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A storage process with local time input

Petteri Mannersalo∗ Ilkka Norros∗ Paavo Salminen†

Abstract

In this paper we introduce a storage process with singular continuous
input. The input process is defined as the local time of a stationary reflecting
Brownian motion with drift. Many basic charateristics of the process are
computed explicitly, e.g., stationary distribution, distributions of the starting
and ending time of on-going busy and idle periods. We also consider the
multifractal spectrum of the input process and observe that it is independent
of system parameters.

1 Introduction

Storage models with continuous input have been thoroughly studied with piece-
wise differentiable input (starting from Kosten [15]) and with non-differentiable
input like diffusions (see, e.g., [8]) and fractional Brownian motion (see, e.g.,
[16]). To our knowledge, no exact results have so far been obtained on storages
with continuous singular input. In this paper we consider a model where the input
is the local time process of a diffusion, more precisely, the local time at zero of a
reflecting Brownian motion with negative drift−µ. This is a continuous increas-
ing process whose derivative is zero almost everywhere. We derive the stationary
distribution of the storage occupancy (queue length) and the characteristics of its
busy and idle periods.

The process considered in this paper could be used to model systems like
water reservoirs — at least as a toy model. In our approach the input comes in
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infinitesimal droplets, whereas usually (see, e.g., Prabhu [18]) dam models are
constructed using Lévy processes.

It is rather interesting that although the input process is exotic enough to have
a non-trivial multifractal spectrum, the queue length distribution is just the ex-
ponential distribution plus an atom at the origin. Moreover, the spectrum does
not even depend on the system parameterµ. This shows that although multifrac-
tal scaling properties of telecommunication traffic have recently gained interest
(see, e.g., [17]), the multifractal spectrum as such gives hardly any information on
system performance.

The paper is structured as follows. The system is defined in section 2 and a
real, although somewhat fictitious queueing system, for which our system may be
obtained as a limit, is described in section 3. Section 4 makes some observations
on the point process related to the alternating busy and idle periods. The stationary
queue length distribution is found in section 5, after which the distribution of the
length of the on-going idle period is computed in section 6. In section 7, we
derive the common distribution of the starting and ending time of the on-going
busy period and notice, surprisingly, that this is the same as the corresponding
distribution for the on-going idle period except thatµ is replaced by 1−µ. Finally,
the multifractal spectrum of the input process is computed in section 8.

2 System definition

In this section, we introduce the storage process with local time input, see Defi-
nition 2.3. Before to be able to do that we must construct the needed local time
process, which should be defined on the whole time axisR and have stationary
increments. It is seen that we may use local times of two (conditionally) inde-
pendent copies of a linear diffusion in stationary state. In fact, we take the under-
lying diffusion to be a stationary reflecting Brownian motion with drift−µ < 0,
RBM(−µ), for short. For RBM(−µ) the local time can also be constructed using
Skorokhod’s reflection lemma, and this approach is also practical for our pur-
poses. To study RBM(−µ) in details is motivated because RBM(−µ) is a much
used storage process due to the fact that it is obtained as a heavy traffic limit of
many discrete queueing models. We recall below some properties of RBM(−µ)
needed here, and refer to Harrison [8], Abate and Whitt [1],[2], and Salminen and
Norros [21] for further readings.

We letX = {Xt : t ∈ R} be a reflecting Brownian motion in stationary state
living on [0,+∞) with drift −µ < 0. The stationary distribution ofX is an ex-
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ponential distribution with parameter 2µ, and we letm(dx) = 2µ exp(−2µx)dx
denote the corresponding measure. It is well known that the transition probability
is absolutely continuous with respect tom, and we have

P(Xt ∈ dy | Xs = x) = p̃(t−s;x,y)m(dy),

where the symmetric (inx andy) transition density is given by (see Harrison [8]
p. 49 for the distribution function, and Borodin and Salminen [7] p. 129 for the
density)

p̃(t;x,y) =
1

2µ
√

2πt
eµ(y+x)− µ2t

2

(
e−

(x−y)2
2t +e−

(x+y)2
2t

)
+Φ

(−y−x+ µt√
t

)
andΦ is the standard normal distribution function. For anyt1 < t2 < .. . < tn and
Borel setsA1,A2, . . . ,An, the finite dimensional distributions ofX are given by

P(Xt1 ∈ A1, . . . ,Xtn ∈ An)

=
∫

A1

m(dx1) . . .
∫

An

m(dxn)p̃(t2− t1;x1,x2) . . . p̃(tn− tn−1;xn−1,xn).

A key property ofX needed hereby is thatX is reversible in time, i.e.,

{Xt : t ∈ R} ∼ {X−t : t ∈ R}. (1)

Let nowX(1) andX(2) be two copies of{Xt : t ≥ 0}. Assume thatX(1)
0 = X(2)

0 but
let X(1) andX(2) be otherwise independent. From (1) it is seen that{Xt : t ∈ R}
is identical in law to{Zt : t ∈ R} where

Zt :=

{
X(1)
−t , t ≤ 0,

X(2)
t , t ≥ 0.

Introduce the local times ofX(1) andX(2) at 0 via

L(i)
t := lim

ε→0

1
2ε

∫ t

0
1[0,ε)(X

(i)
s )ds, i = 1,2, (2)

respectively, where the limits exist almost surely. UsingL(1) andL(2) we construct
the local time processL = {Lt : t ∈ R}, playing the main role in this paper, by
setting

Lt :=

{
−L(1)

−t , t ≤ 0,

L(2)
t , t ≥ 0.

(3)
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Notice thatL0 = 0 by construction andt 7→ Lt is continuous and non-decreasing.
A crucial property ofL (stated also in Proposition 2.2) is that it has stationary
increments. Recall

Definition 2.1 A stochastic process Y= {Yt : t ∈ R} is said to have stationary
increments, if

(Ys+t −Ys)t∈R
d= (Yt −Y0)t∈R

for all s∈ R, where
d= means equality in distribution.

To prove Proposition 2.2 and also for developments in Section 3, we consider
an alternative construction ofL via Skorokhod’s reflection lemma (see Harrison
[8] p. 18, Revuz and Yor [22] p. 239). For this, letW = {Wt : t ∈ R},W0 = 0,
be a standard Brownian motion defined on the whole time axisR (see [21]). In
particular,W is a Gaussian process with stationary and independent increments.
Further, letµ > 0 and denote by

W(µ)
t

.= Wt −µ t

the corresponding Brownian motion with drift−µ. The stationary reflecting
Brownian motion with drift−µ < 0 can be interpreted as a storage process, where
the cumulative input is a standard Brownian motion, and the storage is emptied
with rateµ, that is, in this framework we define

Xt
.= sup

s≤t
(W(µ)

t −W(µ)
s ), t ∈ R. (4)

By the construction,X is a non-negative stationary process. It follows from Sko-
rokhod’s lemma when considering the equality

Xt = K0 +W(µ)
t +Lt , t ∈ R.

as an equation that the local time ofX is given by

Lt = Kt −K0, t ∈ R. (5)

whereKt
.= − infs≤t W

(µ)
s . From this it is apparent thatL0 = 0 andt 7→ Lt is con-

tinuous and non-decreasing.

Proposition 2.2 The process L has stationary increments, and

ELt = µt. (6)
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Proof Observe first that if a process(Yt)t∈R has stationary increments, then
the processY∗

t = sups≤t Ys also has stationary increments. Consequently, from
(5), L has stationary increments. SinceL1 is clearly integrable, it follows that
ELt = t EL1. Finally, the stationarity ofX implies (sinceX0 = K0)

EL1 = EX1−EK0−EW(µ)
1 = µ.

�

Using the processL we define now the basic object of our study.

Definition 2.3 The process S= {St : t ∈ R} defined via

St := sup
s≤t
{Lt −Ls− (t−s)}, t ∈ R.

is called a storage process with local time input, service rate 1, and unbounded
buffer, associated to the reflecting Brownian motion with drift−µ.

Remark 2.4 The key property when construction storage processes with constant
service rate is that the input process has stationary increments. It can be proved
that the local time defined as in (2) and (3) but for an arbitrary linear stationary
diffusion (in stationary state) has stationary increments. This proof (which we do
not present here) cannot, of course, be based on Skorokhod’s reflection lemma but
utilizes symmetry properties of linear diffusions. Hence, it is possible to construct
a storage process as in Definition 2.3 using local time at zero of some other sta-
tionary linear diffusion. Many of our results below can be formulated for storage
processes where the RBM is replaced by some other diffusion. These generaliza-
tions are treated in a forthcoming paper.

3 Motivation by a limit procedure

Our local time input process can be considered as a continuous analog to some
on/off processes. We show in this section how it models the output of the lower
priority class queue in a priority system where the higher priority class approaches
a heavy traffic limit.

Consider, for example, a two-class pre-emptive priority system where the high
priority class is anM/M/1 system. Let its service times be Exp(1) distributed and
the arrival rate of then’th system be

λn = 1− 2µ√
n
.
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For simplicity, we do not care about stationarity here and start with an empty
system at timet = 0.

Let C(n)
t be the compound Poisson process of arriving work. Then

Var(C(n)
t ) = λnE(ξ 2)t = 2λnt,

whereξ is an Exp(1) distributed random variable. Denote the cumulative idle time

process of the high priority system byI (n)
t . It can be written as (draw a picture!)

I (n)
t =− inf

s∈[0,t]
(C(n)

s −s).

Let us assume that the lower priority queue be saturated. The cumulative lower
priority output process is then simplyI (n)

t .
Asymptotically, the part of time that the high priority system is empty is 1−

λn = 2µ/
√

n. Define the scaled process

L(n)
t

.=
1√
n

I (n)
nt/2.

Note thatL(n)
t grows asymptotically asµt. By Donsker’s theorem and the contin-

uous mapping theorem, we have

L(n)
t = − inf

s∈[0,t/2]

C(n)
ns −ns√

n

= − inf
s∈[0,t/2]

√2λn ·
C(n)

ns −λnns√
Var(C(n)

n )
−2µs


(w)→ − inf

s∈[0,t/2]

(√
2Ws−2µs

)
d= − inf

s∈[0,t]
(Ws−µs)

.= L0
t ,

where
(w)→ denotes weak convergence and

d= equality in distribution.
Moreover, the marginal distributions ofL0

t can be characterized from this limit

relation. Indeed,C(n)
t − t is a Lévy process with Laplace exponent

φn(α) = α −λn(1−β (α)) = α

(
1− λn

1+α

)
,
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that is,

Ee−α(C(n)
t −t) = etφn(α),

whereβ (α) = 1/(1+α) is the Laplace transform of the exponential service time
distribution. Define further the first passage time processes

τ
(n)
x = inf{t > 0 : I (n)

t = x}.

It is well known (see [5]) thatτ(n) is a subordinator , i.e., an increasing Lévy
process, with Laplace exponentκn(α) = φ−1

n (α). Note now that

τ̃
(n)
x

.= inf{t > 0 :
1√
n

L(n)
t = x}=

2
n

τ
(n)√

nx,

and the Laplace exponent of the subordinatorτ̃(n) is

κ̃n(α) =
√

nκn(
2α

n
).

A direct computation yields

κ(α) .= lim
n→∞

κ̃n(α)

= lim
n→∞

1
2

2µ − 2α√
n
−

√(
2µ − 2α√

n

)2

+8α


= µ −

√
2α + µ2. (7)

By general results on weak convergence of subordinators and their inverses, it
follows thatκ(α) is the Laplace exponent of the right-continuous inverse ofL0,
sayAx

.= inf{t > 0 : L0
t > x}:

Ee−αAx = exκ(α).

4 A point process view on the busy and idle periods

In contrast to the processX, which never remains at zero for an interval of positive
length, the processSalmost surely hits zero only for intervals of positive length.
Indeed, because the input is singular, it can never flow through the server without
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Figure 1: A schematic view of the processesX, L and S, and the time points
T0,T1,T2. The marks are:Z0 = 1, Z1 = 0, Z2 = 1.

creating a positive storage. Thus the busy and idle periods of the second storage
are well defined, and the fraction of time that the system is busy isELt/t = µ.
Figure 1 shows the relationships between the activities of the two storagesX and
S.

The starting points of the busy and idle periods can be described as a stationary
marked point process(Tn)n∈Z, where the markZn associated with pointTn is 0 if
an idle period starts atTn and 1 if a busy period starts atTn. For stationary point
processes, we follow [3].

Let N denote the counting measure related to(Tn). The Palm probability mea-
sureP0

N is defined as

P0
N(A) =

1
λ t

E
∫ t

0
1A◦θsN(ds), (8)

wheret > 0 is arbitrary,λ is the intensity ofN andθs is the time shift flow onΩ
(see [3] for the rules onθs). The inverse relationship between the two probability
measures is given by Ryll-Nardzewski’s formula

P(A) = λ

∫ ∞

0
P0

N(T1 > t, θt ∈ A)dt. (9)
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The well-known fact that the consumed and remaining parts of the busy period
going on at time 0 are identically distributed is most elegantly proved with the
Palm calculus: just compute the joint distribution of(T0,T1) in terms of the Palm
probability:

P(T1 > v,−T0 > w, Z0 = 1)

= λ

∫ ∞

0
P0

N(T1 > t, T1− t > v, t > w, Z0 = 1)dt

= λ

∫ ∞

w
P0

N(T1 > t +v, Z0 = 1)dt

= λ

∫ ∞

v+w
P0

N(T1 > u, Z0 = 1)du.

The same computation applies for the ongoing idle period.
Using (9), it is also easy to establish that

P(Z0 = 0) =
E0

N[T1|Z0 = 0]
E0

N[T1|Z0 = 0]+E0
N[T1|Z0 = 1]

,

whereas (8) yields that

P0
N(Z0 = 0) =

1
2
.

At the starting times of busy periods ofS, both storages are empty (see Figure
1). It follows that the busy cycles ofS, consisting of a busy period followed by an
idle period, are independent and identically distributed. This holds not only for
their lengths but for the whole paths. Moreover each idle period is independent
from the following busy period. The remaining pair of interest, a busy period and
the following idle period, are probably dependent, but at present we don’t have an
exact argument showing this.

Note that each busy period ends with an interval where the queue length de-
creases linearly. This shows that the processS is not reversible in time (unlike
X).

5 Stationary distribution

The next proposition is fundamental in showing that the storage occupancy pro-
cessSas defined above is a meaningful and interesting object of study. In fact, the
case with general time homogeneous diffusions has already been treated in [20],
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from which the result below follows as a special case. We repeat the argument
here because of the key importance of the result for this paper, and also to make
the presentation more self-contained.

Proposition 5.1 The process S is a stationary process in stationary state if and
only if 0 < µ < 1. The stationary distribution is given (for all t∈ R) by

P(St > a) = µ e−2(1−µ)a, a≥ 0,

and, consequently,P(St = 0) = 1−µ.

Proof From the description (3) it is seen that

S0 := sup
s≤0

{−Ls+s}
(d)
= sup

s≥0
{Ls−s}.

We compute the distribution of sups≥0{Ls− s} given thatX0 = 0. Let P0 denote
the probability measure associated to{Xt : t ≥ 0} when started from 0. Introduce
the right continuous inverseA of L by setting fors≥ 0

As := inf{t : Lt > s}.

Then, as is well known (see [12] or [7]),A is a subordinator and its Lévy–Khintchine
representation is

E0(e−α At ) = exp
(
−t
∫ ∞

0
(1−e−α u)

1√
2πu3

e−
µ2

2 udu
)

(10)

= exp
(
−t(
√

2α + µ2−µ)
)
. (11)

BecauseA is the right continuous inverse ofL we have

{Lt − t < a ∀ t ≥ 0}= {At − t >−a ∀ t ≥ 0}.

Hence, we study the process{At − t : t ≥ 0} which is a spectrally positive Lévy
process with (cf. (7))

E0(e−α(At−t)) = exp
(
t (α −

√
2α + µ2 + µ)

)
. (12)

Introduce forα ≥ 0

ψ(α) := α −
√

2α + µ2 + µ. (13)
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Thenψ(0) = 0, and it is easily seen that ifµ ≥ 1 thenψ is increasing. Further, if
0 < µ < 1 there exists a uniqueα∗ = 2(1−µ) > 0 such thatψ(α∗) = 0 andψ is
increasing forα > α∗. Let for a > 0

Ta := inf{t : At − t =−a}.

Then (see [5] or [6])

E0
(
e−βTa ; Ta < ∞

)
= e−aη(β ),

whereη is the inverse ofα 7→ ψ(α), α ≥ α∗. Consequently,

P0(sup
t≥0

{Lt − t}< a) = P0(Lt − t < a ∀ t ≥ 0)

= P0(At − t >−a ∀ t ≥ 0)

= P0
(
Ta = ∞

)
= 1−e−aη(0).

In the caseψ is increasing, i.e.,µ ≥ 1, we haveη(0) = 0 which means that
supt≥0{Lt − t} = ∞ with probability 1. On the other hand, when 0< µ < 1 we
haveη(0) = 2(1−µ) and, hence,

P0(sup
t≥0

{Lt − t}> a) = e−2(1−µ)a. (14)

The distribution of supt≥0{Lt − t} given thatX0 = y > 0 is obtained by the strong
Markov property. Indeed, denotingH0 := inf{t ≥ 0 : Xt = 0}, we have fora > 0

Py(sup
t≥0

{Lt − t}< a) = Py(LH0+t − (H0 + t) < a ∀ t ≥ 0)

=
∫ ∞

0
Py(H0 ∈ du)P0(Lt − t < a+u ∀ t ≥ 0)

=
∫ ∞

0
Py(H0 ∈ du)

(
1−e−2(1−µ)(a+u))

= 1−e−2(1−µ)aEy
(
e−2(1−µ)H0

)
= 1−e−2(1−µ)(a+y),

where the formula (see [7])

Ey
(
e−α H0

)
= e−(

√
2α+µ2−µ)y (15)
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db

gb

S0

di

gi

Ξ

Figure 2: Illustration for some notation in the proofs. The thick line denotes a
realization of the processLt . Left: busy period at time 0. Right: idle period at
time 0.

is used. Integrating with respect to the stationary distributionm gives, in the case
0 < µ < 1,

P(S0 > a) = P(sup
t≥0

{Lt − t}> a)

=
∫ ∞

0
m(dy)e−2(1−µ)(a+y)

= µ e−2(1−µ)a

as claimed. From Proposition 2.2 it follows thatSt ∼ S0 for all t and thatSt−Ss ∼
St−s−S0 for all t > s. This completes the proof. �

6 Idle periods

In this section we compute the joint distribution of the starting time and the ending
time of the on-going idle period. From this the distribution of the length of the
on-going idle period is easily obtained.
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Definition 6.1 The random variables

gi := sup{t < 0 : St > 0} and di := inf{t > 0 : St > 0} (16)

are called, in case S0 = 0, the starting time and the ending time, respectively, of
the on-going idle period (observed at time 0).

We know from Section 4 (althoughS is not reversible) that

|gi | ∼ di .

Before stating and proving the main result, Proposition 6.4, some preliminary
observations are made. Firstly, from Proposition 5.1 or from Little’s law, the
probability for an idle period at time 0 is

P(S0 = 0) = P(sup
u≥0

{Lu−u}= 0) = 1−µ.

Let
H(1)

0 :=−sup{t < 0 : Xt = 0}= inf{t > 0 : X(1)
t = 0}

and
H(2)

0 := inf{t > 0 : Xt = 0}= inf{t > 0 : X(2)
t = 0}.

As computed in the proof of Proposition 5.1, see (14) with the opposite direction
of time,

ξ := sup
t≤0

{−L−H(1)
0 +t

+ t} (17)

is exponentially distributed with parameterα∗ := 2(1− µ). From Figure 2 it is

seen that{ξ < H(1)
0 } = {S0 = 0}. By the strong Markov property ofX(1), the

variablesξ andH(1)
0 are independent giving

µ = P(S0 > 0) = P(ξ > H(1)
0 ) = E(e−2(1−µ)H(1)

0 ).

We remark that the formula

E(e−2(1−µ)H(1)
0 ) = µ

is obtained also from (15) by integrating with respect tom. Further, from Figure
2,

gi = sup{s< 0 : sup
t≤0

{−Ls+t + t}> 0},

and, consequently, we have
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Proposition 6.2 The conditional law of|gi | given that S0 = 0 is the same as the

conditional law of H(1)
0 −ξ given thatξ < H(1)

0 .

Consider next the variabledi , the ending time of the on-going idle period.

Proposition 6.3 Given that S0 = 0 the variables di and H(2)
0 are a.s. equal.

Proof Clearly, see Figure 2,H(2)
0 ≤ di and the claim follows if{Lt − t : t ≥ 0}

is a.s. initially increasing underP0, i.e.,

P0(∃ ε > 0 such thatLt − t > 0 ∀ t ∈ (0,ε)}= 1. (18)

To verify this, notice that supt≥0{Lt − t} ≥ 0 and that for allx > 0

Px(sup
t≥0

{Lt − t}= 0) > 0. (19)

If (18) does not hold then there existε > 0 such that

P0(Lt − t < 0 ∀ t ∈ (0,ε)) > 0. (20)

Combining (20) with (19) gives

P0(sup
t≥0

{Lt − t}= 0)

≥ E0
(

PXε
(sup

t≥0
{Lt − t}= 0) ; Lt − t < 0 ∀ t ∈ (0,ε)

)
> 0,

which contradicts (14). �

We are now ready to prove the main result of this section.

Proposition 6.4 The Laplace transform of the joint distribution of gi and di given
that S0 = 0 is

E
(
eαgi−βdi |S0 = 0

)
= E

(
e−α(H(1)

0 −ξ )−βH(2)
0 |H(1)

0 > ξ
)

=
8µ(√

2α + µ2 +2−µ
)(√

2β + µ2 +2−µ
)(√

2α + µ2 +
√

2β + µ2
) .
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Hence,

E
(
eαgi |S0 = 0

)
= E

(
e−αdi |S0 = 0

)
=

2µ√
2α + µ2 +α + µ

,

and

E
(
−gi |S0 = 0

)
= E

(
di |S0 = 0

)
=

1+ µ

2µ2 .

Proof Using the conditional independence ofX(1) andX(2) we obtain

E
(
e−α(H(1)

0 −ξ )−βH(2)
0 ; H(1)

0 > ξ
)

=
∫ ∞

0
2µe−2µxEx

(
e−βH(2)

0
)
E
(
e−α(H(1)

0 −ξ ) ; H(1)
0 > ξ

)
.

We have
Ex
(
e−βH(2)

0
)

= e−(
√

2β+µ2−µ)x

and

Ex
(
e−α(H(1)

0 −ξ ) ; H(1)
0 > ξ

)
=
∫ ∞

0
Px(H

(1)
0 ∈ dt)e−αtE0

(
eαξ ; ξ < t

)
.

Further, becauseξ ∼ Exp(α∗), α∗ := 2(1−µ),

E0
(
eαξ ; ξ < t

)
=
∫ t

0
eαu

α
∗e−α∗udu =

α∗

α∗−α

(
1−e−(α∗−α)t).

Putting the pieces together and integrating give

E
(
e−α(H(1)

0 −ξ )−βH(2)
0 ; H(1)

0 > ξ
)

=
α∗

α∗−α

∫ ∞

0
2µ

(
e−(

√
2α+µ2−

√
2β+µ2)x−e−(

√
2β+µ2+2−µ)x

)
dx

=
2(1−µ)

2(1−µ)−α

( 2µ√
2α + µ2 +

√
2β + µ2

− 2µ√
2β + µ2 +2−µ

)
.

Dividing this expression with

1−µ = P(S0 = 0) = P(H(1)
0 > ξ )

leads after some manipulations to the desired Laplace transform. The proofs of
the remaining claims being straightforward are left to the reader. �

Remark 6.5 Notice that

lim
µ→1

E
(
H(1)

0 −ξ |H(1)
0 > ξ

)
= lim

µ→1
E
(
H(2)

0 |H(1)
0 > ξ

)
= 1.
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7 Busy periods

In this section we focus on busy periods of the storage processS and find the
Laplace transform of the distribution of the starting time of the on-going busy pe-
riod. Recall from Section 4 that the starting time and the ending time are identical
in law. Recall from Proposition 5.1 that the probability that there is an busy period
at time 0 isµ, i.e.,

P(S0 > 0) = µ.

Definition 7.1 The random variables

gb := sup{t < 0 : St = 0} and db := inf{t > 0 : St = 0} (21)

are called, in case S0 > 0, the starting time and the ending time, respectively, of
the on-going busy period (observed at time 0). (See Figure 2.)

For the starting time of the busy period we have

gb = sup{t < 0 : St = 0}
= sup{t < 0 : sup

s≤t
{Lt −Ls− (t−s)}= 0}

= sup{t < 0 : Lt − t =−sup
s≤t
{−Ls+s}}

= sup{t < 0 : Lt − t =−sup
s≤0

{−Ls+s}}

= sup{t < 0 : Lt − t = S0}.

When computing the distribution ofgb it is convenient to reverse time. In other
words, let

M := sup
t≥0

{Lt − t}

then

|gb|
(d)
= TM := inf{t ≥ 0 : Lt − t = M},

and, therefore, we find the distribution ofTM.

Proposition 7.2 The P0-distribution of TM (that is, given that X0 = 0) has the
Laplace transform

E0(e−αTM) =
2(1−µ)√

2α +(1−µ)2 +(1−µ)

16



Remark 7.3 From (15) when integrating with respect to m it is seen that

E(e−αH0) =
2µ√

2α + µ2 + µ
.

Therefore, theP0–distribution of TM is the same as the distribution of H0 for
RBM(−(1−µ)) in stationary state.

Proof As in the proof of Proposition 5.1, letA be the right continuous inverse
of L and consider the spectrally positive Lévy process{At − t : t ≥ 0}. We have
At − t →+∞ ast →+∞ and, hence,

N := inf{At − t : t ≥ 0}>−∞.

Define
TN := inf{t > 0 : At−− t = N}.

BecauseA is the inverse ofL, we have

M =−N and TM = N+TN.

The next step is to find the law of(N,TN). For this we use the result in Bertoin
[4]. Recall from (12) that

E(e−α(At−t)) = exp
(
tψ(α)

)
,

where

ψ(α) := α −
√

2α + µ2 + µ.

Let for α ≥ 0

ψ
↓(α) := ψ(α +α

∗) = α −
√

2α +(2−µ)2 +2−µ. (22)

Define furtherB↓ to be the spectrally positive Lévy process such that

E(e−αB↓t ) = exp
(
tψ↓(α)

)
.

The basic fact aboutB↓ is thatB↓t →−∞ a.s. ast → ∞. Let P× denote the prod-
uct measure which governs the processB↓, B↓0 = 0, and an (independent) expo-
nentially α∗–distributed random variableE. Then (see Bertoin [4]) the pre–TN–
process{At − t : 0≤ t < TN} is identical in law to{B↓t : 0≤ t < H−E} where

H−E := inf{t : B↓t =−E}.
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The Laplace–transform ofHa, a< 0, is given in terms of the inverseη↓ of ψ↓ (cf.
the proof of Proposition 5.1):

E↓(e−αHa) = exp
(
−aη

↓(α)
)
,

where

η
↓(α) := α +

√
2α +(1−µ)2− (1−µ). (23)

Now we are ready to compute

E0(e−αTM) = E(e−α(N+TN))

= E×(e−α(−E+H−E))

=
∫ ∞

0
eα u E↓(e−α H−E |E = u)P(E ∈ du)

=
∫ ∞

0
eα ue−uη↓(α)

α
∗e−α∗udu

=
α∗

η↓(α)+α∗−α

=
2(1−µ)√

2α +(1−µ)2 +(1−µ)
,

as claimed. �

In Proposition 7.2 it is assumed that the underlying RBM(−µ) starts at 0 and,
hence, the local time increases initially. However, we are, in fact, interested in the
case when the RBM(−µ) is in stationary state and the local time starts to increase
atH0. This means that the starting valueA0 of the processA is given by

A0 = inf{t : Lt > 0}= H0.

Let (cf. (17))
ξ̂ := sup

s≥0
{LH0+s−s}

and define
T

ξ̂
:= inf{t ≥ 0 : LH0+t − t = ξ̂}

ThenT
ξ̂

andH0 are independent and, in the caseM > 0,

TM = T
ξ̂
+H0.

18



It is clear that theP-distribution ofT
ξ̂

is the same as theP0-distribution ofTM.

Consequently, we obtain

E(e−αTM ; M > 0) = E
(
e−α(T

ξ̂
+H0) ; ξ̂ > H0

)
=

∫ ∞

0
E
(
e−α(T

ξ̂
+H0) ; ξ̂ > H0 |H0 = t

)
P(H0 ∈ dt)

=
∫ ∞

0
e−αtE0

(
e−αTM ; M > t

)
P(H0 ∈ dt)

=
∫ ∞

0
e−αt

(∫ ∞

t
eα ue−uη↓(α)

α
∗e−α∗udu

)
P(H0 ∈ dt)

=
α∗

η↓(α)+α∗−α

∫ ∞

0
e−(η↓(α)+α∗)t P(H0 ∈ dt)

=
α∗

η↓(α)+α∗−α

2µ√
2(η↓(α)+α∗)+ µ2 + µ

=
α∗

η↓(α)+α∗−α

2µ√
2η↓(α)+(2−µ)2 + µ

.

Using
α = ψ

↓(η↓(α))

gives (cf. (22)) √
2η↓(α)+(2−µ)2 = η

↓(α)−α +2−µ.

But (cf. (23))

η
↓(α) := α +

√
2α +(1−µ)2− (1−µ),

and so

E(e−αTM ; M > 0) =
2(1−µ)√

2α +(1−µ)2 +1−µ

2µ√
2α +(1−µ)2 +1+ µ

= µ
2(1−µ)√

2α +(1−µ)2 +α +1−µ
.

Hence remarking that

P(gb < 0) = P(M > 0) = P(S0 > 0) = P(ξ̂ > H0) = µ

we have the following
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Proposition 7.4 The common Laplace transform of the distributions of the start-
ing time and the ending time of the on-going busy period is

E(eαgb |S0 > 0) = E(e−αdb |S0 > 0)

=
2(1−µ)√

2α +(1−µ)2 +α +1−µ

Remark 7.5 Notice from Proposition 6.4 the nice feature that the distributions of
gi anddi are of the same form as the distributions ofgb anddb. The parameter
µ in the first case corresponds to 1−µ in the second case. In fact, this similarity
extends also to their joint distributions, as will be proved in a forthcoming paper.

8 Multifractal analysis of the input process

The set of growth points of the continuous processL has almost surely Lebesgue
measure zero. Multifractal analysis is a technique for studying the fine structure
of the corresponding singular measureνL((s, t]) = Lt −Ls. It turns out that this
fine structure is independent of the system parameterµ.

Let ν be a measure onR and consider the lower and upper pointwise dimen-
sions ofν atx:

h(ν ,x) := liminf
r↓0

logν(x− r,x+ r)
logr

,

h(ν ,x) := limsup
r↓0

logν(x− r,x+ r)
logr

,

correspondingly. The distribution of the local scaling laws can be described by
the multifractal spectra

f (ν ,h) := dim{x∈ suppν : h(ν ,x) = h},
f (ν ,h) := dim{x∈ suppν : h(ν ,x) = h},

where dim denotes the Hausdorff dimension (with dim /0 :=−∞).
A wide class of local time processes can be represented as the occupation mea-

sure of subordinators. Let us consider the measureν determined by a subordinator
A on [0,1]:

ν(B) = |{t ∈ [0,1] : At ∈ B}|. (24)
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Denote the random set of values attained by the processA on [0,1] by S= {At :
t ∈ [0,1]}. If ν corresponds to the local time at 0 of the processX, thenS= {τ ∈
[0,A1] : Xτ = 0}. SinceA is a subordinator, there exists a functiong (so-called
Laplace exponent) such that

Ee−rAt = e−tg(r).

Define

σ = liminf
r→∞

logg(r)
logr

,

β = limsup
r→∞

logg(r)
logr

.

The multifractal structure of the measures having the form (24) has been de-
termined by Hu and Taylor [10, 11]. Assuming that there exists a numberλ > 1
such that

1 < liminf
x→∞

g(λx)
g(x)

≤ limsup
x→∞

g(λx)
g(x)

< λ ,

then, for almost every sample path,

h(ν ,x) = σ ∀x∈ S, (25)

β ≤ h(ν ,x)≤ 2β ∀x∈ S. (26)

The first equality implies thatf (ν ,σ) = dimS= σ . Moreover, Hu and Taylor
showed that, for almost every sample path,

dim

{
t ∈ [0,1] : limsup

r↓0

logν(At − r,At + r)
− logg(1/r)

= h

}
=

{ 2
h
−1, if h∈ [1,2]

−∞, otherwise.

Proposition 8.1 Consider the system conditioned on X0 = 0. For almost every
sample path of L,

h(νL,x) =
1
2

for all x ∈ S,

1
2
≤ h(νL,x)≤ 1 for all x ∈ S.

Moreover, almost surely,

f (νL,
1
2
) =

1
2
,

f (νL,h) =
1
2h
− 1

2
, if

1
2
≤ h≤ 1.
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Proof The measureνL defined by the local time processL can be represented
as the occupation measure of a subordinatorA with the Laplace exponentg(r) =√

2r + µ2− µ (see (11) in section 5). Thus,σ = β = 1
2, and (25) and (26) give

the ranges of the scaling laws.
Since

limsup
r↓0

logν(At − r,At + r)
− logg(1/r)

= limsup
r↓0

logν(At − r,At + r)
1
2 logr

,

we have

dim

{
t ∈ [0,1] : limsup

r↓0

logν(At − r,At + r)
logr

= h

}
=

1
h
−1

for h ∈ [1
2,1]. To complete the proof, recall that for any subordinatorA the in-

equalities
σdimE ≤ dim{At : t ∈ E} ≤ βdimE

hold for all subsetsE ⊂ [0,∞), a.s. (see [9]). �

Using the results by Jaffard [13, 14], we can also calculate the spectrum of the
subordinator related to the local time processL.

Theorem 8.2 [13, 14] Let Y be an increasing Lévy process with Lévy measureΠ.
Denote

Cj = Π([2− j−1,2− j ]), j = 1,2, . . .

and

γ = sup

(
0, limsup

j→∞

logCj

j log2

)
= inf

{
α ≥ 0 :

∫ 1

0
xαΠ(dx) < ∞

}
.

Assume further thatγ > 0 and ∑∞
j=12− j

√
Cj log(1+Cj) < ∞. Then, for almost

every sample path of Y , the multifractal spectrum of the process Y is given by

dim{t : HY(t) = h) =
{

γh, if 0≤ h≤ 1
γ
,

−∞, otherwise,

where HY(t) denotes the pointwise Hölder exponent1 at t.

1A function f is in Ch
t if there is a polynomialu 7→ Pt(u) such that| f (u)−Pt(u)| ≤C|u− t|h

for u sufficiently close tot. The pointwise Hölder exponent off at t is H f (t) = sup{h : f ∈Ch
t }.
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Corollary 8.3 For almost every path, the lower multifractal spectrum of the sub-
ordinator A with the Laplace exponent g(r) =

√
2r + µ2−µ is

f (νA,h) =
{

1
2h, if 0≤ h≤ 2,
−∞, otherwise.

Proof By (10) in Section 5

Π(dx) =
e−

µ2

2 x
√

2πx3
dx.

It is straightforward to see that the numbersCj of Theorem 8.2 satisfy

Cj ∈

[
1√
π

e−µ22− j−2
2 j/2,

√
2
π

e−µ22− j−1
2 j/2

]
,

which entails thatγ = 1
2 > 0 and

∞

∑
j=0

2− j
√

Cj log(1+Cj)≤
1√
π

∞

∑
j=0

2− j/2 < ∞.

Moreover, the pointwise Hölder exponentHA(t) and the lower local dimension
h(νA, t) are equal since the Lévy processA is increasing and has no drift.

�
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