
Assignments IV - Markovian modeling and Bayesian learning

16. Simulate a standard HMM with binary hidden state space and emissions
in X = {A,C,G, T} with transition and emission distributions of your liking.
The ’standard’here refers to the class of models where the emitted symbols are
conditionally independent given the hidden states. A simple way of defining
such a model is to consider a Markov(0), i.e. multinomial model, invariantly as
the emission distribution. Use Baum-Welch and Viterbi algorithms to estimate
the transition and emission probabilities from the emission data and compare
the results with the generating model. Investigate the effect of increasing the
observed emission sequence length. For instance, Matlab’s statistics toolbox
provides an implementation of these HMM training methods.

17. Compound random variable is generally understood as a random vari-
able with an underlying distribution equal to a parametric family whose (con-
tinuous) parameters vary stochastically over the observations made. An ex-
ample of such an observational process was encountered in the CTMC con-
text where Gamma distributed transition rate heterogeneity was considered. A
compound random variable typically arises as an infinite continuous mixture
of a parametric distribution when a mixing distribution is assumed to gener-
ate parameter values and the distribution is marginalized over them. Such
distributions can be used to represent extra variability in data which is not
captured by a standard parametric family. For instance, when the target is to
infer the probability related to a tail event, failure to take into account het-
erogeneity leads typically to an underestimate. Consider this phenomenon in
the context of Poisson(λ)-distribution. Simulate first λ1, ..., λn independently
from Gamma(1/2,1/2) distribution. Then, conditional on the simulated para-
meters, generate X1, ..., Xn independently from the Poisson(λ1),...,Poisson(λn)
distributions, respectively. Assume now erroneously that the data are generated
by a homogeneous Poisson(λ)-distribution and calculate the corresponding ML
estimate λ̂. Calculate then the corresponding Poisson probability of the event

that X > λ̂+2
√
λ̂. Compare this probability with the probability of exceeding

λ̂+ 2
√
λ̂ under the generating Poisson-Gamma model.

18. Beta-Binomial is another example of a compound random variable sim-
ilar to the Poisson-Gamma family discussed in assignment #17. In this distrib-
ution the mixture distribution Beta(α, β) introduces randomness for a Binomial
probability p. Consider an example where α = 5, β = 3, such that Ep = 5/8.
Calculate the probability of the event Y ≤ 2 for a Binomially distributed Y
where Y =

∑10
i=1Xi and Xi ∼ Bernoulli(p), independently for i = 1, ..., 10

using the fixed parameter p = Ep in the Binomial(10,p) distribution. Com-
pare this probability with the probability obtained when Y has Beta-Binomial
distribution with Beta(α = 5, β = 3). Compare also variances of the two distri-
butions.
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19. Using the class of variable length Markov chains, specify a sparse set of
transition probabilities for the state space X = {A,C,G, T}, such that these de-
fine a 2nd order stationary Markov chain model. The level of sparsity should be
such that only a small number of the transition probability matrix elements are
specified as parameters, whereas the remaining elements are simply assigned
as copies of the specified values. For an example, see the article by Mächler
and Buhlmann. Simulate a sequence from the VLMC model and estimate its
parameters. Compare the estimates to the ML estimates of the transition para-
meters when the data are assumed to be generated by an ordinary Markov(2)
chain.

20. In assignments #17 & #18, compound random variables introduced
by inifinite mixtures were considered. Finite mixture models are also very com-
monly occurring in probabilistic modeling. In fact, the standard HMM for emit-
ted symbols can be interpreted as a finite mixture model over the hidden states.
Finite mixture models also arise naturally in the context of Bayesian networks
and evidence propagation for discrete variables. To illustrate this, consider three
binary variables X,Y, Z for which the joint distribution is defined in terms of
the recursive factorization P (X,Y, Z) = P (Y |X,Z)P (X)P (Z), i.e. Y depends
both on X and Z, but the latter two are marginally independent (but dependent
conditional on Y ). Define such a joint model by specifying the needed probabil-
ity tables for the events. Assume now that we gain separate evidence on X and
Z (not related to our model) which assigns the following probability distribution
P ∗(X,Z) on the two variables: P ∗(X = 0, Z = 0) = 0.75, P ∗(X = 0, Z = 1) =
0.05, P ∗(X = 1, Z = 0) = 0.1, P ∗(X = 1, Z = 1). Assume we would condition
on the event X = 0, Z = 0 as hard evidence and then calculate the conditional
probability distribution P (Y |X = 0, Z = 0). How does the distribution look like
in the model you specified? Now, compare this distribution with that arising by
using the distribution P ∗(X,Z) as soft evidence and calculate the marginal dis-
tribution of Y by marginalizing in the mixture P (Y |X,Z)P ∗(X,Z) over X and
Z. What is the consequence of using e.g. the most probable event X = 0, Z = 0
as hard evidence if in reality we would only have the distribution P ∗(X,Z) over
the events?
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