Assignments I - Markovian modeling and Bayesian learning

1. Consider a state space X = {A,C,G,T}. For each of the following con-
ditions, define a discrete time Markov chain (DTMC) in X with corresponding
properties and draw its network graph:

a) is reducible

b) has two communicating classes

¢) is irreducible, aperiodic and recurrent, then show what the stationary
distribution is.

2. Simulate 500 states from the DTMC you defined in 1c and demonstrate
how the empirical distribution over the states of the process converges to the
distribution derived in 1c. Report also commented code for simulation.

3. It is sometimes useful to try to relate frequentist probabilities with those
derived using Bayesian reasoning. Assume we have a population of size 1,000
individuals from K-Pax out of which 10 have a certain characteristic, say ’A’.
It is quite laborious to detect whether an individual has A’, and therefore, we
have constructed a machine which is fed with visual images of an individual
and it judges whether the individual is A’ or 'non-A’. We are quite clever
scientists and the machine is able with probability 0.99 to correctly yield an
"A’, when the individual in question has ’A’. That is, the machine yields an
answer ‘non-A’ with probability 0.01 in those cases. Furthermore, the machine is
equally accurate for detecting 'non-A’; which also happens with probability 0.99.
Assume now the machine spits out an A’ for a randomly chosen individual from
the mentioned K-Pax population. Using Bayes’ theorem calculate the posterior
probability that this individual in fact has the A’ characteristic. Then, relate
the answer to the empirical distribution of

#real "A’
#real 'A’+Hfake 'A’’

obtained through repeating the population experiment a large number of times.
The above fraction is the fraction of real A’ cases among all A’ cases indicated
by the machine when everyone among the 1,000 K-Pax individuals is tested. No-
tice that the 10/1000 fraction in the underlying population should be the same
in every replicate and that the statistical variation stems from the properties of
our machine.

4. In Section 3.1 of 'Bayesian statistics without tears’ (see course litera-
ture) fundamental theorem of simulation is connected with Baysian learning
that needs no input from calculus methods. This is useful for understanding
the mechanics of Bayes’ theorem when the random quantity in question is con-
tinuous. Assume 6 is the unknown parameter in a Binomial(n, ) experiment,
where n is a fixed constant (fixed by experimental design). Assume further we
observe x = 7 ’successful’ outcomes out of n = 10 in the experiment. Specify a



uniform prior Unif(0,1) for #. Define the posterior of  and simulate it by the
rejection method using the prior. Notice that you can first sample m points
uniformly in the unit rectangle (0,1) x (0,1), where the axes are 6 and u in
3.1. Then, each of these points is either rejected or accepted, such that the
accepted ones represent a sample from the posterior. Report your code and the
plots of the samples and compare the empirical CDF of the posterior with the
analytically derived form of the posterior which is a Beta distribution (see, e.g.
the notes by L. Gu, the book by Koski & Noble, or lecture slides for 'Bayesian
theory with applications’).

5. Consider the two sequences of 15 binary observations with categories
U/D: x=(U,D,U,U,D,D,D,U,D,UU,U,D,D,U),
y=(U,U0,U,U,U,U,U,U,D,D,D,D,D,D,D). Discuss consequences of assum-
ing such sequences to be generated by an i.i.d. Bernoulli process, how reasonable
is this? What are the particular consequences for a) prediction of future states
of the process such as x4, b) model learning, c¢) understanding uncertainty in
the phenomenon from which the observations are interpreted to be generated
and judging the qualitative structure of the model.



