Dynamic Properties of Involutive Divisions: Facts and Examples

Alexander Semenov, Petr Zyuzikov

Moscow State University
Department of Mechanics and Mathematics

February 20, 2007
References

1 Axioms

Let U be a finite monomial set. For all $u \in U$ $L(u, U) \subset M$ is a submonoid satisfying following axioms [1, 2]:

- if $w \in L(u, U)$ and $v|w \implies v \in L(u, U)$
- if $u, v \in U$ and $uL(u, U) \cap vL(v, U) \neq \emptyset \implies u \in vL(v, U)$ or $v \in uL(u, U)$
- if $v \in U$ and $v \in uL(u, U) \implies L(v, U) \subseteq L(u, U)$
- For $U \subseteq V$ and $\forall u \in U$ $L(u, V) \subseteq L(u, U)$

Elements in $L(u, U)$ are multiplicative for u. If $w \in uL(u, U)$ then u is the involutive divisor of w, and it is denoted as $u|_{Lw}$.

The equality $w = uv$ is written as $w = u \times v$, if $u|_{Lw}$, and $w = u \cdot v$, otherwise.
For all u in U exists the separation of variables into multiplicative ($M_L(u, U) \subset L(u, U)$) and non-multiplicative ($NM_L(u, U) \not\in L(u, U)$).

$$C_L(u, U) = uL(u, U), C_L(U) = \bigcup_{u\in U} C_L(u, U)$$

Example 1 (Janet division). Consider a finite set U of monomials. For each $1 \leq i \leq n$, we divide U into groups labeled by non-negative integers d_1, \ldots, d_i:

$$[d_1, \ldots, d_i] = \{u \in U| d_j = \deg_j(u), 1 \leq j \leq i\}.$$

A variable x_i is multiplicative for $u \in U$ if $i = 1$ and $\deg_1(u) = \max\{\deg_1(v) | v \in U\}$, or if $i > 1$, $u \in [d_1, \ldots, d_{i-1}]$ and $\deg_i(u) = \max\{\deg_i(v) | v \in [d_1, \ldots, d_{i-1}]\}$.
2 Problems

- Description of all involutive divisions admissible for algorithmic use.

- Improving of Janet division or rigorous proof of its excellence.

None of the problems have been solved yet.
Example 2 (\succ-division). Let U be a finite monomial set with distinct elements and L be an involutive division. A variable x_i ($1 \leq i \leq n$) is non-multiplicative for $u \in U$, if exists $u_1 \in U$, $u_1 \succ u$, $i = \min\{j | \deg_j(u) < \deg_j(u_1)\}$.

Janet division is lex-division, where lex is a lexicographic ordering for which $x_1 \succ x_2 \succ \ldots x_n$.

Compare:

Example 3 (Induced \succ-division [3]). Let U be a finite monomial set with distinct elements and L be an involutive division. A variable x_i ($1 \leq i \leq n$) is non-multiplicative for $u \in U$, if exists $u_1 \in U$, $u_1 \prec u$ and $\deg_i(u) < \deg_i(u_1)$.
3 Dynamic Properties of Involutive Divisions

Axiom 1. (Reformulation of filter property) For all U, V and $\forall u \in U \cap V$

$$ML(u, U \cup V) \subseteq ML(u, U) \cap ML(u, V).$$

Definition 1. (Reformulation of pair property) For all U, V and $\forall u \in U \cap V$

$$ML(u, U \cup V) = ML(u, U) \cap ML(u, V).$$

Theorem 1. If \succ is an admissible monomial ordering then \succ-division is pairwise.
Janet division is:

- disjoint: \(\forall u, v \in U, v \neq u, v \in uL(u, U) \),
- homothetic: \(NM_L(u, U) = NM_L(mu, mU) \),
- pairwise,
- continuous,
- “widest” on two-element sets.

So are all \(\succ \)-divisions.

Which \(\succ \)-divisions are admissible for algorithmic use?
4 Constructivity

Definition 2. [1, 2] Continuous involutive division L is constructive on U, if for all $u \in U$, $x_i \in NM_L(u, U)$, such that $u \cdot x_i$ has no involutive divisions in U and

$$(\forall v \in U)(\forall x_j \in NM_L(v, U))(v \cdot x_j \mid u \cdot x_i, v \cdot x_j \neq u \cdot x_i) \implies v \cdot x_j \in C_L(U)$$

the following is true:

$$\forall w \in C_L(U)[u \cdot x_i \not\in C_L(U \cup \{w\})].$$
Constructivity of an involutive division L assures that:

- all minimal non-multiplicative prolongations lie in monomial basis,

- minimal involutive monomial basis exists for every U,

- whole theory of [1, 2] is applicable to this involutive division L.
Theorem 2. Consider the \succ-division L. If ordering \succ satisfies the condition: $\exists i < j < k < l$ and $\exists s \in \mathbb{N}, s > 0$ s.t. $x_j x_l \succ x_k^s \succ x_i x_l$ then L is non-constructive.

Proof. The relation $x_j x_l \succ x_k^s \succ x_i x_l$ implies $x_j^2 x_j x_l \succ x_k^2 x_k^s$ and $x_i x_j x_k^s \succ x_j^2 x_j x_l$. Also, $x_j^2 x_j x_l \succ x_i x_k^s$ is valid.

Consider $U = \{x_i x_k^s, x_i^2 x_k^s, x_j^2 x_j x_l\}$, $w = x_i x_k^s \times x_j$. The main relation is $x_i^2 x_k^s \cdot x_j = x_i x_j x_k^s \times x_i$.

<table>
<thead>
<tr>
<th>U</th>
<th>$NM_L(U)$</th>
<th>$U \cup {x_i x_j x_k^s}$</th>
<th>$NM_L(U \cup {x_i x_j x_k^s})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_i x_k^s$</td>
<td>x_i</td>
<td>$x_i x_k^s$</td>
<td>x_i, x_j</td>
</tr>
<tr>
<td>$x_i^2 x_k^s$</td>
<td>x_j</td>
<td>$x_i^2 x_k^s$</td>
<td>x_j</td>
</tr>
<tr>
<td>$x_j^2 x_j x_l$</td>
<td>$-$</td>
<td>$x_j^2 x_j x_l$</td>
<td>x_k</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x_i x_j x_k^s$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

That proves the theorem.
Non-existence of the minimal involutive basis:

Let $s = 1$ (for example, ordering lex$\{j,k,i,l\}$) and U be an autoreduced set $\{x_i^2x_jx_l, x_ix_k\}$.

Both sets $U_1 = \{x_i x_j x_k, x_i^2 x_j x_l, x_i^2 x_k, x_ix_k\}$ and $U_2 = \{x_i^2 x_j x_k, x_i^2 x_j x_l, x_i^2 x_k, x_i x_k\}$ are involutive monomial bases.

$U_1 \cap U_2 = \{x_i x_k, x_i^2 x_k, x_i^2 x_j x_l\}$.

Neither $U_1 \cap U_2$ nor its subsets cannot be involutive bases of U.

The minimal involutive basis should be contained in every involutive basis, what is impossible here.
The following examples show that there exist many non-constructive divisions in three-variable case.

Theorem 3. Consider the \succ-division L. If for the ordering \succ one of four conditions

1. $\exists i < j < k$ s.t. $x_j < x_i < x_k$,
2. $\exists i < j < k$ s.t. $x_i < x_j < x_k$,
3. $\exists i < j < k, p \in \mathbb{N}$ s.t. $x_i < x_k < x_j < x_k^{p-1}$,
4. $\exists i < j < k < l$ s.t. $x_j \succ x_k \succ x_i$, $x_j \succ x_k \succ x_l$

is satisfied, L is non-constructive.
A very important theorem:

The permutation $\xi \in S_n$ is associated with \succ, if $x_{\xi(1)} \succ \cdots \succ x_{\xi(n)}$. Ordering $\text{lex}(\prec)$ is the lexicographic ordering with respect to the permutation ξ.

Theorem 4. Let L be an involutive \succ-division, U be an arbitrary finite monomial set with distinct elements, and u_1, u_2 be such elements, that $u_1 \cdot x \in u_2 L(u_2, U)$, where x is a non-multiplicative variable for u_1 and U. Then $u_1 \prec u_2$, $u_1 \prec_{\text{lex}(\prec)} u_2$.
Definition 3. Let L be an involutive \succ-division. A set of distinct monomials $\{u_1, u, w, \hat{u}\}$ is γ-configuration, if it satisfies the following conditions:

1. $u \prec \hat{u}$,

2. $w = u_1 \times v$, $v \in L(u_1, \{u_1, u, \hat{u}\})$,

3. $u \cdot x_i \in wL(w, \{\hat{u}, u, u_1, w\})$, where $x_i = NML(u, \{u, \hat{u}\})$.

Lemma 1. Let L be an involutive \succ-division which is non-constructive. Then it exists a γ-configuration $\{u_1, u, w, \hat{u}\}$ for which relations $u_1 \prec u$, and $u_1 <_{\text{lex}(\prec)} u$ are valid.

The indices i, j, k are used in following sense:

- $x_i = N M_L(u, \{u, \hat{u}\})$,
- $x_j = N M_L(u_1, \{u_1, u\})$,
- $x_k = N M_L(u_1, \{u_1, \hat{u}\})$.

Lemma 2. For every γ-configuration $\{u_1, u, w, \hat{u}\}$ corresponding to \succ-division, where $u_1 \prec u$, the relation $x_i \succ x_j$ is valid.
Theorem 5. Let \succ be an admissible monomial ordering, such that $x_1 \succ x_2 \succ \ldots \succ x_n$. There is no γ-configurations with $u_1 \prec u$ and $u_1 \prec_{\text{lex}(\prec)} u$ and involutive \succ-division L is constructive.

Theorem 6. Consider an involutive \succ-division L and a finite monomial set U with distinct elements, which is involutive with respect to L, and for \succ the relation $x_1 \succ x_2 \succ \ldots \succ x_n$ is valid. Then U is involutive with respect to $\text{lex}(\prec)$-division, namely, Janet division.

In this case every monomial involutive basis is Janet basis but may be not the minimal Janet basis.
Theorem 7. Consider the two-variable case i.e. when \(n = 2 \) and all the monomials are formed by variables \(x_1, x_2 \). Then for every \(\succ \)-division \(L \) no \(\gamma \)-configurations with \(u_1 \prec u \) and \(u_1 <_{\text{lex}(\succ)} u \) exist and involutive \(\succ \)-division \(L \) is constructive.

Theorem 8. Let \(L \) be a \(\succ \)-division on three variables. It is constructive in and only in the following cases:

- \(x_1 \succ x_2 \succ x_3 \),
- \(x_2 \succ x_1 \succ x_3 \),
- \(x_2 \succ x_3 \succ x_1, \forall p, q \in \mathbb{M} \quad \deg_2(p) > \deg_2(q) \Rightarrow p \succ q \),
- \(x_1 \succ x_3 \succ x_2, \forall s, k \in \mathbb{N} \text{ s.t. } x_3^k \succ x_1^s \succ x_2 x_3^{k-1} \).
And for the four and more variables:

Theorem 9. Consider the \succ-division L. If for the ordering \succ the condition is satisfied: $\exists i < j < k < l$ and $\exists s, m, q \in \mathbb{N}$ s.t. $x_j^{m+1} x_l^q \succ x_k^s \succ x_i x_j^m x_l^q$, then L is non-constructive.
Variable set x_1, \ldots, x_n is divided into 2 groups, each consisting of r_i variables:

$$x_{1,1}, \ldots, x_{1,r_1}, x_{2,1}, \ldots, x_{2,r_2}.$$

Degree of variable $x_{s,p}$ in a monomial m is denoted as $\deg_{s,p}(m)$.

Monomials $[u]_s, 1 \leq s \leq 2$ are defined the following way:

$$\deg_{h,p}([u]_s) = \begin{cases}
0, & h \neq s \\
\deg_{h,p}(u), & h = s
\end{cases}$$
≺_s (1 ≺ s ≺ 2): admissible orderings on sets of monomials of type
\{ x_{s,1}^{n_s}, \ldots, x_{s,r_s}^{n_s} \}.

On \mathbb{M} = \{ x_1, \ldots, x_n \} = \{ x_{1,1} \ldots x_{1,r_1}, x_{2,1} x_{2,r_2} \} the admissible
ordering ≺_{1,2} is defined as:

\[u ≺_{1,2} v \iff \exists 1 ≤ s ≤ 2, \forall p < s, [u]_p = [v]_p, [u]_s ≺_s [v]_s. \]

Theorem 10. Let \(L_k \) — be a finite set of ≻_k-divisions
(1 ≤ k ≤ 2), where ≻_k are admissible orderings. For every division
\(L_k \) no \(\gamma \)-configurations with \(u_1 ≺_k u, u_1 <_{\text{lex}(≺_k)} u \) exist. Then
≻ = (≻_1, ≻_2) is an admissible ordering, for ≻-division \(L \) no
\(\gamma \)-configurations with \(u_1 ≺ u, u_1 <_{\text{lex}(≺)} u \) exist, and \(L \) is
constructive.
Two interesting facts:

1. The $\text{lex}_{\{2,3,1\}}$-division is constructive, but the $\text{lex}_{\{2,3,1,4\}}$ is non-constructive.

Explanation: $\text{lex}_{\{2,3,1\}}$-division do not satisfy the conditions of theorem 10 because it allows γ-configurations with $u_1 \prec u$ and $u_1 <_{\text{lex}(\prec)} u$.

2. Relation \succ on variables does not define whether \succ-division is constructive.

Let $x_2 \succ x_1 \succ x_3 \succ x_4$.

The $\text{lex}_{\{2,1,3,4\}}$-division is constructive due to the theorem 10.

But if \succ is such that $x_2x_4 \succ x_3^2 \succ x_1x_4$, then division is non-constructive according to the theorem 9.
For the constructive involutive divisions, for which relations $x_1 \succ x_2 \succ \ldots \succ x_n$ do not hold, the minimal involutive basis can contain less elements than minimal Janet basis.

Example 4. Consider the set $U = \{x_1^2, x_2\}$. This set is autoreduced. Let J be a Janet involutive division, and L be a $\text{lex}\{2,1\}$-division. Both divisions are constructive, so the Minimal Involutive Basis algorithm gives correct results. It is clear to see, that $MB_J(U) = \{x_2, x_1 x_2, x_1^2\}$, and $MB_L(U) = \{x_1^2, x_2\}$. So, the size of $MB_J(U)$ exceeds that of $MB_L(U)$.
5 Monotonicity

Theorem 11. Let \succ be such an admissible ordering, for which the following holds: $\forall i, j \in \mathbb{N} : i \neq j \exists \varphi, \psi \in \mathbb{N} :$

$$
\begin{cases}
 x_j^{\psi} \prec x_i^{\varphi}, \\
 x_i^{\varphi - 1} \prec x_j^{\psi - 1}.
\end{cases}
$$

Then \succ-division L is non-monotone.

As every \succ-division in two variables is constructive, the theorem gives examples of constructive and non-monotone involutive divisions.