PRACTICAL NORMAL FORM COMPUTATIONS

S. Walcher, RWTH Aachen
Joint work with:
S. Mayer, RWTH Aachen
J. Scheurle, TU München

CADE 2007
Turku
OBJECTS: Local ODES

\[\dot{x} = f(x), \quad f(0) = 0, \]
sufficiently differentiable;
Taylor:

\[f(x) = Bx + f_2(x) + f_3(x) + \cdots \]

\((B \text{ linear, each } f_j \text{ homogeneous of degree } j) \)

OBJECTIVE: SIMPLIFY!

Take (analytic) “near-identity” map

\[H(x) = x + h_2(x) + \cdots. \]

Then there is unique vector field

\[f^* = B + f^*_2 + \cdots \]

such that identity

\[(\dagger) \quad DH(x)f^*(x) = f(H(x)) \]

holds. (\(f^* \) and \(f \) related by \(H \).)

POSSIBLE STRATEGY: Degree by degree:

“Normalize” \(f_2, f_3, \ldots \) successively.
HOMOLOGICAL EQUATION

SITUATION:

\[f = B + f_2 + \cdots + f_{r-1} + f_r + \cdots, \]
with \(f_2, \ldots, f_{r-1} \) “satisfactory”.

Normalize degree \(r \) term:

\[H(x) = x + h_r(x) + \cdots. \]

Then \(f^* = B + f_2 + \cdots + f_{r-1} + f_r^* + \cdots, \) with

\[[B, h_r] = f_r - f^*_r \quad \text{ (homological equation)} \]

(Lie bracket: \([p, q](x) := Dq(x)p(x) - Dp(x)q(x)\).)

Equation on the finite dimensional vector space \(\mathcal{P}_r \) of homogeneous vector fields of degree \(r \).

(Note: \(\text{ad } B = [B, \cdot] \) sends \(\mathcal{P}_r \) to itself.)

GENERAL OBSERVATION:

If \(W \) is any subspace of \(\mathcal{P}_r \) so that \(\mathcal{P}_r = \text{im } (\text{ad } B) + W \) then one can choose \(f_r^* \in W \).

HIGHER ORDER TERMS:

e.g. \(H = \exp(h_r) \) (time-one-map); then

\[f^* = \exp(\text{ad } h_r)(f) \]
\[[B, h_r] = f_r - f_r^* \quad \text{on} \quad P_r \]

Decomposition \(B = B_s + B_n \)
(semisimple + nilpotent). Then
\[\text{ad } B = \text{ad } B_s + \text{ad } B_n \]

\textbf{POINCARÉ-DULAC:}
Choose \(W = \ker (\text{ad } B_s) \), so \([B_s, f_r^*] = 0 \).

\textbf{EXAMPLE:}
\(B = B_s = \text{diag} (\lambda_1, \ldots, \lambda_n) \),
\(p(x) = x_1^{m_1} \cdots x_n^{m_n} e_j \). Then
\[[B, p] = \left(m_1 \lambda_1 + \cdots + m_n \lambda_n - \lambda_j \right) \cdot p \]

Homological equation easy to solve in this case.
(Moreover: Role of eigenvalues becomes transparent.)

\textbf{PROBLEM:}
What if eigenvalues of \(B \) are not known explicitly?
\[[B, h_r] = f_r - f_r^* \]

For sake of simplicity: \(B = B_s \)

Required: Polynomial
\[
p(\tau) = \tau^m + \alpha_1 \tau^{m-1} + \cdots + \alpha_{m-1} \tau + \alpha_m
\]
that annihilates \(\text{ad} \ B \) on \(\mathcal{P}_r \).

W.l.o.g.: \(\alpha_{m-1} \neq 0 \) if \(\alpha_m = 0 \) (semisimplicity)

PROPOSITION:

(a) In case \(\alpha_m \neq 0 \), \(f_r^* = 0 \) and
\[
h_r = -\frac{1}{\alpha_m} \left((\text{ad} \ B_s)^{m-1} + \cdots + \alpha_{m-1} \text{id} \right) (f_r)
\]

(b) In case \(\alpha_m = 0 \):
\[
h_r = -\frac{1}{\alpha_{m-1}} \left((\text{ad} \ B_s)^{m-2} + \alpha_1 (\text{ad} \ B_s)^{m-3} + \cdots + \alpha_{m-2} \text{id} \right) (f_r),
\]
\[
f_r^* = f_r - [B, h_r]
\]

(Idea: Use projections to kernel and image of \(\text{ad} \ B \); these can be obtained from polynomial \(p \).)

Note on practical matters: Use Horner type evaluation.
FINDING ANNIHILATING POLYNOMIALS

\[B = B_s \quad \text{(for sake of simplicity)}, \text{ eigenvalues} \lambda_1, \ldots, \lambda_m \text{ (distinct); minimum polynomial} \]

\[(\tau - \lambda_1) \cdots (\tau - \lambda_m) = \tau^m - \sigma_1 \tau^{m-1} + \cdots + (-1)^m \sigma_m,\]

with \(\sigma_1 = \lambda_1 + \cdots + \lambda_m, \ldots, \sigma_m = \lambda_1 \cdots \lambda_m \)
elementary symmetric functions in the \(\lambda_i \).

OBSERVATION: If \(\beta_1, \ldots, \beta_s \) are the eigenvalues of \(\text{ad} \ B \) on \(P_r \) then the \(\beta_i + \lambda_j \ (1 \leq i \leq s, 1 \leq j \leq m) \) are the eigenvalues of \(\text{ad} \ B \) on \(P_{r+1} \).

PROPOSITION: Let \(q(\tau) \) annihilate \(\text{ad} \ B \) on \(P_r \). Then

\[\hat{q}(\tau) = \prod_{1 \leq j \leq m} q(\tau - \lambda_j) \]

annihilates \(\text{ad} \ B \) on \(P_{r+1} \). Moreover, \(\hat{q} \) is symmetric in \(\lambda_1, \ldots, \lambda_m \) and can therefore be expressed as polynomial in \(\tau \) and \(\sigma_1, \ldots, \sigma_m \).

(Routine task for algorithmic algebra!)
WHAT HAS BEEN GAINED?

- Normal forms are not interesting by themselves!
- Why even insist on Poincaré-Dulac?

Answer to second question:

Poincaré-Dulac has built-in symmetries; allows canonical reduction via invariants.

FINDING INVARIANTS: \((B = B_s)\)

Lie derivative \(L_B\) acts on scalar-valued polynomials, and also on \(S_r\) (space of homogeneous polynomials of degree \(r\)). Invariants of \(B\) are just the elements of the kernel of \(L_B\).

Variant of above procedure: Find annihilating polynomial for \(L_B\) on \(S_r\), and projection to kernel of \(L_B\).

REDUCTION: \(f\) in Poincaré-Dulac form (truncated); \(\varphi_1, \ldots, \varphi_s\) generators of invariant algebra of \(B\).

Then each \(L_f(\varphi_i)\) is invariant of \(B\); thus \(L_f(\varphi_i) = \gamma_i(\varphi_1, \ldots, \varphi_s)\) for some polynomial \(\gamma_i\).

This yields reduced vector field \(g = \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_s \end{pmatrix}\).
REFERENCES

J. Scheurle, S. Walcher:

On normal form computations.

S. Mayer, J. Scheurle, S. Walcher:

Practical normal form computations for vector fields.

WEB PAGE:

http://www.matha.rwth-aachen.de/
 ~ walcher/nofos