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Abstract

This note is about an occupation time identity derived in [14] for
reflecting Brownian motion with drift —y < 0, RBM(—pu), for short.
The identity says that for RBM(—gx) in stationary state

—~
=

(I7,1I7) = (t — Gy, Dy — t), tER,

where G; and D; denote the starting time and the ending time, respec-
tively, of an excursion from 0 to 0 (straddling ¢) and I;” and I, are
the occupation times above and below, respectively, of the observed
level at time ¢ during the excursion. Due to stationarity, the common
distribution does not depend on ¢. In fact, it is proved in [9] that the
identity is true, under some assumptions, for all recurrent diffusions
and stationary processes. In the null recurrent diffusion case the com-
mon distribution is not, of course, a probability distribution. The aim
of this note is to increase understanding of the identity by studying
the RBM(—p) case via Ray-Knight theorems.
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1 Introduction

Consider a reflecting Brownian motion taking values on R, with drift —u < 0.
As is well known, this process is stationary having the exponential distribu-
tion with parameter 2y as its stationary probability distribution. We take the
whole of R to be the time axis and let X = {X; : ¢t € R} denote this process.
The symbols E and P refer to the expectation operator and the probability
measure, respectively, associated with X. To simplify the notation we con-

sider excursions of X straddling O instead of general ¢ (cf. Abstract), and
define

G:=sup{s<0:X,=0}, D:=inf{s>0:X,; =0},

and
D D
I+ = / 1{X5>X0} dS, I = / 1{X3<X0} ds.
e G
Then from [14] and [9] we have the following result

Theorem 1.1. The random variables IT, 1, D and —G are identical in law,

1+, 1) (-G, D), (1.1)

and conditionally on I™ + I~ = | the random variabel I is uniformly dis-
tributed on (0,1). Moreover,

oW 2u
E (exp( al B1 )) = \/2 - \/2 - (1.2)
and
+ - R . w )
P (I edt, I € ds) (T ) e p< 5 (t+s)) dsdt. (1.3)

Our interest in RBM(—pu) arises from queueing theory where RBM(—p)
is obtained as a heavy traffic limiting process. However, as shown in [9],
(1.1) is valid under some assumptions in much more generality — for all
recurrent diffusions and stationary processes. We remark that the appearance
of the uniform distribution after conditioning is a general property true for
all cyclically stationary processes, see Kallenberg [8|. This is discussed in
detail in [9].



For null recurrent diffusions the associated distributions are not probabil-
ity distributions. As an example, consider the case with Brownian motion.
Let {Bgl) : t >0} and {Bt(Z) : t > 0} be two independent standard Brown-
ian motions such that B(()l) = B(()Q) =z > 0, and define for t € R

BY, t>0
Xp=4 Dt b 1.4
t {B‘?, t<0. (L4)

We randomize X; = z by distributing = on R; according to 2 dz. Defining
I, I, D and G as above it is a simple matter to verify, using, e.g., [4] formula
1.2.6.1 p. 202, that

/00 2dz E, (exp (—alt — BI7)) = /00 2dz E,, (exp (—aD + 5G))
0 0

V2

= Vat VP (15)

and

o 1
/ 2dzP, (It €dt,I” € ds) = ————dsdt, (1.6)
0 21 (t + s)3
where P, refers to the conditional probability law of X° given that X = z.
Notice, however, that for one-sided functionals we have

00 D
/ 2dz E, (exp (—a/ 1{X§>m}ds)> = 00.
0 0

The law of the process {X? : G < s < D} is closely connected to the Itd’s
excursion law of BM, for this see Bismut [3] and Pitman [10].

Because X is a linear diffusion it is reversable in time, that is, {X;} and
{X 4} are identical in law. Consequently, D and —G are identical in law.
The fact that It and I~ are identical in law might seem surprising due to
unsymmetry of the functionals. The first main issue of the paper, taken up
in the the next section, is to show that also this fact can be seen, via Ray-
Knight theorems, as a consequence of reversibility - but now in the space
variable. This observation allows us to extend the result for some integral
functionals (see Theorem 2.5). The second main issue treated in the third
section of the paper is to understand more deeply why It and D, say, are
identical in law. This is achieved by connecting in the Ray-Knight setting
these functionals to each other via random time change. For this method, a
number of examples, and further references, see [15].
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2 Reversibility in space

It is easy to show, using [4] formula 2.2.6.1. p. 300, that I* and I~ are iden-
tical in law. We now explain and extend this fact by showing that the total
local time process in space variable associated with excursions straddling 0
is reversible.

Let {L(t,u) : t > 0,y > 0} denote the local time of {X, : s > 0} up to
time ¢ at level v with respect to the Lebesgue measure, i.e., it holds a.s. that

/Otg(Xs) ds = /000 g(u)L(t,u) du (2.1)

for any non-negative Borel function g. Our starting point is the Ray—Knight

theorem (see [4] pp. 90-91) which describes the behaviour of the local time

process L up to D given X, = z. To state this, let n be a non-negative integer

and let Z(m2) denote the squared radial n-dimensional Ornstein—Uhlenbeck
process with parameter u. Recall that the generator of Z(™2) ig

2 d

22— —2uz)—.

e +(n = 2uz) dz

The processes with n = 0 and n = 4 are important in the sequel. Notice that
Z21) hits 0 a.s. where it is trapped (i.e., 0 is an exit-non-entrance boundary
point). On the other hand, Z (4:21) i5 positively recurrent and for this process
0 is an entrance-non-exit point.

Theorem 2.1. Conditionally on Xy = z,
{L(D,u):0<u<ux} @ {7220 .0 <u <z},

{L(D,z+u):u>0} @ {702 -y > 0},

where the process Z\O2 s started from the position of Z3*W at time x but
otherwise Z22) qnd Z2) gre independent.

It is convenient to assume that X is constructed from two independent
reflecting Brownian motions with drift —su, denoted by X and X® | as
explained above for a standard BM (cf. (1.4)). Let

DW :=inf{s >0: XY =0}, D®:=inf{s>0:X® =0},



and define the total local time process over an excursion straddling 0 by
LOw) := LO(DW u) + L&(D® ), u>0,

where L( and L® are the local time processes associated with X and
X@ | respectively. Since X and X are independent given X, = =z, it
follows that also L(!) and L are independent given X, = z.

Theorem 2.2. The law of the total local time process L g given by
(L) 0<u< Xo} L {ZU .0 <u<TY,

(LO(Xo+u) :u> 0} L {202 . 4 > 0},
where Z&2 s started from 0, T is an exponentially distributed random vari-
able with mean 1/(2p) independent of Z*) | and Z%21) is started from the
position of Z42M at time T but otherwise Z***) and ZO2#) qre independent.
Moreover, L'®)(X,) is exponentially distributed with mean 1/ .

Proof. Recalling that X, is an exponentially distributed random variable
with mean 1/(2u) the claim follows immediately from Theorem 2.1 since by
Shiga and Watanabe [16] (see also [13]| p. 440 and 448, and [4] p. 72)

{Z{0) + Z{m*) - u > 0} N {Z{m20 w > 0},

where on the left hand side Z(™2?*) and Z{™2") are assumed to be independent,
and the initial value of Z("t72#) is taken to be the sum of the inital values of
Zm2) and Z(m2#)_ The distribution of L(®)(X;) can be computed in various
ways; here it is perhaps instructive to use the result just derived. Hence,
consider

P (L9(X,) € dz) = P ( 24420 ¢ dz) = 2 G(0, 2) m™ (dz),

where G is the symmetric Green kernel and m is the speed measure
associated with Z*2%)_ Analyzing the explicit expressions in [4] p. 141 and
641 it is seen that th)(o,z) = 1/z, and, since m® (dz) = L zexp(—uz)dz,
the claim is proved. O

Next we show that the processes Z(*2%) and Z(*?") as introduced in the
Theorem 2.2, are time reversals of each other. This property may be deduced
also by comparing the Ray-Knight theorems (A) and (B) in No. 11 p. 90 in
[4]. To make the presentation more readable we give a direct proof of this
key result.



Proposition 2.3. Suppose that Zéw“) 18 exponentially distributed with mean

1/p. Let ¢ := inf{u : Z{"* = 0}. Then
(70 0<u< 3L {20 0 <u<TY, (2.2)

where Z42) s started from 0 and T is an exponentially distributed random
variable with mean 1/(2u) independent of Z*2).

Proof. The claim (2.2) is equivalent with the following:

P(Z"™" € dz, 2" € dy,, ..., 2% € dyy, ¢ € dv) (2.3)

=P(Z" dyl, L 2 ey, Z80M € dz, T e dv),

where 0 < u; < uy < --- < u, < v. The identity (2.3) is proved using
the explicit expressions (see [4] pp. 140-142) for the transition densities for
Z028) and Z*24) We have

P, (2" € dy) = p? (t; z, y) mP (dy)

with
e2nt e M (g 4+ JTY
POt 3,y) = b exp (AU (0
/xy sinh(ut) 2 sinh(ut) sinh (ut)
and

1
m® (dy) == 3 ye M dy.
For Z(21 it holds
P, (2" € dy) = p(t; 2, y) m® (dy)

with
PO (t;z,y) = wye " p (t; 2, y) (24)
and
m O (dy) = y=> m" (dy). (2.5)
The P,-distribution of ¢ can be computed by differentiating p® (¢; 2, y) with
respect to y and letting y — 0 (cf. [6] p. 154). This yields

2 —put
O(0,1) :=P,(C € dt)Jdt = — L (—u>
Ny ( ’ ) (C )/ 92 SlnhQ(Mt) exp QSlnh(/Lt)
=z e_zl‘tp(4) (t; 0, .T) (26)
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The left hand side of (2.3) can be written as
P(Z"™ € dz, 202 € dy,, ..., 202 € dy,, ¢ € dv)

¢—u1 C—un
= pe " dz p© (v — Up; 2, Yn) m(o)(dyn) X ...
xp O (ug — ur; yo, y1) m® (dy:) ngﬁ)(O, up) dv.

Using (2.4), (2.5) and (2.6) it is seen that this equals the right hand side of
(2.3), as claimed. O

The notion of reversibility in space is made precise in the next theorem.
The proof of the theorem is an immediate consequence of Theorem 2.2 and
Proposition 2.3.

Theorem 2.4. The total local time process {L®(u) : u > 0} is reversible,
i.e., letting ((L) := inf{u > 0 : L®)(u) = 0} it holds

{90 <u < ()} 2 {LICL) ~w) 0 S uw < (D)},
Moreover,
(LO(Xo+u):u> 0} L{LOX, —u): 0 <u< Xo} L {2020 .y >0},
where Zéo’z“ ) is exponentially distributed with mean 1/ .

Reversibility of the total local time process implies clearly the fact that
I'" and I~ are identical in law and also leads to the following generalization

Theorem 2.5. Let g be an even Borel measurable function bounded from

below. Then
D

D
d
/ g(Xs — Xo) 1{X3>X0} dS (_—) / g(XS — X()) 1{XS<X0} dS. (27)
G G

Proof. By the occupation time formula and Theorem 2.4 we have, since
9(z) = g(—2),

D
/ 9(Xs — Xo) 1(x,>x,) ds
G

= /oo g(z) L9 (Xo + z) dz

/000 g(—z) L9 (X, — z) dz

—
ISy
=

D
/ g(Xs - XO) 1{X3<X0} ds,
G
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where the equalities in the first and the last step hold a.s. O

Remark 2.6. 1. For the process X° (cf. (1.4)) constructed from Brownian
motions we have similar results as above but expressed in terms of the squared
Bessel diffusions Z(™9. In particular, since X¢ is distributed on R, according
to 2dz, it is seen that L(9)(X°) and Z(g2’0) are distributed according to dz.
With these modifications and taking p = 0, the results in Proposition 2.3,
Theorem 2.4 and Theorem 2.5 are valid.

2. For somewhat related work, we refer to Howard and Zumbrun [5], see also
Pitman [11], where it is shown that occupation times for Brownian bridge
are invariant under translations and reflections when the occupation set is
in the interval between the initial and final value value of the bridge. For
a Ray-Knight theorem for Brownian bridge see Jeulin 7], and for standard
Brownian excursion bridge see Biane [1], Biane and Yor [2], and Pitman [12].

3 Random time change

In this section we discuss the identity in law between It and D (recall from
Theorem 1.1 that I* % I~ and D & —@). As pointed out in the Introduc-
tion, it is a simple matter to prove the identity by straightforward compu-
tations. Hence, the aim of the treatment here is to bring in some features
behind the identity. The following discussion utilizies the approach in [15];
see, in particular, the first proof of the Biane-Imhof identity.

Let {W,} denote a standard Brownian motion. From Theorem 2.4,
¢
9 / 7, ds,
0

where the process Z := Z(2#) is the solution of the SDE
dZt: 2\/ thWt—QIU/tht (31)

with Z, exponentially distributed with mean 1/u, and ¢ := inf{t : Z, = 0}.
Assume, for a moment, that Z; is deterministic and equal to x, say. Introduce

t
A, :=/ Zsds
0



and observe that A; < oo a.s. Let {a;} denote the right-continuous inverse
of {A;}. Since the quadratic variation of the local martingale

t
Yt::/ VZ, dW,
0

is given by
t
(YY) = / Zsds = Ay,
0

it follows from Lévy’s characterization theorem that {B;} := {Y,, } is a Brow-
nian motion started from zero and stopped at A;. Hence, for ¢ < A,

ot Qi
Lo, — T = 2/ \/stWs—Qu/ Zsds
0 0
=2Y,, —2uA,,
Letting ¢ — A, implies Z,, — 0 and, consequently, BE{‘C ) = x/2, where

B .= —B, + pt is a BM with drift z. Thus, taking into account that
0<Zo, =x+2B,—2ut, 0<t<Ay,

we obtain
A; = inf{t : B" = z/2}. (3.2)

Randomizing now Z; to be exponentially distributed with mean 1/ it follows
that
2 A Q H(BW) = inf{t: B® = )}, (3.3)

where ) is independent of B and exponentially distributed with mean
1/(2p). Noting that, by spatial homogeneity,

Hy\(B®W) <€ D

we have proved the claim that I*) and D are identical in law.
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