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A storage process with local time input

Petteri Mannersalo llkka Norros Paavo Salminéen

Abstract

In this paper we introduce a storage process with singular continuous
input. The input process is defined as the local time of a stationary reflecting
Brownian motion with drift. Many basic charateristics of the process are
computed explicitly, e.g., stationary distribution, distributions of the starting
and ending time of on-going busy and idle periods. We also consider the
multifractal spectrum of the input process and observe that it is independent
of system parameters.

1 Introduction

Storage models with continuous input have been thoroughly studied with piece-
wise differentiable input (starting from Kosten [15]) and with non-differentiable
input like diffusions (see, e.g., [8]) and fractional Brownian motion (see, e.g.,
[16]). To our knowledge, no exact results have so far been obtained on storages
with continuous singular input. In this paper we consider a model where the input
is the local time process of a diffusion, more precisely, the local time at zero of a
reflecting Brownian motion with negative driftu. This is a continuous increas-
ing process whose derivative is zero almost everywhere. We derive the stationary
distribution of the storage occupancy (queue length) and the characteristics of its
busy and idle periods.

The process considered in this paper could be used to model systems like
water reservoirs — at least as a toy model. In our approach the input comes in

* VTT Technical Research Centre of Finland, P.O. Box 1202, FIN-02044 VTT, Finland,
email: {petteri.mannersalo,ilkka.norros}@vtt.fi

T Abo Akademi, Mathematical Department, FIN-20500 Abo, Finland, email: ph-
salmin@abo.fi. (Corresponding author.)



infinitesimal droplets, whereas usually (see, e.g., Prabhu [18]) dam models are
constructed using Lévy processes.

It is rather interesting that although the input process is exotic enough to have
a non-trivial multifractal spectrum, the queue length distribution is just the ex-
ponential distribution plus an atom at the origin. Moreover, the spectrum does
not even depend on the system paramgterhis shows that although multifrac-
tal scaling properties of telecommunication traffic have recently gained interest
(see, e.qg., [17]), the multifractal spectrum as such gives hardly any information on
system performance.

The paper is structured as follows. The system is defined in section 2 and a
real, although somewhat fictitious queueing system, for which our system may be
obtained as a limit, is described in section 3. Section 4 makes some observations
on the point process related to the alternating busy and idle periods. The stationary
gueue length distribution is found in section 5, after which the distribution of the
length of the on-going idle period is computed in section 6. In section 7, we
derive the common distribution of the starting and ending time of the on-going
busy period and notice, surprisingly, that this is the same as the corresponding
distribution for the on-going idle period except thais replaced by 1 u. Finally,
the multifractal spectrum of the input process is computed in section 8.

2 System definition

In this section, we introduce the storage process with local time input, see Defi-
nition 2.3. Before to be able to do that we must construct the needed local time
process, which should be defined on the whole time Bxend have stationary
increments. It is seen that we may use local times of two (conditionally) inde-
pendent copies of a linear diffusion in stationary state. In fact, we take the under-
lying diffusion to be a stationary reflecting Brownian motion with driftt < O,
RBM(—p), for short. For RBM{ ) the local time can also be constructed using
Skorokhod’s reflection lemma, and this approach is also practical for our pur-
poses. To study RBM{u) in details is motivated because RBMj) is a much
used storage process due to the fact that it is obtained as a heavy traffic limit of
many discrete queueing models. We recall below some properties of RBM(
needed here, and refer to Harrison [8], Abate and Whitt [1],[2], and Salminen and
Norros [21] for further readings.

We letX = {X : t € R} be a reflecting Brownian motion in stationary state
living on [0, +) with drift —u < 0. The stationary distribution oX is an ex-



ponential distribution with parameteu2and we letm(dx) = 2u exp(—2ux) dx
denote the corresponding measure. It is well known that the transition probability
is absolutely continuous with respectrtp and we have

P(X € dy| Xs=Xx) = p(t — s, x,y) m(dy),

where the symmetric (ix andy) transition density is given by (see Harrison [8]
p. 49 for the distribution function, and Borodin and Salminen [7] p. 129 for the
density)

- 1 ek ey )2 —y — X+ ut
t; = ety - (== e = (2~
Bltixy) = 5o (677 ved ) vo(= )

and® is the standard normal distribution function. For any t, < ... <t, and
Borel setsA1, Ay, ..., Ay, the finite dimensional distributions &f are given by

P(th €A1,...,X[n GAn)

= A m(dxl).../Anm(dm)ﬁ(tg—tl;xl,xz)...ﬁ(tn—tn_l;xn_l,xn).
1

A key property ofX needed hereby is thXtis reversible in time, i.e.,
K teR} ~ {Xy:teR}. (1)

Let nowX ¥ andX(® be two copies ofX : t > 0}. Assume thax " = x\? but
let X(U andX (@ be otherwise independent. From (1) it is seen f&t: t € R}
is identical in law to{Z; : t € R} where

2 X% t<o
X2, t>o
Introduce the local times f(Y) andX (@ at 0 via
i ) 1t i )
L = lim oo | 10 () ds i = 1.2 )

respectively, where the limits exist almost surely. Udifg andL(® we construct
the local time procesk = {L; : t € R}, playing the main role in this paper, by

setting
@
h:{ LY t<o, @)



Notice thatLg = O by construction antl— L; is continuous and non-decreasing.
A crucial property ofL (stated also in Proposition 2.2) is that it has stationary
increments. Recall

Definition 2.1 A stochastic process ¥ {Y; : t € R} is said to have stationary
increments, if

d
(Ystt — Ys)ter = (Mt — Y0)ter

forallse R, where2 means equality in distribution.

To prove Proposition 2.2 and also for developments in Section 3, we consider
an alternative construction af via Skorokhod’s reflection lemma (see Harrison
[8] p. 18, Revuz and Yor [22] p. 239). For this, Mt={W : t € R}, Wp =0,
be a standard Brownian motion defined on the whole time Bxisee [21]). In
particular,WW is a Gaussian process with stationary and independent increments.
Further, letu > 0 and denote by

W =W pt

the corresponding Brownian motion with driftu. The stationary reflecting
Brownian motion with drift—u < O can be interpreted as a storage process, where
the cumulative input is a standard Brownian motion, and the storage is emptied
with rateu, that is, in this framework we define

X = sugW" — W), ter. (4)

s<t

By the constructionX is a non-negative stationary process. It follows from Sko-
rokhod’s lemma when considering the equality

X =Ko+WH" 4L, teR.
as an equation that the local timeXfis given by
Li =Ki—Kp, teR. (5)

whereK; = — infsSth(u). From this it is apparent thafy = 0 andt — L; is con-
tinuous and non-decreasing.

Proposition 2.2 The process L has stationary increments, and

EL; = ut. (6)
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Proof Observe first that if a procesd;)icg has stationary increments, then
the process* = sup; Ys also has stationary increments. Consequently, from
(5), L has stationary increments. Sinte is clearly integrable, it follows that
EL; =tEL,. Finally, the stationarity oK implies (sinceXy = Kp)

ELy = EXy — EKg— EW*) = .

Using the procesk we define now the basic object of our study.
Definition 2.3 The process & {S : t € R} defined via
S =sup{Li—Ls—(t—9)}, teR.
s<t

is called a storage process with local time input, service rate 1, and unbounded
buffer, associated to the reflecting Brownian motion with drift.

Remark 2.4 The key property when construction storage processes with constant
service rate is that the input process has stationary increments. It can be proved
that the local time defined as in (2) and (3) but for an arbitrary linear stationary
diffusion (in stationary state) has stationary increments. This proof (which we do
not present here) cannot, of course, be based on Skorokhod’s reflection lemma but
utilizes symmetry properties of linear diffusions. Hence, it is possible to construct
a storage process as in Definition 2.3 using local time at zero of some other sta-
tionary linear diffusion. Many of our results below can be formulated for storage
processes where the RBM is replaced by some other diffusion. These generaliza-
tions are treated in a forthcoming paper.

3 Motivation by a limit procedure

Our local time input process can be considered as a continuous analog to some
on/off processes. We show in this section how it models the output of the lower
priority class queue in a priority system where the higher priority class approaches
a heavy traffic limit.

Consider, for example, a two-class pre-emptive priority system where the high
priority class is aiM /M /1 system. Let its service times be Exp(1) distributed and
the arrival rate of the@'th system be

2
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For simplicity, we do not care about stationarity here and start with an empty
system at timé = 0.

LetC[(n) be the compound Poisson process of arriving work. Then
Var(C") = AnE(E)t = 2A44t,
whereé is an Exp(1) distributed random variable. Denote the cumulative idle time
process of the high priority system hSV). It can be written as (draw a picture!)

(n) i (n)
It/ =— inf —5S).
t selr[]OJ] <CS S)

Let us assume that the lower priority queue be saturated. The cumulative lower
priority output process is then simplle‘).

Asymptotically, the part of time that the high priority system is emptyis 1
An = 2u/+/n. Define the scaled process

L= 1o

\/— nt/2

Note thatl_t(”) grows asymptotically agt. By Donsker’s theorem and the contin-
uous mapping theorem, we have

(n _
LM = pp S S
selot/2] /N

WS
— inf 1/Zﬂfn.Cr‘ls—knns_zlis
s€[0,t/2] Var(Cﬁ”))

- seggf/z} <\/_2\NS B 2u8>

d .
= — inf Ws—us

se[O,t]( S ,LL)
= L

Where(ﬂ) denotes weak convergence a?adaquality in distribution.

Moreover, the marginal distributions bf can be characterized from this limit
relation. IndeedCt(”) —tis a Lévy process with Laplace exponent

on(c) = a1 Be) =t (1= 1)
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that is,
Ee *(C" 1) _ dén(@),

wheref (o) = 1/(1+ ) is the Laplace transform of the exponential service time
distribution. Define further the first passage time processes

"V =inf{t>0: || =x}.

It is well known (see [5]) that(™ is a subordinator , i.e., an increasing Lévy
process, with Laplace exponetf( ) = ¢, (). Note now that

~(n) . 1l w2 )
Tx —|nf{t>0%|_t —X}—F]T\mx,

and the Laplace exponent of the subordin&t8f is

~ 20
A direct computation yields

k(a) = lim kn(o)

N—oo

1 2a 20\
- n'moa(z“‘ﬁ‘\/(z“‘ﬁ) *8“)
= U—/200+ u2. (7)

By general results on weak convergence of subordinators and their inverses, it
follows thatk(c) is the Laplace exponent of the right-continuous inverse%f
sayA, = inf{t >0: LY > x}:

Ee o — (@)

4 A point process view on the busy and idle periods

In contrast to the proces§ which never remains at zero for an interval of positive
length, the procesS almost surely hits zero only for intervals of positive length.
Indeed, because the input is singular, it can never flow through the server without
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Figure 1: A schematic view of the processesL and S, and the time points
To, T1, To. The marks areZg=1,Z; =0,Z, = 1.

creating a positive storage. Thus the busy and idle periods of the second storage
are well defined, and the fraction of time that the system is busligt = u.
Figure 1 shows the relationships between the activities of the two stoxaged
S

The starting points of the busy and idle periods can be described as a stationary
marked point procesSly)nez, Where the marlZ, associated with point, is O if
an idle period starts af, and 1 if a busy period starts &. For stationary point
processes, we follow [3].

Let N denote the counting measure relatedT). The Palm probability mea-
surePY, is defined as

1 t
PQ(A) = ﬁE/O 1p06sN(ds), (8)
wheret > 0 is arbitrary,A is the intensity oN and s is the time shift flow o
(see [3] for the rules 0As). The inverse relationship between the two probability
measures is given by Ryll-Nardzewski’s formula

P(A) :JL/OOO PO(Ty > t, 6 € A)dt. )
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The well-known fact that the consumed and remaining parts of the busy period
going on at time O are identically distributed is most elegantly proved with the
Palm calculus: just compute the joint distribution(@§, T1) in terms of the Palm
probability:

P(Ti>v,—To>wW,Zg=1)
= /1/0 PRTL>t, Ti—t>v, t>w, Zg=1)dt
_ z/ PO(Ty >t +V, Zo = 1)dt
w

- )u/ PO(T1 > U, Zo = 1)du.
V+W

The same computation applies for the ongoing idle period.
Using (9), it is also easy to establish that

EQ[T1|Zo = 0]

P(Zo=0) = ,
(20=0)= Eorizo— 0+ BTz = 1

whereas (8) yields that
PRZo=0)=7

At the starting times of busy periods 8fboth storages are empty (see Figure
1). It follows that the busy cycles & consisting of a busy period followed by an
idle period, are independent and identically distributed. This holds not only for
their lengths but for the whole paths. Moreover each idle period is independent
from the following busy period. The remaining pair of interest, a busy period and
the following idle period, are probably dependent, but at present we don’t have an
exact argument showing this.

Note that each busy period ends with an interval where the queue length de-
creases linearly. This shows that the procgss not reversible in time (unlike
X).

5 Stationary distribution
The next proposition is fundamental in showing that the storage occupancy pro-

cessSas defined above is a meaningful and interesting object of study. In fact, the
case with general time homogeneous diffusions has already been treated in [20],
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from which the result below follows as a special case. We repeat the argument
here because of the key importance of the result for this paper, and also to make
the presentation more self-contained.

Proposition 5.1 The process S is a stationary process in stationary state if and
only if 0 < u < 1. The stationary distribution is given (for alld R) by

P(§>a)=pue 213  a>0,
and, consequentlR(§ =0) =1—pu.

Proof From the description (3) it is seen that

—
=

S :=sup{—-Ls+s} = sup{Ls—s}.

s<0 s>0

We compute the distribution of syp{Ls— s} given thatXo = 0. LetPo denote
the probability measure associated ¥ : t > 0} when started from 0. Introduce
the right continuous inversg& of L by setting fors > 0

As:=inf{t : Lt > s}.

Then, as is well known (see [12] or [7B.is a subordinator and its Lévy—Khintchine
representation is

Eo(e ®A) = exp(—t/ooo(l—e‘““)\/% e—%“du) (10)

= exp(—t(y/2a+u?—p)). (11)
Becaus@ is the right continuous inverse bfwe have
{Li—t<a Vt>0}={A—-t>-a Vt>0}.

Hence, we study the proceg§s; —t : t > 0} which is a spectrally positive Lévy
process with (cf. (7))

Eo(e *AY) = exp(t (a — /20 + p2+ ) (12)
Introduce forae > 0
—\/2a+pl+u. (13)
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Theny(0) =0, and it is easily seen that if > 1 theny is increasing. Further, if
0 < u < 1 there exists a unique* = 2(1— u) > 0 such thaty(a*) = 0 andy is
increasing fora > o*. Letfora > 0

Ta:=inf{t : A—t=—a}.
Then (see [5] or [6])
Eo (e*BTa; Ta< o) = e anb)
wheren is the inverse ot — y(a), a > a*. Consequently,

Po(sup{Li —t} <a) = Po(Li—t<a Vt>0)
t>0

= Po(Ai—t>-a Vt>0)
= Po(Ta=o)=1-e 210,

In the casey is increasing, i.e.u > 1, we haven(0) = 0 which means that
SUR>o{Lt —t} = o with probability 1. On the other hand, when<Ou < 1 we
haven(0) = 2(1—u) and, hence,

Po(sup{L; —t} > a) = e 21713, (14)
t>0

The distribution of sug.o{L; —t} given thatXo = y > 0 is obtained by the strong
Markov property. Indeed, denotirgy := inf{t > 0 : X; = 0}, we have fora > 0

Py(sup{Li —t} <@) = Py(Lhgst— (Ho+t)<a Vt>0)
t>0
- / Py(Ho € du)Pg(Lt —t <a+u Vt>0)
0

— / P,(Ho € duj (1— e~2(-watu)
0

1— efz(]-*/*‘)aEy (efz(lfﬂ)HO)

1 e-21-p)(a+y)

b

where the formula (see [7])

Ey(e M) — g 20+p2—p)y (15)

11
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Figure 2: lllustration for some notation in the proofs. The thick line denotes a
realization of the proceds. Left: busy period at time 0. Right: idle period at
time O.

is used. Integrating with respect to the stationary distributiagives, in the case
O<u<l,

P(S>a) = P(sup{Li—t}>a)

t>0
_ / " m(dy)e-20-m(ay)
0
= u e—2(1—u)a
as claimed. From Proposition 2.2 it follows tl&at~ S for allt and thal§ — S ~
S s— Sforallt > s This completes the proof. O
6 Idle periods

In this section we compute the joint distribution of the starting time and the ending
time of the on-going idle period. From this the distribution of the length of the
on-going idle period is easily obtained.

12



Definition 6.1 The random variables
gi:=supft<0:§>0} and d:=inf{t>0:3 >0} (16)

are called, in case &= 0, the starting time and the ending time, respectively, of
the on-going idle period (observed at time 0).

We know from Section 4 (althoudBis not reversible) that
Gi| ~ di.

Before stating and proving the main result, Proposition 6.4, some preliminary
observations are made. Firstly, from Proposition 5.1 or from Little’s law, the
probability for an idle period at time 0 is

P(S=0)=P(sup{Ly—u} =0) =1—pu.

u>0

Let
1)

Hé =—sup{t<0 : X% =0}=inf{t>0: Xt(l):O}

and
H? :=inf{t >0 : X =0} =inf{t >0 : X® =0}.

As computed in the proof of Proposition 5.1, see (14) with the opposite direction
of time,

é ::tSiJ(EJ{—L_Hél)_H—i—t} (17)

is exponentially distributed with parametet := 2(1 — u). From Figure 2 it is
seen that{& < HiY1 = {S = 0}. By the strong Markov property ok, the
variablesé andH(()l) are independent giving

i =P(S > 0) =P(§ > H{Y) —E(e 21,

We remark that the formula
i@
E(e 2(1 ,u)HO ) u

is obtained also from (15) by integrating with respecttoFurther, from Figure
21
g =sup{s< 0 : sug—Lsst +t} > 0},
t<0
and, consequently, we have

13



Proposition 6.2 The conditional law ofg;| given that § = 0 is the same as the
conditional law of I—(gl) — & given that < Hél).

Consider next the variabl®, the ending time of the on-going idle period.
Proposition 6.3 Given that § = 0 the variables dand I—[()Z) are a.s. equal.

Proof Clearly, see Figure 2—,I(()2) < d; and the claim follows ifL; —t : t > 0}
is a.s. initially increasing undét, i.e.,

Po(3e>0suchthat;—t >0 Vte (0,6)} =1 (18)
To verify this, notice that sypy{L: —t} > 0 and that for alk > 0

Px(sup{L; —t} =0) > 0. (19)
t>0

If (18) does not hold then there exist> 0 such that

Po(Lit—t<0 Vte(0,€))>0. (20)
Combining (20) with (19) gives

Po(sup{L; —t} =0)
>0
> Eo(Px (sup{Li —t} =0);Li—t <0 Vte(0,€))>0,
t>0

which contradicts (14). O

We are now ready to prove the main result of this section.

Proposition 6.4 The Laplace transform of the joint distribution gfand d given
that S =0is

E(eocgi—ﬁdi 1S = 0)
— E(e- -8R |y Y < )
8u

(V2atp2+2-p) (V2B +u2+2-p) (V2o +u2+ /2B +p2).

14



Hence,

a0 — Qi 2
E(e"[S%=0) = E(e d\%zo)zmtww’
and 1+
E(—0i|S9=0)=E(di|S=0) = 2“5

Proof Using the conditional independenceXf) andX(? we obtain
(o8 B )
©_ _gH®@ a5
:/0 2ue ey (e PHo E (e Mo —5); Hé ) > £).

We have
E, (e BH0) = o (VB2 X

and
Ex(e*a(Hél)*@; HY > €) :/ Py(Hg" € dt)e “Eq(e™; & <t).
0

Further, becausé ~ Exp(a*), a* :=2(1— ),

(1_e—(a*—a)t)'

t *
Eo(eaéié <t) =/0 eofe*Udu = pr—

Putting the pieces together and integrating give
E(e—a(Ho )_&)—pHS? (1) > &)
_ o /°° H( (V2 p2—/2B+p2)x _ef(\/2ﬁ+u2+27u)x) dx
0

o —o
_ 2(A-—u) ( 2p 2u )
21— —a\\2atpP+ /2B +u? 2B rut+2-—p/

Dividing this expression with

1-p=P(S=0) =P(H}" > £)
leads after some manipulations to the desired Laplace transform. The proofs of
the remaining claims being straightforward are left to the reader. O

Remark 6.5 Notice that
fim  E(HeY —&[Hg" > &) = lim E(He? |H" > ¢) =1
n—
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7 Busy periods

In this section we focus on busy periods of the storage pro8es¥ find the
Laplace transform of the distribution of the starting time of the on-going busy pe-
riod. Recall from Section 4 that the starting time and the ending time are identical
in law. Recall from Proposition 5.1 that the probability that there is an busy period
attime Oisy, i.e.,

P(S&>0)=u.

Definition 7.1 The random variables
Op:=sup{t<0:§=0} and dy:=inf{t>0:§ =0} (21)

are called, in case &> 0, the starting time and the ending time, respectively, of
the on-going busy period (observed at time 0). (See Figure 2.)

For the starting time of the busy period we have

O = suplt<0:§=0}
= sup{t <O :sugli—Ls—(t—s)} =0}
s<t

= sup{t<O0:L—t=—sup{—Ls+s}}

s<t

= sup{t<O0:Lt—t=—sup{—Ls+s}}

s<0

= sup{t<O0:L—t=S}.

When computing the distribution @, it is convenient to reverse time. In other
words, let

M :=sup{L; —t}
t>0
then
|Ob| 9 Tm:=inf{t>0:L—t=M},

and, therefore, we find the distribution 6.

Proposition 7.2 The Pg-distribution of Ty (that is, given that X= 0) has the
Laplace transform

21—p)

V20+(1-u)2+(1—p)

16
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Remark 7.3 From (15) when integrating with respect to m it is seen that

E(e—aHo) _ 2.“ '
V2a+ul+u

Therefore, thePg—distribution of J, is the same as the distribution ofyHor
RBM(—(1— p)) in stationary state.

Proof As in the proof of Proposition 5.1, I& be the right continuous inverse
of L and consider the spectrally positive Lévy procéss—t : t > 0}. We have
A —t — +o0 ast — 4o and, hence,

N:=inf{A —t :t >0} > —co.

Define
Tni=inf{t >0 : A_ —t=N}.

Becaus@&\ is the inverse of, we have
M=-N and Ty=N-+Ty.

The next step is to find the law @N, Ty). For this we use the result in Bertoin
[4]. Recall from (12) that

E(e A7) = exp(ty(a)),

v(o) = a—+/20+u2+pu.
Letfora >0
via) =yla+a’)=o—/20+(2—u)2+2—p. (22)

Define furtherB! to be the spectrally positive Lévy process such that

where

E(e %B) = exp(tyt(a)).

The basic fact abous' is thatB[l — —o0 a.S. ag — o. Let P* denote the prod-
uct measure which governs the procBé;sBl = 0, and an (independent) expo-
nentially o*—distributed random variable. Then (see Bertoin [4]) the préx—
procesgA; —t : 0<t < Ty} isidentical in law to{Btl : 0<t<H_g}where

H_g:=inf{t : Bl = —E}.
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The Laplace—transform ¢i,, a < 0, is given in terms of the inverse! of y (cf.
the proof of Proposition 5.1):

E'(e M) = exp(—an'(a)),

() == a+ /2004 (1— )2 — (1—p). (23)

Now we are ready to compute

where

Eo(ef(XTM) _ E(efot(N+TN))
Ex (e—OC(—E+H_E))

_ / e*U E! (e @H € |E — u)P(E € du)
0

0
a*
ni(a)+a*—a
2(1—p)

V20+(1—p)2+(1—p)

as claimed. O

In Proposition 7.2 it is assumed that the underlying RBIM] starts at 0 and,
hence, the local time increases initially. However, we are, in fact, interested in the
case when the RBM{u) is in stationary state and the local time starts to increase
atHp. This means that the starting valAg of the proces#\ is given by

Ao =inf{t : Ly > 0} = Ho.

Let (cf. (17))

A

€ = sup{Li s — S}

s>0
and define A
Té =inf{t >0 : Lyyyt —t=2&}
ThenTg andHg are independent and, in the cade> 0,
v = Té + Ho.

18



It is clear that theP-distribution ofTé is the same as théyp-distribution of Ty,.
Consequently, we obtain

Ee®™;M>0) = E(e &™), &5 Hy)
_ /OE(e TetHo) - & Ho|Ho =t) P(Hp € dit)

— / e “Eo(e *™; M >t) P(Ho € dt)
0

— /e“t</ e““e’“”l(“)a*e’“*”du)P(Hoedt)
0 ¢

o* o .

— (n*(a)+a”)t

= e P(Ho € dt
ni(a) + o — /O (Ho )

B o* 2u
nia)+a—a \/2(nl(a) + o) +u2+p

B o* 2u
nhe)+or—a /l(a)+(@2-p)2+u

Using
a=yl(n(a)
gives (cf. (22))

\/Zn +(2-u2=nHa)—a+2-p.
But (cf. (23))
nHa) = a+/2a+(1-u)2 - (1-p),
and so
E(e ™ M>0) — 2(1—p)
V20 +(1—u)2+1- u\/m+1+u
2(1—p)

\/2a+1 w2+o+1-— u

Hence remarking that
P(gh < 0) = P(M > 0) = P(Sp > 0) = P(& > Ho) = u

we have the following
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Proposition 7.4 The common Laplace transform of the distributions of the start-
ing time and the ending time of the on-going busy period is

Ee*®|$>0) = E(e*%|$>0)
2(1—p)

V2o+(1—p)?+a+1—p

Remark 7.5 Notice from Proposition 6.4 the nice feature that the distributions of
gi andd; are of the same form as the distributionsggfandd,. The parameter

u in the first case corresponds te-Ju in the second case. In fact, this similarity
extends also to their joint distributions, as will be proved in a forthcoming paper.

8 Multifractal analysis of the input process

The set of growth points of the continuous processs almost surely Lebesgue
measure zero. Multifractal analysis is a technique for studying the fine structure
of the corresponding singular measwié(s,t]) = L; — Ls. It turns out that this
fine structure is independent of the system parameter

Let v be a measure dR and consider the lower and upper pointwise dimen-
sions ofv atx:

logv(x—r,X+Tr)

h(v,x) := liminf ,
r|o logr

h(v,x) = Iimsuplon(X_r’X+r>,
rlo logr

correspondingly. The distribution of the local scaling laws can be described by
the multifractal spectra

(v,h) = dim{xe suppv:h(v,x)=h},

f
f ;= dim{x € suppv : h(v,x) = h},

v?
v7
where dim denotes the Hausdorff dimension (with dirs0-o).

A wide class of local time processes can be represented as the occupation mea-
sure of subordinators. Let us consider the measuletermined by a subordinator
Aon|0,1]:
v(B)=|{t€[0,1] : A € B}|. (24)

20



Denote the random set of values attained by the pro&ess|0,1] by S= {A: :
t € [0,1]}. If v corresponds to the local time at O of the procésthenS= {7 €
[0,Aq] : X; = 0}. SinceA is a subordinator, there exists a functigiso-called
Laplace exponent) such that

Ee A =710,

Define
o = liminf 299"
r—o logr
o logg(r)
b= "Tjﬁjp logr

The multifractal structure of the measures having the form (24) has been de-
termined by Hu and Taylor [10, 11]. Assuming that there exists a nurhbed
such that

1 < liminf g(Ax) < Iimsupg(kx) <A,
x—o g(X) T xow 9(X)

then, for almost every sample path,
h(v,xy=0 VxeS§ (25)
B<h(v,x)<2B VxeS (26)

The first equality implies thaf(v,c) = dimS= . Moreover, Hu and Taylor
showed that, for almost every sample path,

2 .
dim{te [0,1]:Iimsuplogv(A‘_r’AtJrr) _pb_) 51 ifhell?]
rlo —logg(1/r) —oo,  otherwise

Proposition 8.1 Consider the system conditioned of=X0. For almost every
sample path of L,

1
h(v,x) = > forallxe S
1
> <h(v,x) <1 forallxeS
Moreover, almost surely,
1 1
I(VLaé) - é?
f(w,h) = 2_1h_%’ if =<h<1



Proof The measure, defined by the local time proceks€an be represented
as the occupation measure of a subordinataiith the Laplace exponeifr) =
\V/2r +u?—u (see (11) in section 5). Thus,= 8 = % and (25) and (26) give
the ranges of the scaling laws.

Since

imsup 09V A LA |imsup'°9V(Af —LA+T)
o —logg(1/r) 10 Llogr

we have

dim {t € [0,1] : limsup

logv(Ac—rA+r) [ _ 1
r10 logr

for he [%,1]. To complete the proof, recall that for any subordingkahe in-
equalities
odimE <dim{A; :t € E} < BdimE

hold for all subset& C [0,), a.s. (see [9]). O

Using the results by Jaffard [13, 14], we can also calculate the spectrum of the
subordinator related to the local time process

Theorem 8.2 [13, 14] LetY be an increasing Lévy process with Lévy med3ure
Denote . .
Ci=n(27t27), j=12,...

and

: logC; : 1o
= = >0: .
Y SUp<O’“Tj£pj log 2) inf {oc >0 /0 XM (dx) < oo

Assume further thay > 0 and z‘;;lz—i \/Cjlog(1+Cj) < . Then, for almost
every sample path of Y, the multifractal spectrum of the process Y is given by

vh, ifo<h<i
—oco, oOtherwise

dim{t : Hy(t) = h) = {

where H (t) denotes the pointwise Holder exponeait.

LA function f is in C! if there is a polynomiali — R (u) such that f (u) — R(u)| < Clu—t|
for u sufficiently close td. The pointwise Hoélder exponent dfatt is H¢ (t) = sup{h: f € C['}.
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Corollary 8.3 For almost every path, the lower multifractal spectrum of the sub-
ordinator A with the Laplace exponentrg = \/2r + u2 — u is

f(VA, h) =

ih,  ifo<h<2,
—oo,  Otherwise

Proof By (10) in Section 5

MN(dx) = %dx.
X

Itis straightforward to see that the numbe€ssof Theorem 8.2 satisfy

T S T \/?e—uzzilzj/z
Nz V7 !
which entails thay = 5 > 0 and
271, /Cilog(1+C < =Y 212 <.
jZ) V%gg

Moreover, the pointwise Holder exponétii(t) and the lower local dimension
h(va,t) are equal since the Lévy processs increasing and has no drift.

Cje
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