
Assignments III - Markovian modeling and Bayesian learning

11. Choose a tree topology with 5 leaf nodes and simulate continuous-time
Markov chains (CTMCs) according to the Felsenstein F81 and the so called
Hasekawa-Kishino-Yano (HKY) time-reversible models. A particularly useful
program for such simulations is Seq-Gen (http://tree.bio.ed.ac.uk/software/seqgen/),
but there are several alternatives available as well (e.g. you can use code for R
or Matlab). Use the same stationary nucleotide distributions under both gener-
ating models and choose the generator matrix parameters such that the models
are not identical. Choose the time frame for the simulation such that a rea-
sonable amount of sequence differences is present in the data. Investigate and
compare the patterns of molecular variation that emerge under these models.
Investigate also the effect of simulated sequence lengths on the variation visible
in data by considering both short (say 100 bases) and long sequences (say 10,000
bases).

12. Repeat the simulation and investigations in assignment #11 by includ-
ing Gamma distributed transition rate heterogeneity in the models. Set the
parameter of the Gamma distribution equal to 1/2. Compare the amount of
variation present in this and the previous data, in particular pay attention to
the presence of sequence sites with inflated levels of variation compared to the
average.

13. For data sets in assignments #11 and #12 you know the time since
most recent common ancestor (TMRCA) of the sequences (since you simulated
them). Describe the so called molecular clock hypothesis (see e.g. the book on
phylogenetic models by Timo Koski) and investigate the effect of the Gamma
distributed transition rate heterogeneity on a rough quantification of TMRCA
by comparison with the case where no rate heterogeneity was present.

14. Simulate noisy Markov chain under the HMM specified on p. 217 in
Koski’s book on HMMs. This model is defined by considering the hidden process
as a Markov chain {Xn}∞n=0 with S = {0, 1} as the state space and the transition

probability matrix A =
(
1− p p
p 1− p

)
. The observations are then represented

by the process {Yn}∞n=0 with O = {0, 1} as the state space, such that

P (Y0 = o0, ..., Yn = on|X0 = s0, ..., Xn = sn;B)

=

n∏
l=0

ε|ol−jl| · (1− ε)1−|ol−jl|,

where the emission probability matrix equals B =
(
1− ε ε
ε 1− ε

)
. This model

is a noisy Markov chain where the probability of having an error in an observa-
tion equals ε. Consider how ML learning of transition parameters behaves on
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these data when ordinary Markov(1) chain model is used instead of the correct
model. Run the simulation with different error probabilities ε and investigate
whether the errors in ML learning under ordinary Markov(1) model behave
differently with different values of ε.

15. Consider a non-standard HMM introducing a segmental structure on a
DNA sequence. Assume a binary Markov chain as the state process {Xn}∞n=0,
with S = {0, 1} where the two states correspond to ’CpG rich’and CpG poor’
areas within an observed DNA sequence. Assume that the transition probability

matrix for the chain equals A =

(
1− p p
p 1− p

)
, where p is fairly small, say

0.01. Define then a first order Markov chain {Yn}∞n=0 with X = {A,C,G, T},
such that the invariant distribution of the emitted symbols reflects the ’CpG
rich’and CpG poor’states, that is states {C,G} have high probabilities when
Xl = 0 and low probabilities when Xl = 1, respectively. For details on a
similar Markov(0) model see the article by Braun & Muller. Investigate how
ML estimation of the transition probabilities behaves if the data from the HMM
are used in an ordinary stationary Markov(1) chain model. Visualize the output
generated by the HMM.
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