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Lecture 6

The lecture is base on portions of chapter 5 and on
section 10.4 of Ewens and Grant. The lecture is,
however, as far as the occurrences (or appearances)
of DNA words is concerned, a mix of the original
research contributions and the material in the
textbook.
The sections 5.1 ’shotgun sequencing‘, section 5.4
’long repeats‘, section 5.5 �-scans are offered as
possible examination items, ’presentationer’.
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Lecture 6: Contents

1) Weight Matrix Model

2) Markov Modelling

3) Words in a DNA sequence
(A) The number of occurrences
(B) The length between one occurrence of a word

and the next
(C) The waiting time till appearance of a word

including the Markovian case.
(D) p.g.f. for the waiting time till appearance of a

word.
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An Image of Practical Life Science
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Weight Matrix Model

A weight matrix � is a simple model often used by

molecular biologicists as a representation for a family of

signals. The sequences containing the signals are sup-

posed to have equal length (= �) and to have no gaps

(no positions are blank).
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Weight Matrix Model

A weight matrix

��� has as entries the probabilities �� ���� 	

(e.g. observed relative
frequency) for that a string should have one of the bases


 ��
� ��
� ��
� �� ��� 
�� �� �� � �

at position

�

:

�� �

�� ���� 	 � � � ��� ��� 	

�� ���� 	 � � � ��� �� � 	

�� ���� 	 � � � �
� �� � 	

�� ���� 	 � � � ��� ���� 	 �

The weight matrix model is often called a profile.
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Prob(Data

�

Model)

The probability of a finite sequence � � ��� ��� � � � �� �

given the model � is given by

� � � � �
	 �



�
� �

�
�� �

� �� � �	 ���� �� ��� �
�

where the indicator

� ��� ��
� � 	 , a function of x, is

�

if � �  �

�� � , i.e., if the symbol � �does not appear in position

!

in

the string � and is
"

otherwise. Thus the bases in the

different positions are independent given � .
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Prob(Data

�

Model)

A sequence of strings � �� � � �� � �

is training data, i.e., of
known cases of members of a signal family. We take
them to be generated independently given � , is by
multiplication of the preceding expressions assigned
the probability

� � � �� � � �� � � �
�

� �
�

� � �
� � � � �

�
	

�



�� �
�

�� �
� �� � �	 �� � �� �
�

where � �� � �	 is the number of times the symbol � �ap-

pears on position

!

in

� �

.
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Prob(Data

�

Model �� �)

� ��� �� � � �� � �� �� 	 �
�


��
� � � 
� �� 	

�
�

� ��
�

� ��
�� ��� 	 �� � �
 	
�

where �� �� � 	

is the number of times the symbol � � appears on position

�

in � �� � � �� � �

.
The maximum likelihood estimate is

� �� �� � 	 � �� ���� 	
�

This will be shown during a later ’lektion’.
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Example: Promoter Regions

RNA polymerase molecules start transcription by
recognizing and binding to promoter regions upstream
of the desired transcription start sites. Unfortunately
promoter regions do not follow a strict pattern. It is
possible to find a DNA sequence (called the
consensus sequence) to which all of them are very
similar.
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Example: Promoter Regions

For example, the consensus sequence in the bac-

terium E. Coli, based on the study of 263 promoters,

is TTGACA followed by 17 random base pairs followed

by TATAAT, with the latter located about 10 bases up-

stream of the transcription start site. None of the 263

promoter sites exactly match the above consensus se-

quence.
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Weight Matrix Model

By constructing the weight matrix of the TATAAT region (n=6) we can compute the
probability of a DNA sequence � � �� � �� � � � � �� � and compute the probability

��� � � � � � 	�
 � � � � 
�� � � 	
This means that successive bases are thought as being generated independently from
the distributions in the weight matrix table. Similarly, we can compute using, e.g., a
weight matrix model of the signal family

��� � � � � � 	�� �� � 
 � � � � 
� � � 	

with weight matrix from a non-promoter region and compare
��� � � � � � 	
 � � � � 
� � � 	

��� � � � � � 	�� �� � 
 � � � � 
� � � 	 �

to decide in � is a member of the family.
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Markov Model �

A Markov model is a statistical ’counter hypothesis‘ to

weight models.

A C G T
A � � � � � � �� � � � � � � ��

C �� � � �� �� �� � � � � ��

G � � � � � � �� � � � � � � ��

T �� � � �� �� �� � � �� ��

The

matrix

�

contains

"� � 	
unknown probabilities that will

have to be learned from training data, i.e., of known
cases of member of a signal family.
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Prob

� � � � � � �

If 
� � � �� � � � �	� � 
 �� � �� �� 
 	�
where

�� 
 � � � �� � � � 	� � � �� � �� � � � 	 	�

then

� �� � � ��� � � � ��
� � � �� � � � �� 	 � �� 
 � �� 	 �
� ��

�� ��� � �� � �
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An Image of Practical Life Science
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Learning with Markov chains

��

�
�����������

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� � �� �� �� �� ��

�
�����������

We change the interpretation: the function � � � � � 	 is
regarded as a function of

�
(or the probabilities in

�

)
and called a likelihood function and denoted by

	 � � � 	

	 � � 	 � � ��
� � 	

�
� � �

� �� 
� � �� �

The maximum likelihood estimate of

�

is obtained by

maximizing

	 � � 	

as a function of

�

. 07/04/2003 – p.16/69



Learning with Markov chains

The maximum likelihood estimate

�� �� �of � �� �is

�� �� � �
� �� �

� �� for all

!

and
�

.

Here � �� �is the number of times the sequence
contains the pair of bases

� !� � 	
(in this order), i.e., the

number of transitions from
!

to

�

and � �is the number
of times the base

!

occurs in the sequence.

This will be shown during a later ’lektion’.
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Modelling with Markov chains

�� �� � �
� �� �

� �� for all

!

and
�

.

Here � �� �is the number of times the sequence
contains the pair of bases

� !� � 	
(in this order), i.e., the

number of transitions from
!

to
�

and � �is the number
of times the base

!

occurs in the sequence.
Hence Markov models assume that there is biological
information contained in the frequency of pairs of
bases following each other.
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An Image of Practical Life Science
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Learning & Parametric Inference

In maximum likelihood estimation we have regarded
the transition probabilities as parameters and used
training data to infer their values.
Inference: the process of deriving a conclusion from
from fact and/or premise.
In probabilistic modelling of sequences the facts are
the observed sequences, the premise is represented
by the model and the conclusions concern
unobserved quantities.
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Another Image of Practical Life
Science
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Words in a DNA sequence

Word means here a subsequence of a larger se-

quence. This is a unique subsequence, not a family

of signals.
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Words in A DNA sequence

Frequency of occurrence of specific short nucleotide
words (like GAGA) within part or all of a nucleotide
sequence is of interest for several biological reasons.

The occurrence of a word in unexpectedly large num-

bers in a segment may provide information about struc-

ture or function.
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Words in a DNA sequence

Information about structure or function:

� a segment of DNA may have originally been
formed by replication of smaller segments. Such
replication might be exact initially but might be
altered over time. But in regions where retention of
function is necessary, exact repeats would be
expected to occur.

� the occurrence of of repeated subsequences may
identify locations where an insert has been
introduced into the DNA sequence.
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DNA Words : statistical assumptions

Let

�

assume values in

�� � �� �� � �

and let
� � � � "� 	 	

.

�

is a nucleotide chosen at random. Hence the probability of
the occurrence of a word of length

	

is

�
	 �
"

	
	

�
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DNA Words : statistical assumptions

The DNA dice is biologically unreasonable as a model

for a whole genome, but can serve well as a statisti-

cal null hypothesis to detect important deviations from

random noise.
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(A) Occurrence of a word

We say that ’a word occurs at position
!

‘ (Like GAGA
in position 7 in the figure) if it is found to begin at
position

!

in a longer sequence.

A T T C C A G A G A A T G G C G A C A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

❈
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(A) Occurrence of a word

Let the random variable

� � � 	

be the number of
occurrences of a nucleotide word (like GAGA) of
length

	

(like

	 � 	

) within a nucleotide sequence of
length ,

	 �

. Then � � � 	 � "
is the maximum

value achievable by

� � � 	

.
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Occurrence of a word: overlap
capability (examples)

The word ACAC cannot occur more than 9 times in a sequence of length 20, because of

its ’overlap capability‘.

ACACACACACACACACACAC
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Occurrence of a word: overlap
capability (examples)

The word AAAA can occur between 0 and 17 times in
a sequence of length 20, because of its greater
’overlap capability‘. The word ACGT has no overlap
capability except in the trivial case.
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Occurrence of a word

Let the random variable

� � � 	

be the number of
occurrence of a nucleotide word of length

	

within a
nucleotide sequence of length . is thought to be
so large that end effects can be neglected. Let its
probability function be denoted by

��� � � � � ���� 	� � � 	 �

This does depend on the overlap capability (’ �’ (to

be defined)) and is therefore not a binomial probabil-

ity function.
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Overlap capability

We define the overlap capability of a word as follows.
Let � be a word, � � � � � � � � �, so that � �are its
nucleotides read from left to right.
The overlap capability � is a binary sequence

� � � � � � � � �, where � �is defined as follows:

� � � "

if it is possible for the word’s first

!

letters to
overlap its last

!

letters (in the same order) and � � � �

otherwise.
Overlap capability is also known as the autocorrelation
of a word.
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Overlap capability

The overlap capability � of � � � � � � � � � is a binary
sequence � � � � � � � � �, where � �is defined as follows:

� � � "

, if it is possible for the word’s first

!
letters to be

equal to its last

!

letters (in the same order) and � � � �

otherwise.
More formally

� � �

"

if �� � � � �� � �� � � "� � � �� !

�
elsewhere.
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Overlap capability: examples (Ewens
& Grant p. 169)

	 � 	

� � �

"

if �� � � 
 �� � �� � � "� � � �� !

�

elsewhere.

� � � � �� � 

GAGA

� " � "
GGGG

" " " "
GAAG

" � � "

GAGC

� � � "
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Number of Occurrences of a Word

We are not going to derive the probability function

�� � � � � �� � 	� � � 	
for

� � � 	

, the number of occurrence of a nucleotide
word of length

	

within a nucleotide sequence of
length . Instead we are going find

� � � � � � 	�

� ���� � � � � 	�
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� � � � �

, Expected Number of
Occurrences of a Word

Let �� � � 	 � �

and

�� �� � � �� �

�� �
��
�

�
�

if the word begins in position
�

	

otherwise.

Then


� � � 	 � �� � �� � � � � ���

and

� � 
� � � 	
 � � � �� 
 � � � �� 
 � � � � � � �� 
 �

�
�

� ��
��� � � �

the the word begins in position

� 	 � �� �� � � � �
�

� �
�
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� � � � �

, Expected Number of
Occurrences of a Word

The expected number of occurrences of a word

� � � � � 	� � �

"
	

�
�

does not depend on the overlap capability !
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�� � � � � �

, variance of the Number
of Occurrences of a Word

���� � � � � 	� �
�

�� �
�

�
� �
��� � � � �� �	

�
�

�� �
�

�
� �
� � � �� �	 �

�
�� �

� � � �	
�

�
� �
� � � �	

�
�

�� �
�

�� �
� � � �� �	 � �

�

"
	

� �
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�� � � � �

The correlations between the indicators
� �and

� �that
are near neighbors depend on �.

� � � �� ��� 	
is just the probability that the word occcurs at both po-

sition

!

and position

! � �
.
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�� � � � �

� If

� � � � � ��� � 	 � "� � � " 	

, then

� � � �� ��� 	 � � � � �

"
	

� ��

� If � �� � 	 � "� � � " 	 � � � �, then � is irrelevant, and

� � � �� ��� 	 �
"

	
� �
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Counting the cases in

�
� � �

�
� � �

�� � � � �

� There are � terms among the �
�

in� �� � � �
� � � � � �� �	 such that

! � �

.

� If � � "

, there are

� �
� � � 	

terms such that

� � ! � �

or

! � � � �

for

� � "� � � �� � ��� � 	 � "� � � " 	

.

� If � � 	

, there are

� � � �

� � � � � �
� � 	 	 �
� � 	 � " 	

remaining terms that do not depend on �.
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�
� � �

�
� � �

�� � � � �

�
�� �

�
�
� �

� � � �� �	

� � � � � � �
�

�
� � 	 	 � � � 	 � " 	 � � � �

�

� ��� � � � � � � � � �

� � �

�
� � � 	 � � � �

"
	

�
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�� � � � � �

, variance of the Number
of Occurrences of a Word

���� � � � � 	�

� � � �
� " � � � �
	

� � �
�

�
� � 	 	 �
� � 	 � " 	 � � � �

�

� ��� � � � � � � � � �

� � �

�
� � � 	 � � � �

"
	

�
�

In the right hand side the second term equals

�

if � � 	

and the third term equals

�

if � � "

. If

	 � "

, the third

term in the equation equals zero, and the variance is

that of a binomial R.V..
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�� � � � � �

, generalization

Let the the alphabet is generic (

�

symbols) and the

probabilities be � �� � � � ��� , and � be a word with

	

letters

with probabilities � ��� , � � "� � � �� 	
. Let

�� � �
� � � � ���

be the product of probabilities of the first

�

letters in �.

Then we insert in the preceding formula

�
� for

� � 
 �

�

and

�� for

� � 
 �
�

.
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Reference

The results about

� � � � � 	�

and

���� � � � � 	�
presented

above are due to
J. F. Gentleman and R. C. Mullin: The Distribution of
the Frequency of Occurrence of Nucleotide
Subsequences, Based on their Overlap Capability.
Biometrics, 45, pp. 35 � 52, 1989.
Gentleman and Mullin find also the full probability
distribution

��� � � � � ���� 	� � � 	 �
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(B) The length between one
occurrence of a word and the next
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(B) The length between one
occurrence of a word and the next

Let � be word, � � � � � � � � � with overlap capability �.

� � � � � � � � �.
Let

� � be the distance to the next occurrence of � after

� has occurred at

!

.
Let

�� � ��� 	 ��� �
� � � � � � � 	�

We are going to find a recursive formula for � � � ��� 	

.
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Some pertinent events

Let

� � be the distance to the next occurrence of � after

� has occurred at

!

.

�� � ��� 	 � � � � � � � 	�

Let

� � � occurs at

! � � but nowhere between

!

and

! � �

Then

� � � 	 � �� � ��� 	
.

07/04/2003 – p.48/69



More pertinent events

�� � occurs at

� ��� but nowhere between

�

and
� ��

and let

�� � occurs at

� ��

� � � � occurs at

� �� and

� � �

but nowhere between

�

and

� � �

Then

� � � � � � � �
� � � � � � �
� � �
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Decomposition of events

Decomposition

� � � � � � � �
� � � � � � �
� � �

yields, since the events are in the right hand side are
disjoint,

�� � ��� 	 � � � � 	 � � � � 	 �
� � �

�� �
� �� �	 �

We shall now compute the probabilities in the right

hand side of this expression.
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Decomposition of events: the cases

� � ���
�� � � �

�
� � 	

Let

" � � � 	 � "

.

� � � � � � � �
� � � � � � �
� � �

�� � ��� 	 � � � � 	 � � � � 	 �
� � �

�� �
� �� �	 �
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Decomposition of events: the cases

� � ���
�� � � �

�
� � 	

,
� �

i i+j

i+L

    i+1  i+2   i+3

s s s s1 2 3 4

1s s
2

s 3 s
4

1 < j   < y −1  < L−1

� � � 	 � � � � �

"
	

�
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Decomposition of events: the cases

� � ���
�� � � �

�
� � 	

,
� � �

i i+j

i+L

    i+1  i+2   i+3

s s s s1 2 3 4

1s s
2

s 3 s
4

1 < j   < y −1  < L−1 For" � � � � � " � 	 � "
we have that

� �� �	 � �� � � � 	 � � � � � �

"
	

� � �
�

since the overlaps are to be taken into account.
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��� �
� � �

for � � ��
�� � � �

�
� � 	

�� � ��� 	 � � � � 	 � � � � 	 �
� � �

�� �
� �� �	�

given for

" � � � 	 � "

we have

�� � ��� 	 � � � � �

"
	

�
�

� � �
�
� �

�� � � � 	 � � � � � �

"
	

� � �
�
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Decomposition of events: the cases

� �

,
� �

Let

	 � � .

� � � 	 � � � �
"

	
�
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Probability

� � �

;

� � � �
�

For

	 � � � � � 	

we have that

� �� � 	 � � 
�
� � 	 � 	 �

since the events that � occurs at
! � � and

! � �

but

nowhere between

!

and

! � �

are in this case independent.

i+yi i+j i+y−3

i+(y−L)i+L

    i+1  i+2   i+3

s s s s1 2 3 4 s1 s2 s3 s4

L  <  j <  y−L

s1 s2
s

3
s4
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Probability

� � �
;

� �
� � � � � �

For � � 	 � " � � � � � "

we have that

� �� �	 � �� � � � 	 � � � � � �

"
	

� � �
�

since for � � 	 � " � � � � � "
overlaps are to be taken

into account.

i+yi i+j i+y−3

i+(y−L)i+L

    i+1  i+2   i+3

s s s s1 2 3 4 s1 s2 s3 s4
3

s
2

ss1 4
s

y−L+1 <  j  < y −1
07/04/2003 – p.57/69



��� �
� � �

for � �

Hence for

	 � � .

� 
�
��� 	 �

"
	

	
�

"
	

	 � � 	
�� �

� 
�
� � 	 �

� � �

�� � � 	 � �
� 
�

� � 	 � 	 � � ��

"
	

� � �
�

and the recursion of Ewens and Grant is complete.
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(C) The waiting time to the first
occurrence of a word: beginning at

the origin

� 
�
��� 	 �

"
	

	
�

"
	

	 � � 	
�� 	

� 
 � � 	 �
� � �

�� � � 	 � �
� 
 � � 	 � 	 � � ��

"
	

� � �
�

This formula is due to Gunnar Blom and Daniel
Thorburn (1982), as the probability function of the the
waiting time

�� until the word has appeared, in the
sense that all the symbols have been seen, hence

�� � �� 	 � �

for � � 	

.
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The waiting time of a word: The
Markov Case

We consider a stationary Markov chain
� �

�

	 �
� � �

� � �� �� � � �� � 	

with the state space
�

and let

� ��� � 	 	 �



�� �
�

� � 
� �
� �

designate the probability that the chain should gener-

ate � � � � � � 
 after � � � � .
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The Markov Case

We denote by

��� � � 	 is the stationary probability of
observing � so that

�� � � 	 � � � � � 	 �

�
�� �

�
� � 
� �
� � �
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The Markov Case: The recursion

The probability function of the waiting time of the word �� �� � � � � � � �� 	
at time

�� �

in
a sample path of

�� � 	 �� � � , is for

� � �

� � � 	 � ��� � � 	 � 	 � � 	 ��
where

	 � �
� 
 �

� � �
� �
	 	 � � 
� � 
� �� � 	 � � � � 	 � � �
� � 	�

where � 
� � 
� � � 	 is the probability of transition from �� to �� in � steps, and

	 � �
� 
�

� �� 
 �� �
� � 	 	 � � � 
� � � � � � � � � � 	 � �� � 	 �

Furthermore, � �� 	 � 	
for

� � �

and � � � 	 � � � � � 	 .
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The Markov Case: The recursion

The result can clearly be derived in the same way as
the result by Blom and Thorburn was derived above
and is due to
S. Robin and J.J. Daudin (1999): Exact distribution of
word occurrences in a random sequence of letters.
Journal of Applied Probability, 36, pp. 179 � 193.
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The p.g.f. of the waiting time of a
word

Gunnar Blom and Daniel Thorburn (1982) derived also

the p.g.f. of the waiting time of a word.
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The p.g.f. of the waiting time of a
word

� 
�
��� 	 �

"
	

	
�

"
	

	 � � 	
�� 	

� 
 � � 	 �
� � �

�� � � 	 � �
� 
 � � 	 � 	 � � ��

"
	

� � �

�

	 	 � 
�
��� 	 � " �

� � 	
�� 	

� 
�
� � 	 � 	 	

� � �

�� � � 	 � �
� 
�

� � 	 � 	 � � ��

"
	

� � �

Here

" �
� � �

�
� �
�� � � � 	 �

�
�
� � � � � �

�� � � � 	

and we use this in the right hand side
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The p.g.f. of the waiting time of a
word

�

	 	 � 
�
��� 	 �

�

�� � � 	 � �
� 
�

� � 	 � 	 	
� � �

�� � � 	 � �
� 
�

� � 	 � 	 � � ��

"
	

� � �

Now we multiply this equality by � �

and sum over � :

	 	 � 
�
� � 	 �

�
�� �

	 � � � �

� � 	
� 
�

� � 	 ��

� 	 	
�

� � 	
� � �

�� � � 	 � �
� 
�

� � 	 � 	 � � ��

"
	� � � ��
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The p.g.f. of the time to the waiting
time of a word

� � �� � � � 	 �

�
� ��

� � � 
�
� � �

�� � � � 	 � � � � �

�
� � �

� 
�

� � � 
 � � �
�� � � � 	 �� � � 
 �

� �
� � 
�

�
� � �

can be rewritten (lots of details omitted) in the form

	 	 � 
�
� � 	 �

� 	
" � �

�
�� �

� 
�
� � 	 � " � � � �

� 	 	 � 
�
� � 	

	 � �
�� �

� � � 	 � �

"
	

�
�

�

	 	 � 
�
� � 	 �

� 	
" � �

� " � � 
�
� � 	 	 � 	 	 � 
�
� � 	

	 � �
�� �

� � � 	 � �

"
	

�
�
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The p.g.f. of the time to the waiting
time of a word

	 	 � 
�
� � 	 �

� 	
" � �

� " � � 
�
� � 	 	 � 	 	 � 
�
� � 	

	 � �
�� �

� � � 	 � �

"
	

�
�

If we solve this equation w.r.t. � � �
� � 	 we get �

����� � � ���

	

	
 � 	�� � �
 �� � � � �

where


 ��� � � �
�� � � �� �

(= the generating function of

the overlap capabilities).
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End of Lecture 6
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