
 
 
Alternative project proposals for Bayesian theory 2010: 
 
1. Implement the Bayesian predictive ‘spam’ classifier derived in the lecture materials and compare 
numerically its characteristics to the earlier derived maximum likelihood classifier when the amount 
of training data is a) small, b) large. Investigate the effect of the number of variables (#distinct 
words) included in the model by doing the analysis with 5, 10 and 15 variables. Report the 
distributions of the posterior classification probabilities and the classification accuracies for both 
methods. 
 
2. Use approximate Bayesian Model Averaging (BMA) to represent model uncertainty in logistic 
regression concerning which predictor variables among candidates should be included in the model. 
This can be done with the BMA package for R software: 
http://www2.research.att.com/~volinsky/bma.html and  
http://cran.r-project.org/web/packages/BMA/index.html 
 
You can choose from the following two options:  
a)  simulate a dataset with 10 candidate predictors and 50 observations per response group (binary 
response). Choose the generating model such that 3 independent predictors each have a small to 
moderate effect on the log-odds for the response variable, while the remaining 7 predictor 
candidates are all independent of the response. You can use independent distributions of your 
choice for these variables, but give them distinct shapes/locations.  
b) Use a suitable dataset from the literature to demonstrate how the BMA approach works in this 
context. For instance, various packages in R contain such datasets. 
 
3. Assignments T14 & T15 were concerned with model selection for contingency table data related 
to marginal independence and/or conditional independence of the observed variables. Extend the 
investigation of model posterior probabilities by examining how they behave in the same setting of 
3 binary variables as a function of the Dirichlet hyperparameter λ (assume all cells in the 
contingency table have the same value on λi) and the total number of observations n in the table. 
Choose two different models from the set of 8 possible models discussed in the assignment T15 and 
simulate data under them for a contingency table. By varying the number of observations and the 
Dirichlet hyperparameter, you can conclude how the two factors affect Bayesian inference in this 
context. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
4. Model comparison procedures may behave erratically when none of the proposed models 
provides a reasonable approximation to the distribution of the observed data. Consider a situation 
where two datasets arise as follows. In the dataset A, 50 values of parameter θ are first drawn from 
a Beta(α,β) distribution, and conditional on each value, X is sampled from the corresponding 
Bernoulli(θ) distribution. The dataset B is generated equivalently, except that θ is drawn from 
Beta(μ,ψ) distribution. Use Bayes factors and posterior model probabilities to compare the 
following two standard Binomial(n,θ) models for these data: M1 one stating that the θ is the same 
for datasets A and B, and the other model M2 stating that θ is different in the two datasets. You 
should use the two alternative priors Beta(1/2,1/2) and Beta(1,1) for the success probability in the 
Binomial models. Notice that under M2 you need to assign a Beta prior to both Binomial models 
(datasets A & B). Examine the behavior of the Bayes factors and posterior model probabilities as a 
function of the number of observations available, such that these model comparison quantities are 
successively calculated from the i first observations in both datasets, i = 1,…,50. Plot the two 
functions over the range [1,50]. Examine the effect of varying the values in pairs (α,β) and (μ,ψ), 
such that they are small (<2) or moderate (>10). Consider the three cases where the two Beta 
distributions are equal, have the same expectation and different expectations. Notice that you here 
wrongly assume standard Binomial models for your datasets, which in fact are overdispersed as the 
underlying Bernoulli probabilities vary over the observations. 
 
5. Examine in the context of models in project #3 above, the differences between asymptotic 
approximations of marginal likelihood, based on the two variants of Laplace approximation 
(formulae 4 & 5) and Schwarz approximation above formula (9) in Kass and Raftery (1995): 
http://www.andrew.cmu.edu/user/kk3n/simplicity/KassRaftery1995.pdf 
Derive the values of these approximations for the models considered in project #3 above and 
compare behavior of them and the corresponding approximate posterior model probabilities as a 
function of the total number of observations in the table. Pay in particular attention to how the 
approximations behave for small sample sizes. Simulate the data as described in project #3. 


