Po(L(4(T),0) € dl) = 2aVv2al K;(V2al) Ko(V2al) dl. (10)

Conditionally on Wyry > 0 and L(6(T),0) =1
(d) o
{LO(T),—y) : y>0} = {SQBES"*(y): y >0},

(LOT),y): y>0} 2 {SQBES>™(y): y> 0},

where SQBES;L""¢ and SQBESZQ’O‘l are both started at | but are otherwise
independent.

Remark 4.2 By the spatial homogeneity of BM,
1
PO(WQ(T) > 0) = PO(WQ(T) < 0) = 5
and, hence,

Po(L(O(T),0) € dl, Wyzy > 0) = % Po(L(O(T),0) € di)
= aV2al K,(V2al) Ky(V2al) dl.

It is striking how the factor 2« appears in (10). This can be explained by
the scaling property of BM. Moreover, the phenomenon allows us to gener-
alize Theorem 4.1 (by randomising «) as follows

Theorem 4.3 Let T be an exponentially distributed random variable with
parameter 1, and Z an arbitrary positive random variable. Assume that 17,
7, and the Brownian motion W are independent. Then for [ > 0

Po(2Z L(0(T,/Z),0) € dl) = VI K1(V1) Ko(V1) dl. (11)
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Conditionally on Wy, /z) > 0 and Z L(0(11/Z),0) =1
@
{ZLO(T1/2),~y/Z) : y =0} = {SQBES""(y) : y >0},

(ZLOT1/Z),y/Z): y>0}} € {SQBES™(y): y >0},

where SQBESl‘l’u and S’QBESlQ’u are both started at | but are otherwise
independent.

Remark 4.4 It is possible to check by integration that the function on the
right hand side of (11) (and also (10)) is a density. Indeed, we have

/Ooo VIEK, (V) Ko (V1) dl = 2/000 22 K1 (z) Ko(z) dz

_ —2/ 2 Ky (2) d(z K (2))
0
=1,
where we used the relations
d
%[ac Ki(z)]= -2 Ko(z) and Ki(x) ~z01/x

(see Abramowitz and Stegun, formulae 9.6.28 p. 376 and 9.6.9 p. 375).

From Theorem 4.1 we obtain the following corollary, which is exactly the
result in [5] No. VI.23 p.118, and, by Proposition 3.3, also the result in No.
VI.14 p. 112 (when therein o = ).

Corollary 4.5 Let the function f be non-negative, continuous, and bound-
ed. Assume also that f(0) = 0 and define

+oo

V(f,0(r)) := FL(O(r), ) dy.

Then for T as in Theorem 4.1 and h > 0

Eo(exp(—=V(f,0(T))); sup L(6(T),y) < h)
Yy
h A A
=20 / 1 G&N(0,1) G4 (0,1) dl,
0

14



where G*Ef’f ) and GSf’f ) are Green kernels associated to SQBES?, denoted
Z® and SQBES*, denoted Z9, respectively, when the processes are killed
according to the additive functionals (for this, see [5] I1.22 p.28)

t t
AP = [ @ds, and AP = [ (20 as
0 0
respectively, and also if the processes exit the interval (0, h).

This corollary gives the result in Theorem 4.1 in a form more suitable for com-
putations. It is, e.g., possible to determine the distribution of sup, L(6(T’), y),
see [5] 1.5.11.2, 1.5.14 p. 245.

Recall that the Green kernels can be expressed in terms of the fundamen-
tal solutions of the ordinary differential equation associated to the studied
diffusion (see, e.g., [5] No. I1.10 and 11 p. 18). For example, for the kernel

G‘Sf’f ) we have the representation
GO (w,y) = w oD (@) &P (y), = >y,
where w,, is the Wronskian. The functions 9053 1) and w&” ) are the unique (up

to multiplicative constants) non-increasing and non-decreasing, respectively,
solutions of the ODE

2z u"(z) +2u'(z) — (f(z) + @) u(z) =0, =z >0,

and ') must satisfy the boundary condition u(k) = 0.

4.2 Proof of Theorem 4.1

We start with by recalling the Ray—Knight theorems from which Theorem
4.1 is deduced. The first one is for the local time process stopped at H(b) :=
inf{t : W(t) > b} with b > 0. The second one is for the local time stopped
at 0(r).

Theorem 4.6 For b > 0 and conditionally on L(H(b),0) = | and Iyu) =
—-m

(LH®),—y): 0<y < —m} D {SQBESS ™) : 0<y < —m},

(L(H®),y): 0<y<b} < {SQBESH(y): 0<y<b},

=0
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where {SQBES " (y) : 0 < y < a} denotes the §-dimensional squared
Bessel process started at | and conditioned to be at 0 at time a, also called
0-dimensional squared Bessel bridge from [ to 0 with length a. The bridges
SQBESLL’*m and SQBESQ’I’ are both started at | but are otherwise inde-

=0 =0

pendent.

Remark 4.7 Observe that, when compared with the result in Theorem 4.6
to [5] No. V.6 p. 85, we have here changed the y-direction in the process

{L(H(b),—y): 0<y < —m}.
The change can be done by the time reversal property the diffusion bridges
have (see Salminen [26]). In particular, it holds

(y) : Ogyga}@{SQBESé’a(l—y): 0<y<al

0—1

{SQBES"

=0

Remark 4.8 Squared Bessel bridges SQBESI'S_’fO can be defined, or con-
structed, as Doob’s h-transforms (in space-time) of SQBES; taking

h(t,z) = pla—t;2,0), 0<t<a

where p is the transition density of SQBES?. This construction corresponds
the intuition of conditioning SQBES) to be at 0 at time a. Notice that be-
cause 0 is an entrance boundary point for SQBES? we have SQBESI‘S_’;IO (y) >

0 for all 0 < y < a. For general theory of h-transforms, see Sharpe [27] and
for diffusions Salminen [25].

The Ray—-Knight theorem for the local time process stopped at the first
range time 0(r) := inf{t : S; + I, > r} is obtained from Theorem 4.6 by
observing that, under Py,

Wg(r):Z, r>z>0 & IH(Z)ZT‘—Z.
Notice also that if W) = 2z then 0(r) = H(z). Now we have (see Vallois [31]

for generalizations)

Theorem 4.9 Conditionally on Wy,y =z, v > z >0, and L(0(r),0) =1

{LO(r),—y): 0<y<r—z} Q {SQBES Y, *(y): 0<y<r—2z},

—0

(LO(r),y): 0<y <z} D (SQBESX(y): 0<y< 2},

where SQBES,"* and SQBES,”?, are both started at | but are otherwise
independent.
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To be able to apply Theorem 4.9 we need the distributions of Wy, and
L(6(r),0). These are given in the next proposition.

Proposition 4.10

Po(Wyiry € dz) = Mdz, lz| <, (12)

Po(L(6(r),0) € dl | Wyy = 2) = Ple™™dl, n:=r/2(r—|z))|z]), (13)

Po(L(6(r),0) € dl) = Tl—Ze—l/r (Ko (U/r) + K, (1/7«)) dl. (14)

Proof For (12) and (13), see, e.g., [5] VI.22 p. 117 and V.7 p. 86, respec-
tively. To prove (14) use (12) and (13) to obtain

Po(L(6(r),0) € di)/di = /| } |zl221

A ()

: e_L/+o<> 1+ = e l (u+1) du
= —_— T —_ _ X _—— p—
2r? 0 u o u? PL7o; u ’

where in the last step we have substituted z = r/(u + 1). The formula (14)
follows from the integral representation (see Watson [36] p. 183 and also (15)
in Proposition 4.11)

K,(V1) = e /OO t~""Lexp (—1 (t+ é)) dt
v 2 /o 2 t '

To proceed, we recall the following result (see Barndorff-Nielsen, Blaesild
and Halgreen [2|, Salminen [25], and Vallois [30]), which can be proved, e.g.,
using last exit times.

exp (—nl) dz

Proposition 4.11 The first hitting time

H™(0) := inf{t : SQBESY™(t) = 0}

17



is distributed according to the generalized inverse Gaussian law, that is,
P(H™(0) € dt)
l )l’/2 1 I l
=(— —— t7TV" exp(—at — —) dt 15
(2a 2 K,(v2al) p( Qt) (15)
=Ny (t, l) dt

where § = 2v + 2.
Next proposition is the key to Theorem 4.1. Let for § > 2 SQBES>*h®

denote the SQBES % started at [ and conditioned to hit 0 at time a.lz(iso
SQBESl‘i’)aoi’“ can be constructed as Doob’s h-transform, but here we cannot
use the transition density of SQBES%* (as is done for SQBES?® bridges,
cf. Remark 4.8) because this density has value 0 when one argument has the

value 0. Instead we take
h(t,z) :=no(a —t,z), 0<t<a,

where ng(-,1) is the density of the first hitting time H"**(0), as given in
Proposition 4.11.

Proposition 4.12 For § > 2 and o > 0 the bridges SQBESZJ_’?O and
SQBES%"* are identical in law.

=0

Proof  We prove the claim by checking that the Radon-Nikodym deriva-
tives of measures associated to SQBESl‘S_’fO and SQBES[S_’%“‘ with respect
to the measure of SQBES,’ are the same. For this, we work in the usual
canonical setting of continuous functions t — w(t), t > 0, and let F; be
the smallest o-algebra generated by w(s), s < t. Letting F; be an Fy-
measurable and bounded random variable and using the A-transform de-

scription of SQBESZ‘EO and SQBES>*"® we obtain for ¢ < a

[—0

a pla —t;w(t),0
Ezdim(Ft) = Ef( ( ail E))) )Ft; t<H0), (16)

and, by using the Cameron-Martin transform

al,a al (T (a’_taw(t))
By () = BY (R Bt < )
e no(a —t,w(t)) pa(w(t))
=E/ ’ « F,:t < H, 1
l( e ny(a,l) pa(l) 13t < 0)’ (17)
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where p is the transition density of SQBES? and ng is the density of the
first hitting time
Hy :=inf{t: w(t) =0}

of SQBES %, as given in Proposition 4.10. Because (see, e.g., [5] p. 136)
for some constant C

Y l
p(a;1,0) = p(a;0,1) = Ca™? eXp(_z_a)

straightforward computations using (8) and (15) show that the derivatives
in (16) and (17) are equal. O

Remark 4.13 We have stated in Proposition 4.12 a particular case of a
general result which informally says that if two diffusions are h-transforms
of each other then the bridges constructed from these processes are identi-
cal in law. This fact, in a slightly weaker form because the end point of
our bridges is not in the state space, is observed in Pitman and Yor [21]
Remark (3.7) p. 306. We also refer to Pitman and Yor [22]. The connec-
tion between Doob’s transforms and conditioning of diffusions, also diffusion
bridges, appears (perhaps for the first time) in McKean [20] p. 236 where
these concepts are applied in excursion theory. This approach is further de-
veloped in Williams [37]. We also refer to Salminen [24| for 3-dimensional
Bessel bridges and to Fitzsimmons [11] for a more general framework.

We can now put the pieces together and complete the proof of Theo-
rem 4.1. Let &, and ®_ be arbitrary measurable functionals of continuous
functions on R, . We wish to compute

A= Eo (@ ({LOT),9): y > 0})

x®_({L(O(T),=y); y > 0}); Wary > 0)).
To make the notation shorter, we omit the arguments for . and write simply

Oy =, ({L(O(T),y); y = 0}), @ =& ({L(O(T),—y); y > 0}).
Clearly,

Ay =Eo(, 03 Wyr) > 0)

= / ae Y E ((b'f- d_ ‘ L(H(T)a 0) =1, Wa(r) = Z) 1{r>0,0<l,0<z<r}
R3
X PO(L(Q(T‘), 0) e dl |W9(,~) = Z) PO(W@(T) € dZ) dr.
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From Theorem 4.9 we obtain
E, (q>+ O_|L(O(r),0) = I, Wy = z) = FO (2, ) FO(r — 2,1),

where
FP(2,0) = B(®, ({SQBES(y) : 0<y < 2})

and
FO(s,1) = E((D_({SQBES4’5 (y): 0<y< s})).

[—0

Changing variables and using the explicit form of the joint distribution of
L(6(r),0) and Wy, (see Proposition 4.10) yields

l s+z
_ @ @, |y o-alsta) _
A, =a /R i FO L, )FW (s, 1) e T eXp( — z) dl ds dz
= oz/o (/0 F7(z, l)_2z exp( az —22) dz) (18)

X (/000 F£4)(s, Z)QLS2 exp(—as = %) ds) ldl.

To proceed, consider the first integral inside the integral in the expression
for A, given in (18) above. We obtain from (15)

e 1 l
/0 Ff) (z, l)ﬂ exp(—az - 5) dz
= Ko(v2al) / FO (2, )P(H>*H(0) € dz).
0
By Proposition 4.12,

FP(z,1) = B(®, ({SQBES S (y) : 0<y<2})).

[—0

Consequently, because SQBES % hits 0 with probability 1 and because 0
is an exit boundary we obtain by a standard monotone class argument

/ h FP (2, )P(H>*(0) € dz)
— [ B(2.(50BES W) 0<y <)) PO € a2
_ E<<I>+({SQBESIQ"”(y) Ly > 0}))
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giving

/000 Ff)(z, Z)% exp( az — 2L) dz
= Ko(v2al) E<<I>+({SQBESI2""¢(y) Ly > 0})).

We compute the second integral in (18) similarly. By Proposition 4.12
F£4)(s,l) = ( _({SQBES*%*(y): 0<y< s})),

and so, using again (15),

o 1 l
/0 FX (s, l) exp( as 28) ds

:<270‘)1/2 K\ (v2a) / FO (s, )P (H***(0) € ds)

200\ 1/2 o
= <T> K, (V2al) E<(I>_({SQBESl4’ )y > 0}))
Choosing ®_ =1 and @, ({X, : y > 0}) = ¢(Xy) where ¢ is any measurable
function and y — X, is a continuous function, we obtain on one hand, by
(18)

Ar = o [ Ko(VED B(0.((SQBES ™ 4): v 0)
x (2—0‘> /2 KI(JTZ)E(@_({SQBES[W(y) Ly > 0})) Ldl
— 2043/2/ K1(V2ad) Ko(V2al) Vi g(l) dl

and, on the other hand,
A, = E (q>+q> Woer) > 0)

= E0¢ WgT)>0)

=, ¢(1) Po(L(6(T),0) € dI, Wry > 0)
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from which we derive
Po(L(6(T),0) € dl, Wy > 0) = av2al Ki(V2al) Ko(V2al) dl.

By symmetry, the same results hold when replacing Wy > 0 by Wyr) < 0
which proves (10). Now, choosing for ®, a general function of the form
¢ x @, where ¢ is a function of X as above and choosing a general function
®_ we first get

A, = / o(1) B(®.({SQBES(y) : v > 0})
x ( ({SQBES(y) : y>0}))
xPo(L(6(T),0) € dl, Wycry > 0)
and second
Ay = Eo(® 0, Wy >0)
= [ o0 Ea(@s0- Wiy > 0.2(6(1),0) = )
0 xPy(L(0(T),0) € dl, Wy > 0)
which proves by identification
EO(@@,\WQ(T) > 0, L(O(T),0) = z)
- E(<1>+({SQBESﬁva¢(y) Ly > 0}))
xB(2_({SQBES/"(y) - y > 0})).
This completes the proof of Theorem 4.1.

Remark 4.14 As pointed out by the referee, it is possible to compute the
distribution of L(6(T'),0) directly from (14) in Proposition 4.10. Indeed,

Po(L(0(T),0) € dl)/dl = / " i e Po(L(0(r), 0) € di) /I
- /0 h j‘—; emor=1 (KO (U/r) + K, (1)) ) dr

_ a/0+°° e (Ko(r) + Ky (1) dr.
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To proceed we need the formula no. 6.653 (2) in Gradshteyn and Ryzhik [13]
p. 725 due to MacDonald (see Watson [36] p. 439):

[on( 4o #20)) 0 (2) £ o

Taking here a = b and changing variables give

Let v = v2al and consider

“+00o 42 +oo
/ e " rKy(r)dr = —/ e " — (r Ki(r)) dr
0 0 dr

where we have used (cf. Remark 4.4)
Lo K (2)) = 2 Kole)
— z)] = —z Ko(z).
. 1 0
Consequently, by (19),

+oo 2 2 +o0 2
/ e F r (Kolr) + Ki(r)) dr = L / e Kl(r)g
0 0

2
= Y Ki(7)?
Differentiating with respect to =y gives
teo 2 1 d
e " (Ko(r) + Ka(r)) dr = — 27 Ku(y) - (7 Kui(v))
0 Y Y
d
= 2K — (v K
() (1 ()
= 27 Ko(7) Ki(7)

proving the claim.
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4.3 Proof of Theorem 4.3

For a > 0 let T, := T1 /. Then Ty, is exponentially distributed with param-
eter o, and we obtain from (10) by changing variables

Po(2 L(0(T,),0) € dl) = VI Ky (V1) Ko(V1) dl. (20)

This gives immediately (11) because Z is assumed to be independent of T3
and W.

The remaining claim of Theorem 4.3 follows from Theorem 4.1 if we show
that

()
{a L(0(Ta),y/a) : y € R} = {L(6(T1),y) : y € R}. (21)
To prove this, recall that by the scaling property of BM, under Py,
(d)
{(Wt, St,It) Pt 2> 0} = {Oé(Wt/az, St/az,ft/az) Pt 2> O} (22)
It follows that

O(r) :==inf{t : Sy + I, > r}

@ inf{¢ : St/a2 + It/az >r/a}

—
=

= o inf{t: S+ I; >r/a}
=a?f(r/a).

Let f be a bounded and non-negative function and consider

o(r)

/ F@LOE), 2 de = [ FOv)ds

0

a?0(r/a)
< / F(0Wy/02) ds
0
0(r/a)
2
=« /0 f(aWs)ds
=a? /f(ax) LO(r/a),z)dx
~a [ £ L(0/a),v/a) d,
and this proves (21).
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Remark 4.15 It is easily deduced from the explicit form of the transition

density of SQBES® given, e.g., in [5] p. 135 that the following scaling
property holds

{SQBES?(t): t> 0} &) {%SQBESCJw(ct) : t>0}.

Using this and the h-transform description of SQBES % it can be proved
that SQBES % (and also SQBES %) satisfies

(SQBESH™ (1) : t >0} 2 {%SQBESC‘Z‘*/“(ct) . t> 0.

4.4 Proof of Corollary 4.5
For an (arbitrary) process X = {X, : y > 0} define

—+o0
®(X) :=exp (— f(Xy) dy) Lisup, 5o Xy<h}-
0

By Theorem 4.1,
By (exp(—V(f, 0(T));sup LO(T) ) < h)

:/hxlf+(z) U_(1) 2av2al K1(V2al) Ko(V2al) dl, (23)

where

U,(l):=E ((I)(SQBES?’”))
and

U_(l) =E (@(SQBESfN)) .

As in the proof of Theorem 4.1, using Proposition 4.11 and 4.12, we obtain

vy = [ E(e(sQBESIS) PUHA0) € 02

- [ B (aisesBsiz)
0
1 1

X—— = exp(—az — L) dz,
2Ky(V2al) 2 2z
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and by the same way

U (1) = /0 g (®(SQBES;,))

! 1 !
X —exp|—ay — — | dy.
2v2al K, (V2al) ¥ p( Y 21/) Y

Next let Z® and Z(*) denote SQBES? and SQBES*, respectively, and p(?
and p® their transition densities, respectively, normalized via

E(Zﬁ” € du | ZéQ) = l) = p® (2;1, u)m® (du) (24)

and
E(Z§4) €dul| 7" = l) = pW(z; 1, u)m™ (du), (25)

where m® (du) = du and m® (du) = g du are the speed measures of SQBES?
and SQBES*, respectively. In particular,

1 l
2)(,. — @), — _
P (%0,1) = p(%1,0) 2Zexp( 22) (26)
and . l
4 (- — @) (,. — _
P (2;0,1) = p'(2;1,0) 5,2 exp( 22)' (27)

Also define the transition densities p®) and p®* (which depend on h and f)
via

E<eXp(— / F(Z2)dt); sup 2P < h, 2P € du| Z{? :z)
0 0<t<z
= p® (231, u) m® (du) (28)
and

B(ep(~ [ 72" dt); sup 2 <h, 200 € du| 24" =1)
0 0<t<z
= ]ﬁ(4) (z;1,u) m® (du). (29)

Because f is assumed to be bounded, the boundary point 0 is entrance-not-
exit for these killed SQ BE'S processes. Therefore, we have for all [ > 0

PP(2;1,0) >0 and p™(2;1,0) > 0.
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Relations (24), (28), and (26) yield
E (2(SQBES}"))

=E (exp(—/ FZ2)dt); sup 22 < h| 2P =1, 22 = 0)
0

0<t<z

Similarly, by (25), (29), an
E (®(SQBES"))

oL

(27), we obtain

Y
= Blep(= [ £z dt); sup 7 <01 20 =1, 7 =0

0<t<y

_ (1,0

I
= 2 2 (—) A(4) N .
yoexp g, )P (y;1,0)

Putting these expressions in (23) yields

o <exp(—V(f,9(T)));sgpL(H(T),y) < h)

h 00 00
- % / ( / e_azﬁ(Q)(z;l,O)dz> ( / e_asﬁ(4)(s;l,0)ds) Ldl
0 0 0
h
=2 / 1 G&D0,1) G4 (0,1) dl
0

completing the proof.
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