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1 Introduction

Brownian motion, also called Wiener process, is probably the most important
stochastic process. Its key position is due to various reasons. The aim of
this introduction is to present shortly some of these reasons without striving
anyway to a complete presentation. The reader will find Brownian motion
appearing also in many other articles in this book, and can in this way form
his/her own understanding of the importance of the matter.

Our starting point is that Brownian motion has a deep physical meaning
being a mathematical model for movement of a small particle suspended
in water (or some other liquid). The movement is caused by ever moving
water molecules which constantly hit the particle. This phenomenon was
observed already in the eighteenth century but it was Robert Brown (1773-
1858), a Scottish botanist, who studied the phenomenon systematically and
understood its complex nature. Brown was not, however, able to explain the
reason for Brownian motion. This was done by Albert Einstein (1879-1955)



in one of his famous papers in 1905. Einstein was not aware of the works
of Brown but predicted on theoretical grounds that Brownian motion should
exist. We refer to Nelson [10] for further readings on Brown’s and Einstein’s
contributions.

However, before Einstein, Louis Bachelier (1870-1946), a French mathe-
matician, studied Brownian motion from a mathematical point of view. Also
Bachelier did not know Brown’s achievements and was, in fact, interested in
modeling fluctuations in stock prices. In his thesis Théorie de la Spéculation
published in 1900 Bachelier used simple symmetric random walk as the first
step to model price fluctuations. He was able to find the right normalisation
for the random walk to obtain Brownian motion after a limiting procedure.
In this way he found among other things that the location of the Brownian
particle at a given time is normally distributed and that Brownian motion has
independent increments. He also computed the distribution of the maximum
of Brownian motion before a given time and understood the connection be-
tween Brownian motion and the heat equation. Bachelier’s work has received
much attention during the recent years and Bachelier is now considered to
be the father of financial mathematics. See Cootner [4] for a translation of
Bachelier’s thesis.

The usage of the term Wiener process as a synonym for Brownian motion
is to honor the work of Norbert Wiener (1894-1964). In the paper [13]
Wiener constructs a probability space which carries a Brownian motion and
thus proves the existence of Brownian motion as a mathematical object as
given in the following

Definition. Standard one-dimensional Brownian motion initiated at = on
a probability space (2, F, P) is a stochastic process W = {W, : t > 0} such
that

(a) Wy =z as.,
(b) s+ W is continuous a.s.,

(c) forall0 =ty <t <...<t, the increments
th - th—u th—l - th—2: SRR Wt1 - Wto
are normally distributed with

E(Wtz - Wti—l) =0, E(Wtz - Wt¢71)2 =t —ti1-



Standard d-dimensional Brownian motion is defined as W = {(Wt(l), Ce Wt(d)) :
t > 0}, where W® 4 =1,2,...,d, are independent, one-dimensional stan-
dard Brownian motions.

Notice that, because uncorrelated normally distributed random variables
are independent it follows from (c) that the increments of Brownian motion
are independent. For different constructions of Brownian motion and also for
Paul Lévy’s (1886-1971) contribution for the early development of Brownian
motion, see Knight [9].

Another reason for the central role played by Brownian motion is that it
has many “faces”. Indeed, Brownian motion is

a strong Markov process,

- a diffusion,
- a continuous martingale,
- a process with independent and stationary increments,

- a Gaussian process.

The theory of stochastic integration and stochastic differential equations is
a powerful tool to analyse stochastic processes. This so called stochastic cal-
culus was first developed with Brownian motion as the integrator. One of the
main aims hereby is to construct and express other diffusions and processes
in terms of Brownian motion. Another method to generate new diffusions
from Brownian motion is via random time change and scale transformation.
This is based on the theory of local time which theory was initiated and much
developed by Lévy.

We remark also that the theory of Brownian motion has close connections
with other fields of mathematics like potential theory and harmonic analy-
sis. Moreover, Brownian motion is an important concept in statistics; for
instance, in the theory of the Kolmogorov—Smirnov statistic which is used to
test the parent distribution of a sample.

Brownian motion is a main ingredient in many stochastic models. Many
queueing models in heavy traffic lead to Brownian motion or processes closely
related to it, see e.g. Harrison [6] and Prabhu [11]. Finally, in the famous
Black—Scholes market model the stock price process P ={P, : t > 0}, P, =
P, 1s taken to be a geometric Brownian motion, that is,

P = Po eUWt—i—ut-



Using It6’s formula it is seen that P satisfies the stochastic differential equa-
tion p )
?: =odW, + (u+ %)dt.

In the next section we present basic distributional properties of Brownian
motion. We concentrate on the one-dimensional case but it is clear that
many of the these properties hold in general. The third section treats local
properties of Brownian paths and in the last section we discuss the important
Feynman-Kac formula for computing distributions of functionals of Brownian
motion. For further details, extensions and proofs we refer to Freedman 5],
Karatzas and Shreve [8], Ito and McKean [7], Knight [9], Revuz and Yor
[12] and Borodin and Salminen [2]. For the Feynman-Kac formula, see also

Borodin and Ibragimov [1| and Durrett [3].

2 Basic properties of Brownian motion

Strong Markov property. In the introduction above it is already stated
that Brownian motion is a strong Markov process. To explain this more
in detail let {F; : t > 0} be the natural completed filtration of Brownian
motion. Let 7" be a stopping time with respect to this filtration and introduce
the g-algebra Fr of events occuring before the time point 7', that is,

AeFr S AceFand AnN{T <t} eF.
Then the strong Markov property says that a.s. on the set {T' < oo}
E(fWer) | Fr) = Bw, (f (W),

where E, is the expectation operator of W when started at = and f is a
bounded and measurable function. The strong Markov property of Brownian
motion is a consequence of the independence of increments.

Spatial homogeneity. Assume that Wy = 0. Then for every z € R the
process ¢ + W is a Brownian motion initiated at x.

Symmetry. —W is a Brownian motion initiated at 0 if Wy = 0.
Reflection principle. Let H, := inf{t : W, = a}, a # 0, be the first
hitting time of a. Then the process given by

Y . Wt: tSHav
b QG_Wta tEHaa
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is a Brownian motion. Using reflection principle for a > 0 we can find the
law of the maximum of Brownian motion before a given time ¢ :

2 e
Po(sup{W, : s<t}>a)=2Py(W; >a)= / e~ /2t g
Vant Ja

Further, because
Po(sup{W, : s <t} >a) =Py(H, <),

we obtain, by differentiating with respect to ¢, the density of the distribution
of the first hitting time H, :

Po(H, € dt) = ——— ¢ %/2gt.
2 3

The Laplace transform of the distribution of H, is

E, (e_aH“> = e_“m, a > 0.

Reflecting Brownian motion. The process {|W;| : ¢t > 0} is called re-
flecting Brownian motion. It is a time-homogeneous, strong Markov process.
A famous result due to Paul Lévy is that the processes {|W;|: t > 0} and
{sup{W, : s <t} —W;: t >0} are identical in law.

Scaling. For every ¢ > 0 the process {\/cW;/. : t > 0} is a Brownian
motion.

Time inversion. The process given by

0, t=0,
Zy = {th/t, t>0,

1s a Brownian motion.

Time reversibility. Assume that W, = 0. Then for a given ¢ > 0, the
processes {W; : 0 < s <t} and {W,_y — W;: 0 < s <t} are identical in
law.

Last exit time. For a given ¢ > 0 assuming that Wy = 0 the last exit
time of 0 before time ¢

Xo(t) :==sup{s <t: W, =0}
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is arcsine-distributed on (0, %), that is,

dv

7/ o(t —v)

Lévy’s martingale characterization. A continuous real-valued process
X in a filtered probability space (2, F,{F;}, P) is an F;-Brownian motion if
and only if both X itself and {X? —¢: ¢ > 0} are F;-martingales.

Po(Xo(t) € dv) =

Strong law of large numbers.

. t
lim — =0 a.s.
t—o0

Laws of the iterated logarithm

: Wi
limsup———--—=1 as.
£10 2tInin(1/t)

W,
lim sup ! =1 a.s.

tooo V2tInlnt

3 Local properties of Brownian paths

A (very) nice property Brownian paths ¢ — W; is that they are continuous
(as already stated in the definition above). However, the paths are nowhere
differentiable and the local maximum points are dense. Inspite of these ir-
regularities, we are faced with astonishing regularity when learning that the
quadratic variation of ¢t — W;, t < T is a.s. equal to T'. Below we discuss in
more details these and some other properties of Brownian paths.

Holder continuity and nowhere differentiability. Brownian paths
are a.s. locally Holder continuous of order a for every o < 1/2. In other
words, for all T > 0, 0 < a < 1/2 and almost all w there exists a constant
Cra(w) such that for all ¢, s < T,

(Wi(w) = We(w)| < Cra(w)lt — s/

Brownian paths are a.s. nowhere locally Holder continuous of order o > 1/2.
In particular, Brownian paths are nowhere differentiable.
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Figure 1: A realization of a standard Brownian motion (by Margret Hall-
dorsdottir).



Lévy’s modulus of continuity.

: Wi, — W,
lim sup sup M =1 a.s.

50 /201n(1/0)

where the supremum is over ¢; and t, such that [t; — t5] < 4.

Variation. Brownian paths are of infinite variation on intervals, that is,
for every s <t a.s.

sup Z |Wti - Wti—l‘ =0

where the supremum is over all subdivisions s < ¢t; < ... < t, < t of
the interval (s,t). On the other hand, let A, := {tg")} be a sequence of
subdivisions of (s,t) such that A, C A, and

lim max \tgn) — tz@l\ = 0.
n—oo 1

Then a.s. and in L2,
lim § AWy =W =t —s.
n—oQ ti ti—l

This fact is expressed by saying that the quadratic variation of W over (s, t)
ist—s.

Local maxima and minima. Recall that for a continuous function
f:]0,00) = R a point ¢ is called a point of local (strict) maximum if there
exists € > 0 such that for all s € (t — ¢, + €) we have f(s) < f(t) (f(s) <
f(t), s # t). A point of local minimum is defined analogously. Then for
almost every w € €2 the set of points of local maxima for the Brownian path
W (w) is countable and dense in [0,00), each local maximum is strict, and
there is no interval on which the path is monotone.

Points of increase and decrease. Recall that for a continuous function
f :]0,00) = R a point ¢ is called a point of increase if there exists ¢ > 0
such that for all s € (0,¢) we have f(t —s) < f(t) < f(t+ s). A point of
decrease is defined analogously. Then for almost every w € €2 the Brownian
path W (w) has no points of increase or decrease.

Level sets. For a given w and a € R let Z,(w) := {t : Wi(w) = a}. Then
a.s. the random set Z,(w) is unbounded and of the Lebesgue measure 0. It
is closed and has no isolated points, i.e., is dense in itself. A set with these
properties is called perfect. The Hausdorff dimension of Z, is 1/2.
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4 Feynman—Kac formula for Brownian motion

Consider the function

v(t,x) == Ew(F(Wt) exp(/otf(t — 5, Wy) ds)),

where f and F' are bounded and Hélder continuous (f locally in ¢). Then the
Feynman—Kac formula says that v is the unique solution of the differential
problem

wt) = 3 ula(t o)+ [ (),

u(0,2) = F(x).

Let now 7 be an exponentially distributed (with parameter \) random
variable, and consider the function

v(z) = E, (F(WT) exp(—fy /OT f(Wy) ds)),

where v > 0, F' is piecewise continuous and bounded, f is piecewise contin-
uous and non-negative. Then v is the unique bounded function with contin-
uous derivative which on every interval of continuity of f and F’ satisfies the
differential equation

1

5 U'(@) = A+ f(2))u(z) = —AF(2).

We give some examples and refer to [2] for more:

Arcsine law. For F' =1 and f(z) = 1(,c0)(z) we have

E, (GXP(—“Y /OT 1(0,00) (W) ds))

DN D SV NE PtV w2
_ ) Ay (A-M \/m)e , x>0

)i (1 - %)emmv, if 2 <0

Inverting this double Laplace transform when z = 0 gives

bl

dv

/vt —v)

P ( /Otl(o,oo)(ws) ds € dv) _
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Cameron—Martin formula. For F =1 and f(z) = 2% we have

EO exp ( / w2 ds = (cosh(y/27yt)) /2.

An occupation time formula for Brownian motion with drift. For
©w>0

E, (exp(—y/ 100 (Ws + 11 5) ds)) = )
0 (FocOtTTs V2274 p
Dufresne’s formula for geometric Brownian motion. For ¢ > 0 and

b>0
E, (exp (-7 /OOO e“”’ﬁ"”ds)) = ag:;@;) KQ,,<2\Z_)

where v = b/a? and K, is the modified Bessel function of second kind and
of order 2v. The Laplace transform can be inverted

PO (/OO eaWs—bs ds € dy) — 2% y—2u—le—2/a2y dy
0 a*T'(2v)
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