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Bruno de Finetti (1974,Theory of Probability):

”The only relevant thing is uncertainty - the extent of our knowledge and
ignorance. The actual fact of whether or not the events considered are in
some sense determined, or known by other people, and so on, is of no

consequence.”
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Rissanen (1987, p.223), ”As in Bayesian theory the class of models is not
intended to include any ”true”distribution for the data, but rather is only
regarded as a language in which the properties of the data are to be

expressed. This is a minimum requirement for any kind of learning, for how
can we find regular features in the data unless we can describe them.”
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Probabilistic reasoning

These slides are primarily based on a compilation of material from the books
Bernardo & Smith (1994), O’Hagan (1994), Schervish (1995), as well as addi-
tional material from lecturer’s own research and other sources.

Handling uncertainty is undoubtedly a major part of all human activities, both
scientific and non-scientific ones.

We have to make decisions and inference in situations where direct knowledge
is not available to us.

Subjective probability, concerns the judgements of a given person, conveniently
called You, about uncertain events or propositions.

The term random quantity is here used to signify a numerical entity whose
value is uncertain.
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The term probability measure or distribution (P ) will be used in a rather loose
manner (to avoid technicalities) to describe the way in which probability is
”distributed”over the possible values of a random quantity.

When the probability distribution concentrates on a countable set of values, X
is called a discrete random quantity, and we have the probability mass function
p(x) = P (X = x).

For continuous random quantities we have the regular density function repre-
sentation P (X ∈ B) =

∫
B p(x)dx.

Thus, to keep notation simple, p(·) is used both for mass and density functions.

Department of Mathematics and statistics, University of Helsinki, Spring 2010 4



Bayesian theory'

&

$

%

Example 1 Thumbtack tossing. Consider an old-fashioned thumbtack, which
is of metal with a round curved head, rather than with a colored plastic one.
The thumbtack will be tossed onto a soft surface (in order not damage it),
while we keep track of whether it comes to stop with the point up or point
down. In the absence of any information to distinguish the tosses or to suggest
that tosses occurring close together in time are any more or less likely to be
similar to or different from each other than those that are far apart in time,
it seems reasonable to treat the different tosses symmetrically. We might also
believe that although we might only toss the thumbtack a few times, if were
to toss it many more times, the same judgement of symmetry would continue
to apply to the future tosses.
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Under the above conditions, it is traditional to model the outcomes of the indi-
vidual tosses as independent and identically distributed (IID) Bernoulli random
quantities with Xi = 1 meaning that toss i is point up and Xi = 0 meaning
that toss i is point down.

In the frequentist framework, one invents a parameter, say θ, which is assumed
to be a fixed value in [0, 1] not yet known to us (see the remark below).

Then one says that the Xi are IID with P (Xi = 1) = θ. The so called
likelihood function of a sequence of n tosses will under this assumption take
the form

P (X1 = x1, ..., Xn = xn) =
n∏
i=1

θxi(1− θ)1−xi (1)

which is the joint distribution of the observed values xi conditional on θ.

The value of θ maximizing this function is the relative frequency of observing
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tosses point up, that is
∑n
i=1 xi/n.

Given an observed sequence, our best guess of the probability of observing point
up in the next toss, equals the relative frequency as well.

You immediately see what happens under scarce information, for instance, when
the only two recorded tosses we have available are point down.
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Given the earlier description of our simple thumbtack tossing problem, the
assumptions made in the above frequentist approach (IID and fixed unknown
θ) may appear unnecessary stringent.

In fact, this is remarkably true.

To derive a subjective probabilistic description of the behavior of the tosses, we
need a minimal assumption of symmetry, called exchangeability.

Recall that we considered the information to be obtained from any one toss in
exactly the same way we would consider the information from any other toss.

Similarly, we would treat the information to be obtained from any two tosses
in exactly the same way we would consider the information from any other two
tosses, regardless of where they appear in our sequence of tosses.

The same argument continues to apply to any subsequence of tosses.

These remarks of symmetry informally define the concept of exchangeability,
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which lies in the heart of the subjective probability description.

The concept and its generalization will be investigated formally later on.

As You might already have guessed, subjective probability description of the
current situation, will require Your probabilistic description about the uncer-
tainty related to the tosses (this will considered after the introduction of some
formal concepts).
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Remark 1 Meaning of the parameter in the thumbtack tossing problem.
A great deal of controversy in statistics arises out of the question of the mean-
ing of such parameters as in the above example. De Finetti (1974) argues
persuasively that one need not assume the existence of such things. Some-
times they are just assumed to be undefined properties of the experimental
setup which magically make the outcomes behave according to our probability
models. Sometimes they are defined in terms of the sequence of observations
themselves (such as limits of relative frequencies). The last one is particularly
troublesome because the sequence of observations does not yet exist and hence
the limit of relative frequency cannot be a fixed value yet.
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From the above example we see the close connection between frequency prob-
ability and so called classical inference, because the latter requires the data to
be repeatable.

An unbiased estimator, for instance, is defined to have expected value equal to
the parameter being estimated.

Such statement is conditional on the parameter taking a fixed but unknown
value, while the data are imagined as repeatable.

Typically, experimental data is thought to be repeatable, thus having frequency
probability distribution, while parameters governing the data behavior in such
framework are considered unique and unrepeatable.

Next example describes a situation where the frequency probability and classical
inference seem to provide a distorted view of uncertainty.
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Example 2 Evolution of species. Consider a group of placental mammal
species that are currently living on Earth. Evolutionary biologists working on
the field of phylogenetics (see Felsenstein, 2004), wish to reconstruct the course
of evolution among these species, by considering bits of DNA sequences sampled
from individuals representing each of the species. A mathematical model in a
form of stochastic process can be used to describe the evolution in terms of
DNA site mutations. Unknown parameters in such a model typically involve a
combinatorial object called tree, along with the branch lengths of the tree. The
former describes the relationships between the species by stating an explicit
neighborhood structure among them, while the latter represents the time that
has evolved between speciation events. It is clear that only one evolution has
taken place, it just happens to be unknown to us. Frequentist approach to
uncertainty assessment about such trees would steer our thinking towards an
idea of replicated earths where different evolutions have taken place - a kind of
an odd perspective.
Department of Mathematics and statistics, University of Helsinki, Spring 2010 12
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Example 3 Meltdown accident of a nuclear reactor. In engineering appli-
cations of reliability theory one often needs to consider the probability of an
extremely rare event, such as a catasrophe. For instance, in US governmental
regulations there is a statement that a power company aiming to produce elec-
tricity in a nuclear power plant, has to demonstrate that the probability of a
critical meltdown accident at the plant will be less than one to a million at any
time. It seems rather diffi cult to consider such an event from the frequentist
point of view, through an imagined parameter that magically makes systems
to break down every now and then, as we just keep track on them during a
suffi ciently long period of time. Note that two arbitrary observers of a power
plant might have very different subjective probabilities about the plausibility
of an accident. For instance, one of them might know that the responsible
operating engineers happen to be drunk in the control room every night, and
happily ignore their duties.
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The subjective view of probability is a much more powerful tool than the fre-
quentist view, since it enables us to describe uncertainty in an arbitrary situa-
tion, by not restricting us to consider things imagined to be repeatable.

This, of course, is conditional on the fact that we have the mental skills of
putting up the subjective probability description for the uncertainty we have at
hand, which is sincerely diffi cult in many cases.

However, it should not be surprising that an approach which is fundamentally
superior, requires more effort to be implemented.
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In addition to the subjective probability, there exists also another prominent
definition of probability in which a degree of belief in a proposition is considered.

This view is called the logical probability.

Recall that a subjective probability is a measure of one person’s degree of belief.

Another person may have a different degree of belief in the same proposition,
and so have a different probability.

The only constraint is that a single person’s probabilities should not be incon-
sistent, and therefore they should obey all the axioms of probability.
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We would expect two people’s degrees of belief in a proposition to differ if they
have different information, and in practice two people will never have exactly
the same information.

The question does not arise, therefore, whether two people with identical in-
formation might have different subjective probabilities, or whether there is a
unique degree of belief implied by a given body of information.

The latter view is taken in the theory of logical probability, which is then
concerned with trying to identify logical degrees of belief.

Proponents of logical probabilities see them as extending the theory of logic.

In logic, a body of information may imply either the truth or falsehood of a
given proposition, or may be insuffi cient to establish either truth or falsehood.
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Logical probability is a measure of degree of implication when the information
does not suffi ce to prove a proposition true or false.

Subjective and logical probabilities exist for any proposition, given any infor-
mation.

Note that, a proposition may assert that a certain ’event’occurs, but the notion
of a proposition is much more general than that of an event.

One difference between logical and subjective probabilities lies in propositions
which are theoretically provable, such as the proposition that the four-hundredth
digit in the decimal expansion of π is zero.

The logical probability of this proposition must be zero or one, and cannot
be determined without computing the decimal expansion as far as the four-
hundredth digit.
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Most adherents of subjective probability would allow the individual to have a
probability strictly between zero and one, if the decimal expansion of π is not
immediately available. A common reaction would be to assign equal degrees of
belief in the four-hundredth digit being 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9, and hence
to give the proposition of it being a zero a probability of one-tenth.

The Bayesian reasoning requires prior probabilities to be given explicit values.

A logical prior probability must be the unique value logically implied by the
available prior information.

Unfortunately, for almost every kind of prior information this value cannot be
found; the necessary theory simply does not exist.
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The exception is the case where prior information is non-existent or, more
accurately, where there is no prior information which is relevant to ”a thing like
the parameter θ in the first example”.

For this case there exists a body of mathematical theory which can be used to
construct prior distributions.

However, it is a matter of contention whether such a state of complete prior
ignorance can exist.

Nevertheless, many proponents of subjective probability, even if they do not
accept a true state of complete ignorance, will adopt these logical probabilities
as approximations whenever prior information is very weak.
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Bayesian reasoning in a nutshell

We examine first the Bayesian approach to probabilistic information processing
in the simplest form. More comprehensive treatment will be given later.

Consider two events, A and B. From the identity

P (A)P (B|A) = P (A,B) = P (B)P (A|B) (2)

we can form the simplest form of Bayes’theorem,

P (B|A) =
P (B)P (A|B)

P (A)
(3)
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This formula can be interpreted as follows:

We are interested in the event B, and begin with an initial, prior probability
P (B) for its occurrence.

We then observe the occurrence of A.

The proper description of how likely B is when A is known to have occurred is
the posterior probability P (B|A).

Bayes’theorem can be understood as a formula for updating from prior to poste-
rior probability, the updating consisting of multiplying by the ratio P (A|B)/P (A).

It therefore describes how a probability changes as we learn new information.
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Observing the occurrence of A will increase the probability of B if P (A|B) >

P (A). Using the law of total probability, we get

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc) (4)

where Bc denotes the complement of B (P (Bc) = 1 − P (B)). Further, we
have

P (A|B)− P (A) = {P (A|B)− P (A|Bc)}P (Bc). (5)

Assuming that P (Bc) > 0 (otherwise B is a certain event, and its proba-
bility would not be of interest), P (A|B) > P (A) if and only if P (A|B) >

P (A|Bc).
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Typically, the simple form of Bayes’theorem is given in a more general version.

Let B1, B2, ..., Bn be a set of mutually exclusive and exhaustive events.

Then we have simple generalization of (3)

P (Bi|A) =
P (Bi)P (A|Bi)

P (A)
(6)

=
P (Bi)P (A|Bi)∑n
i=1 P (Bi)P (A|Bi)

One can think of the different events Bi as a set hypotheses, one and only one
of which is true (if hypothesis i is true we say that event Bi occurs).

Observing event A changes the prior probabilities Bi to posterior probabilities
P (Bi|A).

Notice that the posterior probabilities sum up to one (only one hypothesis is
true).
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The denominator P (A) in (6) is a weighted average of the probabilities P (A|Bi),
the weights being the prior probabilities P (Bi) (which sum to one).

The occurrence of A increases the probability of Bi if P (A|Bi) is greater than
the average of all P (A|Bi)’s.

The hypothesis whose probability is increased most by A (in the sense of being
multiplied by the largest factor) is the one for which P (A|Bi) is highest.

The probabilities P (A|Bi) in (6) are known as likelihoods.

Specifically, P (A|Bi) is the likelihood of Bi given by A.

The primitive notion, that hypotheses given greater likelihood by A should
somehow have higher probability when A is observed to occur, has a compelling
logic which is clearly understood from the following examples (due to Anthony
O’Hagan).
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Example 4 I observe through my window a tall, branched thing with green
blobs covering its branches: why do I think it is a tree? Because that is what
trees generally look like. I do not think it is a man because men rarely look like
that. Converting into formal notation, A is the event that I see a tall, branched
thing partially covered in small green things, B1 is the event that it is a tree,
B2 that it is a man, and B3 that it is something else. The statement that
’trees generally look like that’implies that P (A|B1) is close to one, whereas
’men rarely look like that’means that P (A|B2) is close to zero. I convert
these facts into a belief that the object is far more likely to be, i.e. has a much
higher posterior probability of being, a tree than a man.
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Example 5 A less extreme example occurs when I hear a piece of music but
do not know its composer. I decide that the music is more probably Beethoven
than Bach because, to me, it sounds more like the music Beethoven typically
composed. That is, Beethoven has higher likelihood because a Beethoven com-
position is more likely to sound like this, and this suggests a higher probability
for Beethoven.
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This primitive notion of likelihood underlies one of our most natural thought
processes.

However, likelihood is not the only consideration in this reasoning.

Example 6 Example 4 continued. There are other things that might look like
a tree, particularly at a distance. I might be seeing a cardboard replica of a tree.
This hypothesis would have essentially the same likelihood as the hypothesis
that it is a tree, but it is not a hypothesis that I seriously entertain because it
has a very much lower prior probability.
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Bayes’theorem (in the simple form in (6)) is in complete accord with the natural
reasoning in Examples 4 and 6.

The posterior probabilities of the various hypotheses are in proportion to the
products of their prior probabilities and their likelihoods.

Bayes’theorem thus combines two sources of information: the prior information
is represented by the prior probabilities, the new information A is represented
by the likelihoods, and the posterior probabilities represent the totality of this
information.

Later on, when more probabilistic machinery has been introduced, we shall see
at a general level that the Bayesian approach provides a very natural information
processing system in empirical learning.
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Example 7 Medical diagnosis. In simple problems of medical diagnosis,
Bayes’ theorem often provides a particularly illuminating form of analysis of
the various uncertainties involved. For simplicity, let us consider the situation
where a patient may be characterized as belonging either to state H1, or to
state H2, representing the presence or absence, respectively, of a specified dis-
ease. Let us further suppose that P (H1) represents the prevalence rate of the
disease in the population to which the patient is assumed to belong, and that
further information is available in the form of the result of a single clinical test,
whose outcome is either positive (suggesting the presence of the disease and
denoted by D = T ), or negative (suggesting the absence of the disease and
denoted by D = T c).
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Example 8 Medical diagnosis continued. The quantities P (T |H1) and
P (T c|H2) represent the true positive and true negative rates of the clinical
test (often referred to as the test sensitivity and test specificity, respectively)
and the systematic use of Bayes’theorem then enables us to understand the
manner in which these characteristics of the test combine with the prevalence
rate to produce varying degrees of diagnostic discriminatory power. In particu-
lar, for a given clinical test of known sensitivity and specificity, we can investi-
gate the range of underlying prevalence rates for which the test has worthwhile
diagnostic value.
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Example 9 Medical diagnosis continued. As an illustration of this process,
let us consider the assessment of the diagnostic value of stress thallium-201
scintigraphy, a technique involving analysis of Gamma camera image data as
an indicator of coronary heart disease. On the basis of controlled experimental
study, Murray et al. (1981) concluded that P (T |H1) = 0.900, P (T c|H2) =

0.875 were reasonable orders of magnitude for the sensitivity and specificity of
the test.

Insight into the diagnostic value of the test can be obtained by plotting values
of P (H1|T ), P (H1|T c) against P (H1), where

P (H1|D) =
P (D|H1)P (H1)

P (D|H1)P (H1) + P (D|H2)P (H2)
, (7)

for D = T or D = T c. A graphical representation is given in Figure 1.1.
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Example 10 Medical diagnosis continued. As a single, overall measure of
discriminatory power of the test, one may consider the difference P (H1|T )−
P (H1|T c). In cases where P (H1) has very low or very high values (e.g. for
large population screening or following individual patient referral on the basis
of suspected coronary disease, respectively), there is limited diagnostic value in
the test. However, in clinical situations where there is considerable uncertainty
about the presence of coronary heart disease, for example, 0.25 ≤ P (H1) ≤
0.75, the test may be expected to provide valuable diagnostic information.
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Figure 1.1. Values of P (H1|T ) (thick solid line) and P (H1|T c) (thin dotted
line) against P (H1) (on x-axis).
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One further point about the terms prior and posterior is worth emphasizing.

They are not necessarily to be interpreted in a chronological sense, with the
assumption that ”prior” beliefs are specified first and then later modified into
”posterior”beliefs.

In any given situation, the particular order in which we specify degrees of belief
and check their coherence is a pragmatic one.

Thus, some assessments seem straightforward and we feel comfortable in mak-
ing them directly, while we are less sure about other assessments and need to
approach them indirectly via the relationships implied by coherence.

It is true that the natural order of assessment does coincide with the ”chrono-
logical”order in a number of practical applications, but is important to realize
that this is a pragmatic issue and not a requirement of the theory.
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As seen above, Bayes’ theorem characterizes the way in which beliefs about
”hypotheses”Hi, i = 1, ..., n, (earlier denoted by events Bi) are revised in the
light of new observations D.

In many cases we receive data in successive stages, so that the process of
revising beliefs is sequential.

As a simple illustration of this process, let us suppose that data are obtained
on two stages, which can be described by real-world events D1 and D2.

Now, revision of the beliefs on the basis of the first piece of dataD1 is described
by

P (Hi|D1) = P (D1|Hi)P (Hi)/P (D1), i = 1, ..., n (8)
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When it comes to the further, subsequent revision of beliefs in the light of
D2, the likelihoods and prior probabilities to be used in the Bayes’theorem are
now P (D2|Hi ∩ D1) and P (Hi|D1), for i = 1, ..., n, respectively, since all
judgements are now conditional on D1.

We thus have

P (Hi|D1 ∩D2) =
P (D2|Hi ∩D1)P (Hi|D1)

P (D2|D1)
(9)

where P (D2|D1) =
∑n
i=1 P (D2|Hi ∩D1)P (Hi|D1).
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From an intuitive standpoint, we would obviously anticipate that coherent re-
vision of initial belief in the light of combined data D1∩D2 should not depend
on whether D1 and D2 were analyzed successively or in combination.

This is easily verified by substituting the expression for P (Hi|D1) into the
expression for P (Hi|D1 ∩D2), by which we get

P (D2|Hi ∩D1)P (D1|Hi)P (Hi)

P (D2|D1)P (D1)
=
P (D1 ∩D2|Hi)P (Hi)

P (D1 ∩D2)
(10)

the latter being the direct expression for P (Hi|D1 ∩ D2) when D1 ∩ D2 is
treated as a single piece of data.

This procedure generalizes to any number of sequential stages where data are
observed.
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Independence concepts and graphs

Since the concept of independence (conditional and marginal) is very funda-
mental in statistical modelling, it will be useful to study some of its properties.

Also, the connection between mathematical objects called graphs and proba-
bilistic independence is very useful in Bayesian modelling.

For instance, the popular WinBugs software for Bayesian modelling exploits this
connection to a large extent.

Department of Mathematics and statistics, University of Helsinki, Spring 2010 38



Bayesian theory'

&

$

%

Let X and Y be random quantities and P their joint distribution.

The relation X ⊥ Y denotes that, under P , X and Y are (pairwise) indepen-
dent.

For measurable sets A,B, this relation implies that

X ⊥ Y

⇔
P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

⇔
P (X ∈ A|Y ∈ B) = P (X ∈ A)
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Consider now the random quantities X,Y, Z their joint distribution P .

The relation X ⊥ Y |Z denotes that, under P , X and Y are conditionally
independent given any realization of Z.

For measurable sets A,B, this relation implies that

X ⊥ Y |Z
⇔

P (X ∈ A, Y ∈ B|Z) = P (X ∈ A|Z)P (Y ∈ B|Z)

⇔
P (X ∈ A|Y, Z) = P (X ∈ A|Z)
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An important result which strengthens the interpretation of conditional inde-
pendences is the following.

Let the discrete random quantities X,Y, Z have a strictly positive probabilities
for all outcomes according to their joint distribution P .

Then, the conditional independence relation will satisfy the following marginal
independence condition

X ⊥ Y |Z,X ⊥ Z|Y ⇒ X ⊥ (Y, Z)
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There exists a general recursive representation of joint distributions, which is
often useful.

Assume there are k random quantities in a set V .

These are labelled in some order with integers as 1, ..., k.

Let the set V (i) = {1, ...i} denote the set of i and its predecessors, for any
i = 1, ..., k (with respect to the fixed order).

The joint distribution can be specified in terms of the recursive factorization

PV = P1P2|1 · · ·Pk−1|V (k−2)Pk|V (k−1) (11)
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A graph is a mathematical object, formed by a pair G = (V,E),

where V is finite set of vertices (nodes), and

E the edge set, which is a subset of the cartesian product V × V .

Here vertices represent random quantities.

The graphs considered here contain no loops, so that (v, v) /∈ E, for all v ∈ V .

In visualization of a graph, it is often convenient to use as labels of the elements
of V the set of integers {1, ..., k}.
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When both (v, v′) and (v′, v) belong to E for some distinct v and v′, the edges
are called undirected.

On contrary, when only one of these ordered pairs is in E, the edge is called
directed (arc or arrow).

Vertices {v′, v} are adjacent if there is an edge connecting them, otherwise
they are non-adjacent.

If a graph has only undirected edges it is called undirected, in which case it is
more convenient to represent the edges as unordered pairs {v, v′}.

When all edges are directed the graph is called directed.

A path is a sequence of vertices for which there is an edge (v, v′) ∈ E, for
every pair of successive elements {v, v′} ⊂ V .

A path is also a cycle if the first and last elements of the sequence are equal.
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In an undirected graph a cycle is chordless if only successive pairs of elements
in it are adjacent.

A directed graph is acyclic if it does not contain any cycles, such graphs are
typically called DAGs.

For directed edges it is relevant to consider the following two order-related
concepts.

If (v, v′) ∈ E, v is called a parent of v′, and v′ a child of v.

The set of parents of v is denoted by pa(v).

The ancestors an(v) of a vertex v ∈ V are the vertices from which there is a
path leading to v.
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We now turn to relating formally the concept of conditional independence to
graphs.

When a joint distribution P of V satisfies the structure specified by a DAG,
we can strengthten the recursive factorization as

PV = P1P2|1 · · ·Pk−1|V (k−2)Pk|V (k−1) (12)

=
∏
v∈V

Pv|pa(v) (13)

This means that v is conditionally independent of the remaining ancestors,
given its parents.

This powerful property of DAGs enables the construction of joint distributions
of very large node sets.

The DAGs are also a convenient (and currently fairly standard) way of commu-
nicating complex hierarchical statistical models.
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Undirected graphs are also useful in the context of representing independence.

To be able to explore this, we need some further notations.

The boundary bd(A) of A ⊆ V , is the set of vertices in V \A that have an
undirected edge to vertices in A.

For a subset A ⊆ V , the subgraph induced by A is GA = (A,EA) with
EA = E ∩ (A×A).

A graph G is complete when all pairs of vertices are adjacent.

A clique is a subset A ⊆ V , for which GA is complete and for any non-empty
B ⊆ V \A, GA∩B is not complete (GA is maximally complete).

A subset C ⊂ V separates the disjoint subsets A and B, if for every pair
v ∈ A, v′ ∈ B, all paths from v to v′ go through C.
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For an undirected graph G = (V,E) associated with a joint probability distri-
bution P for V , there are various Markov properties P may satisfy.

(1) Pairwise Markov property : v ⊥ v′|V \{v, v′} ⇔ {v, v′} /∈ E

(2) Local Markov property : for all v ∈ V, v ⊥ V \({v} ∪ bd(v))|bd(v)

(3) Global Markov property : for any triple (A,B,C) of disjoint subsets of
V such that C separates A from B in G, A ⊥ B|C

The strength of contraints imposed by different Markov properties varies in
general, and is given by the following theorem.

Theorem 1 For any undirected G and P , the markov properties satisfy (3)⇒
(2)⇒ (1)
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A fundamental part of the theory of undirected graphs is related to the decom-
position of graphs into subgraphs.

The following definitions are essential in the development of further concepts.

Definition 1 A partition V = A ∪ B ∪ C of the vertex set of an undirected
marked graph G forms a decomposition of G if

(i) C separates A from B

(ii) GC is complete

Definition 2 An undirected marked graph G is decomposable if

(i) G is complete or

(ii) There exists a decomposition (A,B,C) into decomposable subgraphsGA∪C
and GB∪C

A decomposable graph can be recursively split into its cliques by decomposi-
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tions.

Let C(G) denote the class of cliques of a decomposable graph.

The class of separators S(G) (intersections of successive cliques) is obtained
by a series of decompositions of G that leads into C(G).

A triangulated graph is such an undirected graph that it contains no chordless
cycles of length four or larger.

An important graph theoretical result is stated below for triangulated graphs.

Theorem 2 For an undirected graph G, the following conditions are equivalent

(i) G is decomposable

(ii) G is triangulated

(iii) every minimal separator of a pair of vertices induces a complete subgraph
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A particularly useful form of factorization is available for decomposable graphs,
for which the joint distribution can be represented as

P =

∏
c∈C(G) Pc∏
s∈S(G) Ps

(14)

where Pa is the marginal distribution of a ⊂ V .
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The is a close relation between undirected graphs and DAGs.

To investigate that we need som further concepts.

For a DAG G we define the moral graph Gm as the undirected graph obtained
from G by:

(i) replacing all directed edges by undirected ones

(ii) for any node v in G, with non-adjacent parents z ∈ pa(v) and z′ ∈ pa(v′),
inserting the edge {z, z′} into Gm.

The term moral graph refers to the ”marrying of parents”.
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The following theorem states a useful results for DAGs.

Theorem 3 If a probability distribution satisfies a recursive factorization ac-
cording to the DAG G, it factorizes with respect to the moral graph Gm and
therefore shares the global Markov property of Gm.

It should be noticed that the moral graph Gm on the whole vertex set may
obscure certain marginal independences present in a DAG G. These can be
deduced via the moral graphs on ordered segments of V , instead of the whole
vertex set.

Usefulness of the graph concepts combined with Markov properties is illustrated
with separate case studies.

Department of Mathematics and statistics, University of Helsinki, Spring 2010 53



Bayesian theory'

&

$

%

Subjective probability modeling

In our framework probabilities are always personal degrees of belief, in that
they are a numerical representation of an analyst’s or decision maker’s personal
uncertainty relation between events.

Moreover, probabilities are always conditional on the information available.

It makes thus no sense to qualify the word probability with adjectives such as
”objective”, ”correct”or ”unconditional”.
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As clearly stated in de Finetti (1974), to be able to use probability calculus
as a normative tool for the description of the characteristics of interest for
random quantities, one has to express individual degrees of belief (i.e. subjec-
tive opinions), expressed as probabilities about the uncertainty involved in the
considered situation.

That is, phrases such as ”I don’t know”, ”I can’t”or ”I don’t want to”cannot
be accepted as answers to the question concerning what one’s beliefs are.

The failure to express these probabilities will lead us outside the Bayesian par-
adigm (in the stringent sense).

However, in the literature Bayesian paradigm is often understood more widely,
including even cases where the subjective probabilities are replaced by formally
derived functions (this aspect will be considered more in depth later).
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Using generic notation we assume that the subjective degrees of belief corre-
spond to the specification of the joint distribution P (x1, ..., xn) of a set of
random quantities x = x1, ..., xn, represented by the joint density (or mass)
function p(x1, ..., xn).

This specification automatically leads, for 1 ≤ m < n, to the marginal joint
density

p(x1, ..., xm) =
∫
p(x1, ..., xn)dxm+1 . . . dxn (15)

and the joint density of y = xm+1, ..., xn (thought as yet unobserved), con-
ditional on having observed the particular values of z = x1, ..., xm, is

p(xm+1, ..., xn|x1, ..., xm) =
p(x1, ..., xn)

p(x1, ..., xm)
(16)

A predictive probability model for random quantities can be defined according
to the following.
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Definition 3 Predictive probability model. A predictive model for a se-
quence of random quantities x1, x2, ... is a probability measure P, which spec-
ifies the joint belief distribution for any subset of x1, x2, ... .

Consider now a sequence x1, x2, ... under the assumption of a predictive model
stating that for any n the joint density is given by

p(x1, ..., xn) =
n∏
i=1

p(xi) (17)

This model thereby states that the uncertain quantities are independent.

If we now consider the conditional density for 1 ≤ m < n, it takes the form

p(xm+1, ..., xn|x1, ..., xm) = p(xm+1, ..., xn) (18)

meaning that we cannot learn from experience within this sequence of interest.
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In other words, past data provide us with no additional information about the
possible outcomes of future observations in the sequence.

A predictive model specifying such independence is clearly inappropriate in con-
texts where we believe that the successive accumulation of data will provide
increasing information about future events.

Thus, in most cases a useful predictive model, i.e. the structure of p(x1, ..., xm),
ought to encapsulate some form of dependence among the individual random
quantities.

In general, there are a vast number of possible subjective assumptions about the
form of such dependencies, and here we are able to consider some commonly
used canonical forms.
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Suppose that, in thinking about P (x1, ..., xn), the joint degree of belief distri-
bution for a sequence of random quantities x1, ..., xm, an individual makes the
judgement that the subscripts or the labels identifying the individual random
quantities, are ”uninformative”.

The uninformativeness is in the sense that the same marginal distribution would
be specified for all possible singletons, pairs, triples etc., regardless of which
labels were happened to be picked from the original sequence (recall the thumb-
tack tossing in Example 1).

This leads us to the concept of exchangeability, formally defined below.
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Definition 4 Exchangeability. Random quantities x1, ..., xn are said to be
(finitely) exchangeable under a probability measure P when the corresponding
joint belief distribution satisfies

p(x1, ..., xn) = p(xπ(1), ..., xπ(n))

for an arbitrary permutation π of the labels {1, ..., n}. Further, an infinite
sequence x1, x2, ... is said to be infinitely exchangeable when every finite sub-
sequence is finitely exchangeable.
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For example, suppose that x1, ..., x100 are exchangeable.

It follows from the above definition that they all have the same marginal dis-
tribution.

Also, (x1, x2) has the same joint distribution as (x99, x1), and (x5, x2, x48)

has the same joint distribution as (x31, x32, x33), and so on.

The notion of exchangeability involves a judgement of complete symmetry
among all the observables x1, ..., xn under consideration.

Clearly, in many situations this might be too restrictive an assumption, even
though a partial judgement of symmetry is present, which should be evident
from the following example.
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Example 11 Tossing with different thumbtacks. Consider a scenario which
is similar to that of Example 1, except that we make ni, i = 1, ..., k, tosses
with thumbtacks of different material. For instance, the first thumbtack is
made of metal, the second of plastic, the third of kevlar and so on. We might
be involuntary to describe a sequence of observations under this scenario using
the complete symmetry assumption leading to exchangeability. On the other
hand, as before it should be reasonable to treat tosses made with the same
thumbtack as exchangeable.
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We now formally treat the subjective modeling problem of an infinitely ex-
changeable sequence of 0 − 1 (binary) random quantities (say, thumbtack
tosses) x1, x2, ... with xi = 0 or xi = 1, for all i = 1, 2, ... .

Theorem 4 Representation theorem for binary random quantities. If
x1, x2, ... is an infinitely exchangeable sequence of binary random quantities
with probability measure P, there exists a distribution function Q such that the
joint mass function p(x1, ..., xn) for x1, ..., xn can be written as

p(x1, ..., xn) =
∫ 1

0

n∏
i=1

θxi(1− θ)1−xidQ(θ) (19)

where

Q(θ) = lim
n→∞P [yn/n ≤ θ]

and yn =
∑n
i=1 xi, θ = limn→∞ yn/n.
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The interpretation of this representation theorem is of profound significance
from the point of view of subjectivist modeling philosophy. It is as if :

• The xi are judged to be independent, Bernoulli random quantities condi-
tional on a random quantity θ.

• θ is itself assigned a probability distribution Q(θ).

• By the strong law of large numbers θ = limn→∞ yn/n, so that Q may
be interpreted as ”beliefs about the limiting frequency of 1’s”.
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What the above says is that, under the assumption of exchangeability, we may
act as if, conditional on θ, the quantities x1, ..., xn are a random sample from a
Bernoulli distribution with parameter θ which corresponds to the joint sampling
distribution (the likelihood)

p(x1, ..., xn|θ) =
n∏
i=1

p(xi|θ) =
n∏
i=1

θxi(1− θ)1−xi (20)

where the parameter θ is given a prior distribution Q(θ).
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Notice that under this interpretation the prior states beliefs about what we
would anticipate observing as the limiting relative frequency.

Further, the assumption of exchangeability in the current framework consider-
ably limits via Theorem 4 our alternatives in the specification of a predictive
probability model.

Any choice must be of the form given by (19), where we have the freedom of
choosing the subjective beliefs about θ.

By ranging over all possible choices of the prior Q(θ), we build all possible
predictive probability models for the current framework.

We have thus established a justification for the conventional model building
procedure of combining a likelihood and a prior.

The likelihood is defined in terms of an assumption of conditional independence
of the observations given a parameter.
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This, and its associated prior distribution, acquire an operational interpretation
in terms of a limiting average of observables (here limiting frequency).

In many applications involving binary random quantities, we may be more in-
terested in a summary random quantity, such as yn = x1 + · · ·+ xn, than in
the individual sequences of xi’s.

The representation p(yn) follows easily from (19), since

p(yn) =
( n
yn

)
p(x1, ..., xn),

for all x1, ..., xn such that x1 + · · ·+ xn = yn.

We thus get

p(yn) =
∫ 1

0

( n
yn

)
θyn(1− θ)n−yndQ(θ)

This provides a justification, when expressing beliefs about yn, for acting as if
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we have a binomial likelihood with a prior distribution Q(θ) for the binomial
parameter θ.

The Bayesian learning process in this simple situation is compactly represented
by the following corollary.
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Corollary 5 Corollary to the Representation theorem for binary random
quantities. If x1, x2, ... is an infinitely exchangeable sequence of binary ran-
dom quantities with probability measure P, the conditional probability function
p(xm+1, ..., xn|x1, ..., xm) for xm+1, ..., xn given x1, ..., xm, has the form∫ 1

0

n∏
i=m+1

θxi(1− θ)1−xidQ(θ|x1, ..., xm) (21)

where

dQ(θ|x1, ..., xm) =

∏m
i=1 θ

xi(1− θ)1−xidQ(θ)∫ 1
0
∏m
i=1 θ

xi(1− θ)1−xidQ(θ)

and

Q(θ) = lim
n→∞P [yn/n ≤ θ]

and yn =
∑n
i=1 xi, θ = limn→∞ yn/n.
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We thus see that the basic form of representation of beliefs does not change.

All that has happened, expressed in conventional terminology, is that the
prior distribution Q(θ) for θ has been revised into the posterior distribution
dQ(θ|x1, ..., xm).

The conditional probability function p(xm+1, ..., xn|x1, ..., xm) is called the
posterior predictive probability function.

This provides the basis for deriving the conditional predictive distribution of a
generic random quantity defined in terms of the future observations.
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In a more general setup the representation theorem states for an infinitely ex-
changeable sequence of real valued quantities x1, x2, ... with probability mea-
sure P , that there exists a probability measure Q over the space Q of all dis-
tribution functions for the observable quantity, such that the joint distribution
function of x1, ..., xn can be written as

P (x1, ..., xn) =
∫
Q

n∏
i=1

F (xi)dQ(F ) (22)

where

Q(F ) = lim
n→∞P (Fn) (23)

where Fn is the empirical distribution function defined by x1, ..., xn.
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Thus, we may act as if we have independent observations x1, ..., xn conditional
on F , which is an unknown distribution function playing the role of an infinite-
dimensional parameter.

The belief distribution Q has in this case the interpretation of what we believe
the empirical distribution function Fn would look like for a ”large” number of
observations.

This result can be analogously extended to a finite dimensional Euclidean space
for vector valued random quantities.
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If, in particular, our beliefs are such that the distribution function F can be
defined in terms of a finite-dimensional parameter θ, the joint density of our
observations can be written as

p(x1, ..., xn) =
∫
Θ

n∏
i=1

p(xi|θ)dQ(θ) (24)

where p(·|θ) is the density function corresponding to the unknown parameter
θ ∈ Θ. By taking a step yet further, and letting p(θ) correspond to the density
representation of Q(θ), we obtain

p(x1, ..., xn) =
∫ n∏
i=1

p(xi|θ)p(θ)dθ (25)
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From the above we may deduce that

p(xm+1, ..., xn|x1, ..., xm) =

∫ ∏n
i=1 p(xi|θ)p(θ)dθ∫ ∏m
i=1 p(xi|θ)p(θ)dθ

(26)

=

∫ ∏n
i=m+1 p(xi|θ)

∏m
i=1 p(xi|θ)p(θ)dθ∫ ∏m

i=1 p(xi|θ)p(θ)dθ

where ∏m
i=1 p(xi|θ)p(θ)∫ ∏m
i=1 p(xi|θ)p(θ)dθ

= p(θ|x1, ..., xm) (27)

so that

p(xm+1, ..., xn|x1, ..., xm) =
∫ n∏
i=m+1

p(xi|θ)p(θ|x1, ..., xm)dθ (28)

The relation in (27) is just Bayes’theorem, which expresses the posterior density
for θ in the context of parametric model for x1, ..., xm given θ.
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By using the more compact notations about the ”future”y and the ”current”
observations z, we see that

p(x) =
∫
p(x|θ)p(θ)dθ (29)

p(y|z) =
∫
p(y|θ)p(θ|z)dθ

p(θ|z) =
p(z|θ)p(θ)

p(z)

In particular the role of Bayes’theorem is identified as a coherent learning step
about the unobservables when we pass from p(z) to p(y|z).
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Illustrations with probabilistic classifiers

To put the above theoretical franework into an applied context we consider
probabilistic classification.

Assume we wish to use Bayes’theorem and exchangeability to filter out spam
messages from email inflow.

Let’s first have a look at the solution derived by maximum likelihood estimation
combined with Bayes’theorem.
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Let the vector y = (y1, ..., yd) represent the information we have extracted
from a new email message represented by a sequence s = {s1, s2, ..., sT} of
strings (words).

Each yj is an indicator variable for a specific word (say ’HOT’) being present
in the message, i.e. yj = 1 if ’HOT’∈ s, and yj = 0 otherwise.

Assume we have in total defined d different words in a similar fashion.

Assume that we have previously examined a set of messages and determined
whether they represent spam (n1 messages) or not (n2 messages).

These two classes of n1 and n2 messages will be indexed by c = 1 and c = 2,
respectively.

We can call the previously examined messages training data.
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Information in each of these messages is condensed in the binary vector xi =

(xi1, ..., xid), where the element xij is defined equivalently to the above defi-
nition for yj, i.e. indicates the presence/absence of a specific word within the
message.

Define pcj as the probability of observing the word j in an arbitrary message
sampled from the population represented by class c.

In our previous notation we can define pcj = θcj.

Assume all d words appear in a message independently of each other, conditional
on θcj, j = 1, ..., d.

Using maximum likelihood approach we may now estimate θcj separately for
each j using the frequency data from the n1, n2 training messages.
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This gives

θ̂1j = n−1
1

n1∑
i=1

xij, (30)

and

θ̂2j = n−1
2

n2∑
i=1

xij, j = 1, ..., d. (31)

The maximum likelihood approach has thus delivered us a characterization of
the probability (likelihood) of the presence/absence pattern of words in any
future message sampled from the corresponding class.

Let z ∈ {1, 2} denote the unobserved event indicating from which class the
message with information y was sampled.
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The likelihood of y = (y1, ..., yd) in class c = 1 now equals:

p̂(y|z = 1) = θ̂
y1
11(1− θ̂11)1−y1θ̂

y2
12(1− θ̂12)1−y2 · · · θ̂yd1d(1− θ̂1d)1−yd(32)

=
d∏
j=1

θ̂
yj
1j(1− θ̂1j)

1−yj .

Similarly, we get for the other class

p̂(y|z = 2) =
d∏
j=1

θ̂
yj
2j(1− θ̂2j)

1−yj . (33)
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Let now p(z = 1) = 1− p(z = 2) be the prior probability that a message will
come from class c = 1.

Corresponding probability is thus defined for c = 2.

Depending on the situation, we might wish to set p(z = 1) = p(z = 2), or we
might wish to use as p(z = 1) the fraction of spam messages we anticipate to
receive among the total inflow.
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By feeding the above ingredients into Bayes’theorem we obtain the posterior
probability of the new message being spam:

p̂(z = 1|y) =
p̂(y|z = 1)p(z = 1)

p̂(y|z = 1)p(z = 1) + p̂(y|z = 2)p(z = 2)
. (34)

What we just have defined is generally known as the naive Bayes classifier based
on maximum likelihood rule.

We may wish use an additional ingredient based on decision theory, and flag
messages as spam only if the posterior probability p̂(z = 1|y) exceeds a pre-
specified threshold, such as 0.9, instead of just using the rule which assigns
messages to the class having highest posterior probability.
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REMARK! Even if the word indicators are highly dependent, the above classifier
may work surprisingly well.

Why could that be? Think about the situation where marginal probabilities
θ̂1j, θ̂2j are close to either 0 or 1. What happens to the approximation of the
joint distribution of the elements in y?
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The classifier we derived above does not follow strictly the principles of pre-
dictive learning as derived from axioms of probability, and therefore, it is not
surprising that one may encounter problems under various circumstances.

Consider the situation where word j does not occur in class c = 1 and word k
does not occur in class c = 2.

Then,

θ̂1j = 0 (35)

θ̂2k = 0.

Consequently, for any message that contains both words j and k, the posterior
probability equals zero for both classes, because the data are impossible under
both z ∈ {1, 2}.

Such a situation is easily encountered if the amount of training data (n1, n2)
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is small.

Instead of using the maximum likelihood approach presented above, we may
derive a classifier starting from the principles of predictive modeling.

Warning! Take a deep breath before reading the section below ;)
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Assume that the observed word patterns xi in the messages are unrestrictedly
infinitely exchangeable within class c = 1 (see Definitions 4.2, 4.3, and 4.13,
and Propositions 4.2 and 4.18 in Bernardo & Smith, 1994).

This assumption implies that, if we combine any permutation of the message
values x1j, ..., xncj, for a fixed j = 1, ..., d, with arbitrary corresponding per-
mutations over the remaining word indicators, the same predictive probability
mass function for the data xi, i = 1, ..., nc, is obtained. Furthermore, we also
obtain a characterization of the sequences x1j, ..., xncj in terms of the suffi -
cient statistics, which equal the observed number of word j among the training
messages in the class c.

Let θc = (θ)cj, j = 1, ..., d, be the vector of word frequencies in class c.

By assuming the unrestricted infinite exchangeability to hold in both classes we
get an explicit expression (see below for details) for the predictive distribution
for future class data:
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p(y|x1, ..., xnc) =
∫

Θc

p(y|θc)p(θc|x1, ..., xn1)dθc (36)

=
∫

Θc

p(y|θc)
p(x1, ..., xnc|θc)p(θc)∫

Θc
p(x1, ..., xnc|θc)p(θc)dθc

, (37)

where p(θc) is a joint prior distribution for the word frequencies in class c and
p(θc|x1, ..., xnc) is the corresponding posterior obtained by conditioning on
the observed training data.

Notice that the parameters in θc are integrated out because they are of no
interest in itself for this prediction problem, and the result is thus a simple
consequence of applying probability axioms. It is fairly common in probabilistic
prediction tasks that even if the parameters of a finite-dimensional model have
an operational meaning like here, they themselves are not target of inference.
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The contrast between (36) and the earlier predictive distribution based on max-
imum likelihood (32) becomes clear once considered from a probabilistic per-
spective.

The former addresses the predictive uncertainty by replacing the unknown pa-
rameters by point estimates, whereas the latter calculates predictive average
likelihood with respect to the posterior distribution obtained by combining ini-
tial uncertainty (prior p(θc)) with the empirical information.

Thus, we see that from the probabilistic perspective the predictive distribution
of y is necessarily an (infinite) mixture, where the variance is in general larger
than in the ordinary model with fixed parameter values.

The limiting behavior of the predictive distribution as a function of the amount
of training data is also illuminating and we will examine that explicitly after
developing the expression (36) under specific prior assumptions.
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Assume that for any component θcj in θc the prior is specified as the Beta(α, β)
distribution, which has the density

p(θcj) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1
cj (1− θcj)β−1, (38)

where the Gamma function is defined as Γ(α) =
∫∞
0 e−xxα−1dx.

The assumption that α, β are not indexed by j reflects that our prior character-
ization of the uncertainty is exchangeable for all word frequencies. A wide range
of different prior beliefs can be represented by choosing the hyperparameters
α, β suitably.

The Beta family of distributions is conjugate prior for the Bernoulli and Binomial
sampling models, which implies that the posterior belongs to the same family
of distributions.

For instance, the choice α = β = 1/2 reflects the belief that low and high

Department of Mathematics and statistics, University of Helsinki, Spring 2010 89



Bayesian theory'

&

$

%

word frequencies are more likely than intermediate ones, while still leading to
a symmetric prior distribution. There lies also a theoretical motivation behind
this particular prior and it can be derived using so called Jeffreys’and Perks’
principles, which will be discussed later. The density of this distribution has
the U-shape shown below.
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The generalized exchangeability assumption implies that we consider the d
word frequencies as conditionally independent and the corresponding joint prior
distribution then becomes

p(θc) = p(θc1) · · · p(θcd) (39)

=
d∏
j=1

p(θcj)

=
d∏
j=1

Γ(α+ β)

Γ(α)Γ(β)
θα−1
cj (1− θcj)β−1.

Under the above prior the posterior distribution is analytically tractable and
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equals

p(θc|x1, ..., xnc) =

d∏
j=1

p(x1j, ..., xncj|θcj)p(θcj)

d∏
j=1

∫ 1
0 p(x1j, ..., xncj|θcj)p(θcj)dθcj

=

d∏
j=1

nc∏
i=1

θ
xij
cj (1− θcj)1−xijp(θcj)

d∏
j=1

∫ 1
0

nc∏
i=1

θ
xij
cj (1− θcj)1−xijp(θcj)dθcj
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=

d∏
j=1

θ

∑nc
i=1 xij

cj (1− θcj)nc−
∑nc
i=1 xij Γ(α+β)

Γ(α)Γ(β)
θα−1
cj (1− θcj)β−1

d∏
j=1

∫ 1
0 θ

∑nc
i=1 xij

cj (1− θcj)nc−
∑nc
i=1 xij Γ(α+β)

Γ(α)Γ(β)
θα−1
cj (1− θcj)β−1dθcj

=

d∏
j=1

θ
α+
∑nc
i=1 xij−1

cj (1− θcj)β+nc−
∑nc
i=1 xij−1

d∏
j=1

∫ 1
0 θ

α+
∑nc
i=1 xij−1

cj (1− θcj)β+nc−
∑nc
i=1 xij−1dθcj

.

The above distribution is recognized as a product of d Beta distributions, where
the jth element equals Beta(α+

∑nc
i=1 xij, β + nc −

∑nc
i=1 xij) distribution.

The predictive distribution of the sample y within class c is now a product
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Beta-Bernoulli distribution defined as

p(y|x1, ..., xnc) =
d∏
j=1

∫ 1

0
θ
yj
cj(1− θcj)1−yjp(θcj|x1, ..., xnc)dθcj

=
d∏
j=1

∫ 1

0
θ
yj
cj(1− θcj)1−yj Γ(α+ β + nc)

Γ(α+
∑nc
i=1 xij)Γ(β + nc −

∑nc
i=1 xij)

×

×θα+
∑nc
i=1 xij−1

cj (1− θcj)β+nc−
∑nc
i=1 xij−1dθcj

=
d∏
j=1

Γ(α+ β + nc)

Γ(α+
∑nc
i=1 xij)Γ(β + nc −

∑nc
i=1 xij)

×

×
∫ 1

0
θ
yj+α+

∑nc
i=1 xij−1

cj (1− θcj)1−yj+β+nc−
∑nc
i=1 xij−1dθcj
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=
d∏
j=1

Γ(α+ β + nc)

Γ(α+
∑nc
i=1 xij)Γ(β + nc −

∑nc
i=1 xij)

×

×
Γ(yj + α+

∑nc
i=1 xij)Γ(1− yj + β + nc −

∑nc
i=1 xij)

Γ(α+ β + nc + 1)
,

where the last result again follows from the properties of the Beta integral.

Given the above (somewhat breath-taking) derivations, we are finally in the
position of presenting the Bayesian predictive classifier formula:

p(z = 1|y, x1, ..., xn1, x1, ..., xn2) = (40)

=
p(y|x1, ..., xn1)p(z = 1)

p(y|x1, ..., xn1)p(z = 1) + p(y|x1, ..., xn2)p(z = 2)
,

which weighs the predictive likelihoods of observing y under each class against
each other.

Typically, the predictive classifier would exhibit more uncertainty about the
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origin of y since the uncertainty about underlying word frequencies is explicitly
taken into account.

This is particularly important for applications where erroneous classification is
associated with large ’costs’or ofther negative consequences, and the applier
might be reluctant to classify a sample unless the classification uncertainty is
suffi ciently negligible.

We now investigate also the limiting behavior of the predictive classifier as a
function of the amount of training samples.

Firstly, recall the expectation and variance of the Beta distribution which equal:

Eθ =
α

α+ β

V ARθ =
αβ

(α+ β)2(α+ β + 1)
.
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Examples of Beta density with increasing sum of hyperparameters (50, 500,
5000), with the expectation fixed at 3/5, are shown below.
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The above figure provides a clue about the limiting behavior of the predictive
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distribution

p(y|x1, ..., xnc) =
d∏
j=1

∫ 1

0
θ
yj
cj(1− θcj)1−yjp(θcj|x1, ..., xnc)dθcj. (41)

As nc → ∞, variance of the posterior distribution diminishes and the distri-
bution becomes increasingly spiky at the maximum likelihood estimate θ̂cj =

n−1
c
∑nc
i=1 xij for each element of θ.

Thus, the predictive distribution will increasingly resemble the distribution
p̂(y|z = c) obtained earlier using the point estimates of the word frequen-
cies.
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Prior distributions

The most obvious practical difference between classical and Bayesian inference
lies in the Bayesian’s use of prior information, and careful specification of the
prior distribution is of great importance.

In order to improve techniques of subjective probability specification, psychol-
ogists have studied how people make probability judgements in practice.

In literature one can find several common errors, and it is clear that in general
people do not naturally have good habits of subjective probability assessment.

Probability modelers and others who regularly need to make careful, formal
specifications of probabilities should be explicitly trained to do so, and to avoid
known pitfalls.
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Most often, a statistical analysis of real data demands not the prior probability
judgements of a statistician, but of the scientist, experimenter or decision-maker
who has collected the data, and who has interest in the inferences. Thus, it is
important to have skills in prior elicitation from others.

Consider now specification of prior distributions.

For a discrete θ taking only a few possible values, it is possible to specify a
distribution by individually determining the probabilities.

Otherwise, such a procedure is very tedious, and unnecessarily inaccurate, even
for discrete θ.

For continuous parameters it is obviously impossible.
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Consider instead the effect of specifying a few summaries of Your prior distrib-
ution for θ.

For a scalar θ these might include the mean, mode and the standard deviation.

If we add to these Your assessment that the distribution is unimodal, p(θ) is
already rather precisely defined.

Any two distribution satisfying these conditions would generally look somewhat
similar.

Individual probabilities would not vary greatly.

More important, we would not expect posterior inferences to be sensitive to the
precise choice of prior from among the class satisfying these conditions.
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It should be stressed that Bayesian modelling, like any statistical analysis, re-
quires a fair amount of probabilistic knowledge.

Awareness of a wide variety of distributional forms and inference tools facilitates
the task of constructing meaningful models for data.

When priors are specified, one should keep in mind the purpose of the model,
i.e. what are we interested in?

Exactly like the purpose steers the choice of the likelihood, it should affect even
the choice of a prior.
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Example 12 Poisson prior with a fixed mean. Figure below shows the Pois-
son distribution with mean 25. It has mode at 24 and 25 and standard deviation
5. It is hard to construct another distribution with these values and the same
general, unimodal shape as the Poisson distribution but with radically different
probabilities. Within those constraints any plausible specification of a precise
distribution would be expected to produce very similar posterior inferences to
those induced by the Poisson prior.
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A simple and effective technique for specifying a prior distribution is to spec-
ify an appropriate selection of summaries, and then to adopt any convenient
distribution that conforms to these conditions.

Provided enough well-chosen summaries are specified then, for most forms of
data, posterior inference should be insensitive to he arbitrary final choice of
distribution.

Subjective specification of a distribution in this way is essentially the converse
of summarization.

Summarization seeks to express the principal features of a distribution in readily
understood terms.

The specification process takes information expressed in those same readily
understood terms and tries to find an appropriate distribution.
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In either direction, summaries are the natural way of conveying information
about θ.

For instance, to be told that the posterior mean of θ is 1.5 conveys a useful
point estimate of θ.

Conversely, one may make a prior estimate of θ by specifying the prior mean
E(θ).

However, it is important to understand the sense in which the mean represents
an estimate, or a location summary, of a distribution.

To be told that the mode is 1.5 conveys slightly different information, and to
be told that the median is 1.5, has yet more different information content.
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A tricky question is how to select a distribution satisfying the specified prior
summaries.

Given that at this point it is acceptable to use any distribution that agrees with
those summaries, the choice is arbitrary.

It is usually made on the grounds of convenience, in one of two senses.

It may just be the first distribution that springs to mind to fit the summaries,
or a distribution of a general form for which it is easy to fit them.

For instance, if prior mean and variance of a scalar θ are given, then an easy
choice is the normal distribution with the given mean and variance.

Or if θ is necessarily positive, we could instead fit a gamma distribution having
those moments.
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Although prior distributions are often chosen in the above described manner,
there is also a more important sense in which a choice of a prior can be conve-
nient.

Suppose that data are to be observed with distribution p(x|θ).

A family F of prior distributions for θ is said to be closed under sampling (or
sometimes conjugate) from p(x|θ) if for every prior distribution p(θ) ∈ F , the
posterior distribution p(θ|x) is also in F .

We encountered this feature in the thumbtack example, where Beta distribution
was used as a prior for the probability of observing a toss with point up.

The conjugate priors are often also useful for parameters at different levels of
hierarchical models.

We will examine closer choice of priors in case study from a clustering context
and the consequences of different choices (see the separate pdf document).
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Selection of prior distributions by formal rules

Earlier we have seen how the Bayesian paradigm provides a normative tool
for probabilistic data analysis by certain rules that are available for coherent
quantitative learning given empirical observations.

The problem, however, is that many real-world phenomena we are interested
in are of such complexity that the specification of one’s subjective beliefs in a
reasonable probabilistic form is a daunting task.

Also, use of the numerical methods necessary to obtain the sought answers
requires typically a fair amount of expertise.

Another issue that is often taken up in the ”choice of priors”debate, is that of
representation of ignorance in order not to ”bias”the information the data has
to say, for instance, about a parameter θ.
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In particular, such ”dream of objectivism”has led to the development of mathe-
matical rules which for specified problems aim to produce an automated answer
to the question: What is Your prior opinion?

The result, of course, is that anyone applying the same rule, will express the
same prior opinion for the problem at hand.

This, combined with the idea that the answers provided by the rules should be
minimally informative or as vague as possible, leans on the ”dream of objec-
tivism”.

The less information you provide for the problem, the more the data have to say,
and the answers then produced could be understood as approximate consensus
among possible modelers who have only vague prior opinions.

An extensive review of different rules to produce automated prior opinions (we
call them here reference priors) is given in Kass and Wasserman (1996).
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Two interpretations of reference priors are of main importance.

The first interpretation asserts that reference priors are formal representations
of ignorance.

The second asserts that there is no objective, unique prior that represents
ignorance.

Instead, reference priors are chosen by public agreement, much like units of
weight and length.

In this interpretation, reference priors are akin to a default option in a computer
package.

We fall back to the default when there is insuffi cient information to otherwise
define the prior.

In principle, we could construct a systematic catalogue of reference priors for a
variety of models.
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The priors in catalogue do not represent ignorance, but are useful in problems
where it is too diffi cult to elicit an appropriate subjective prior.

A data modeler may feel that the reference prior is, for all practical purposes,
a good approximation to any reasonable subjective prior for that problem.

The first mentioned interpretation of reference priors was earlier a prominent
view in Bayesian probability modeling.

However, currently the public opinion is in favor of the second interpretation,
and it is diffi cult to imagine anyone claiming that a particular prior can logically
be defended as being truly noninformative.

Instead, research in this field is focused on particular prior deriving procedures,
to see if any of them have advantages over the others in some practical sense.

If the parameter space is finite, then Laplace’s rule, or the principle of insuffi cient
reason, is to use a uniform prior that assigns equal probability to each point in
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the parameter space.

Use of uniform probabilities on finite sets dates back to the origins of probability
in gambling problems.

The terminology comes from references by Laplace to a lack of suffi cient reason
for assuming nonuniform probabilities.
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Example 13 Application of Laplace’s rule. Consider a scenario where You
have to specify probabilistic beliefs about how much the lecturer of this course
has money in his pockets at today’s lecture. Clearly, in a given currency, say
EUR, this sum must be finite. However, for illustrative purposes we may also
consider the possibility of accepting an infinite amount as an answer. If the
lecturer’s pockets are not bulging extensively, You might consider that no more
than one hundred 500 EUR bills could be fitted in the pockets without a notice.
If You then applied Laplace’s rule, the prior would specify the same degree of
belief to finding after inspection a single one cent coin as finding 50000 EUR.
I hope that You certainly have a suffi cient reason to be suspicious about such
a prior.
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Example 14 Application of Laplace’s rule continued. Now, consider the
case where the amount of money is allowed to lie in the interval [0,∞). If
we now apply a generalization of Laplace’s rule, a prior which is constant over
this interval is obtained. It is clear that the prior is improper in the sense
that it does not specify a probability density. However, similar priors have been
suggested and used in the statistical literature. A remarkable property of such
a prior is, for instance, that You assign ultimately much more belief in the event
that the amount of money exceeds 50000 EUR than in the event that it is at
most 50000 EUR.
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When applying rules such as Laplace’s to obtain a prior distribution one needs
to be aware of the pitfalls that might be encountered.

For instance, a refinement of the parameter space leads to different prior beliefs.

Let Θ = {θ1, θ2}, where θ1 denotes the event that there is life in orbit about
the star Sirius and θ2 denotes the event that there is not.

Clearly, Laplace’s rule gives P (θ1) = P (θ2) = 1/2.

Let now Ω = {ω1, ω2, ω3}, where ω1 denotes the event that there is life
around Sirius, ω2 denotes that there are planets but no life, and ω3 denotes
that there are no planets.

Laplace’s rule gives P (ω1) = P (ω2) = P (ω3) = 1/3, so that the probability
of life has fallen considerably.
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To avoid this type of problems, one should use scientific judgement to choose
a particular level of refinement that is meaningful for the problem at hand.

Another problem appears when applying a uniform prior to a parameter which
is continuous, namely that the prior is not invariant under transformation.

If we start with a Uniform(0,1) distribution for φ, then θ = log φ will not have
a uniform distribution.

To avoid such paradoxes under Laplace’s rule, we need to determine a privileged
parametrization or change our prior opinion if we change the parametrization.
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The uniform prior beliefs are also be obtained when applying the maximum
entropy principle in the case with finite parameter space, where no further
constraints are imposed on the parameters.

So called Shannon entropy of a distribution p(θ) is defined as

hp = −
∑

p(θ) log p(θ) (42)

and it is a central concept in information theory.

For any discrete event space the entropy is maximized for the uniform distrib-
ution.

In the continuous case, however, one needs to choose a suitable base measure
dP according to which the entropy is defined.

This, in turn is almost as diffi cult as the choice of a prior so that the maximum
entropy principle has restricted application in continuous problems.
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A widely considered approach to deriving reference priors is the Jeffreys’method
for location-scale problems and its several later ramifications.

Let I(θ) denote the Fisher information matrix, defined under specific regularity
conditions as

I(θ)ij = −E
(

∂2l

∂θi∂θj

)
(43)

where l is the log-likelihood function.

Notice that the above expectation is over the sample space.

If there are location parameters in the model, say labeled by µ1, ..., µk, and
some additional parameters (possibly including scale parameters) θ, then the
prior Jeffreys derived becomes

p(µ1, ..., µk, θ) ∝ det(I(θ))1/2, (44)
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where I(θ) is calculated holding the location parameters fixed.

Notice that due to the invariance property of the Fisher information, the above
prior is invariant under one-to-one transformations of the parameters in θ.

A general drawback of reference priors is that they typically do not correspond
to probability measures on the parameter space Θ, but simply to functions
(often called improper priors), say g(θ) of θ.

So in the strict sense, any analysis based on such prior opinions falls automat-
ically outside the Bayesian paradigm.

Nevertheless, many scientists have accepted the use of improper priors as an
approximation to a strict Bayesian analysis, and indeed, in many cases the
approximations are sensible.

For inference about a fixed-dimensional parameter θ the introduction of an
improper prior g(θ) need not be as prohibitive as might be expected at a first
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glance. In such cases the prior opinion is often expressed as

p(θ) ∝ g(θ) (45)

where the proportionality means that the prior distribution is understood as
proportional to a real-valued function g(θ) for which

∫
Θ g(θ)dθ 6= 1, but

which satisfies ∫
p(x|θ)g(θ)dθ <∞ (46)

Under this assumption the ”posterior”

p(x|θ)g(θ)∫
p(x|θ)g(θ)dθ

(47)

will be a well-defined probability measure since the unknown ”proportionality
constant” cancels in the above formula.

In many cases the ”Bayesian inference” (proceeding with the paradigm as if
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g(θ) was a real prior) based on such procedure can be shown to have acceptable
properties in the statistical sense.

Intuitively, this can be understood since g(θ) is typically a close approximation
(or a limit) to a real, vague prior density.

However, there are also numerous cases where the performance is unacceptable,
so caution needs to be taken whenever reference priors are used (in fact the
same argument applies to proper priors as well).

We will return to the issue of choosing priors automatically in a later section.
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What is good inference?

Classical inference theory is very concerned with constructing good inference
rules.

For instance, since any function of the data can formally serve as a classi-
cal estimator of a parameter, it is necessary to identify criteria for comparing
estimators, and for saying that one estimator is somehow better than another.

The primary concern of basic Bayesian inference is entirely different, since the
objective is to extract information concerning the model parameters from the
posterior, and to present it helpfully via effective use of summaries.

This procedure should obey rules of good communication.

Summaries should be chosen to convey clearly and succintly all the features of
interest.
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In this framework it is not possible to construct a formal mathematical structure
to measure how good inference is.

We cannot even say what we mean by ”interesting features of the posterior
distribution”.

Interest is very dependent on context.

We can give examples of the sorts of features that are likely to be of interest,
develop a strategy to identify them, and construct good summaries to display
them, but interest often resides in the unusual or the unexpected.

When we have a complex, multidimensional posterior distribution, we can never
be sure that we have summarized it exhaustively.

This is one aspect of the statistician’s work that relies heavily on experience.

In Bayesian terms, therefore, a good inference is one which contributes effec-
tively to appreciating the information conveyed by the posterior distribution.
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Professor Daniel Thorburn, at the Department of Statistics, Stockholm Uni-
versity, once defined Bayesian inference like a sharp knife. Such a device is
extremely helpful when one wishes to carve a nice boat out of a piece of wood.
On the other hand, the same device in less careful hands may result in a deep,
bleeding cut. Certain other means of inference he categorized as a plastic knife
instead. Such a device is not of much use in carving, but even a careless person
can use it without harming himself.
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Hierarchical models and partial exchangeability

In the previous sections we have investigated various kinds of justification for
modeling a sequence of random quantities as a random sample from a para-
metric family with density p(x|θ), together with a prior distribution Q(θ) for
θ.

However, in order to concentrate on the basic conceptual issues, we have thus
far restricted attention mostly to the case of a single sequence of random
quantities labeled by a single index, and unrelated to other random quantities.

Clearly, in many areas of modeling applications the situation will be more com-
plicated than this, and we need to elaborate the basic formulation.

A case study with occurrence patterns of cancers illustrates the usefulness of a
hierarchical modeling approach (see the separate example pdfs).
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Suppose, for example, that several treatments are administered in a clinical
trial.

From each treatment group we will make some observations.

It may be plausible to model the observations within each treatment group as
exchangeable, but it would seem strange to model all observations as exchange-
able.

For each treatment group, we might develop a parametric model as we have
done earlier.
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A hierarchical model for this example involves treating the set of parameters
corresponding to the different treatment groups as a sample from another pop-
ulation.

Prior to seeing any observations, we can model the parameters as exchangeable.

This would mean that we could introduce another set of parameters to model
their joint distribution.

These second-level parameters are typically called hyperparameters.
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Example 15 Normal response in different treatment groups. Suppose that
there are k treatment groups. Let xij stand for the observed response of subject
j in treatment group i. We might invent parametersM1, ...,Mk and model the
responses xij as conditionally independent random normal quantities N(µi, 1)

given (M1, ...,Mk) = (µ1, ..., µk). We could then model M1, ...,Mk as a
priori exchangeable with distribution N(θ, 1) given θ. Here, θ is a hyperpara-
meter for which we need to specify a belief distribution. Notice that here we
have only one θ regardless of the value of k.
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The intuitive concept of how hierarchical models work is the following.

Suppose that the data comprise several groups, each of which we consider to
be a collection of exchangeable random quantities.

From the data in each group, we obtain direct information about the corre-
sponding parameters.

Thinking of the hyperparameters as known for the time being, we then update
the distributions of the parameters using the data, to get posterior distributions
for the parameters via Bayes’theorem.

Future data (in each group) are still exchangeable with the same conditional
distributions given the parameters, but the distributions of the parameters have
changed. In fact, the distribution of each parameter (given the hyperparame-
ters) has now been updated using only the data from its corresponding group.

Bayes’theorem can now be used again to find the posterior distribution of the
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hyperparameters given the data.

The marginal posterior of the parameters given the data is found by integrating
the hyperparameters out of the joint posterior of the parameters and hyperpa-
rameters.

This is how the data from all groups combine to provide information about all
of the parameters, not just the ones corresponding to their own group.

It is the common dependence of all parameters on the hyperparameters that
allows us to make use of common information in updating the distribution of
all parameters.

In theory, the updating of information can be performed as follows.

Let future observations again be denoted by y and the current observations by
z.

Let θ be the parameters and ψ the hyperparameters.
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The joint distribution of (z, θ,ψ) is intuitively specified by recursive condition-
ing as

p(z, θ,ψ) = p(z|θ,ψ)p(θ|ψ)p(ψ) (48)

The posterior density of the parameters given the hyperparameters is

p(θ|z,ψ) =
p(z|θ,ψ)p(θ|ψ)

p(z|ψ)
(49)

where the density of the data given the hyperparameters alone is

p(z|ψ) =
∫
p(z|θ,ψ)p(θ|ψ)dθ. (50)

The marginal posterior of the parameters can be found from

p(θ|z) =
∫
p(θ|z,ψ)p(ψ|z)dψ (51)
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where the posterior density of ψ given z is

p(ψ|z) =
p(z|ψ)p(ψ)

p(z)
(52)

and the marginal density of the data is

p(z) =
∫
p(z|ψ)p(ψ)dψ (53)

Finally, under the assumption of conditional independence between the future
y and current observation given the parameters and hyperparameters, the pre-
dictive distribution of y can be written as

p(y|z) =
∫ ∫

p(y|θ,ψ)p(θ|z,ψ)p(ψ|z)dθdψ. (54)
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As we saw in Example 11 where tosses were made with different thumbtacks,
exchangeability in its basic formulation may not be a reasonable assumption in
situations with built-in heterogeneity in the observation scheme.

The generalization of exchangeability to account for such heterogeneity is a
rather deep issue, and there is no universal definition we could rely on.

Hence, consideration of partial exchangeability is much dependent on the par-
ticular modeling situation under investigation.
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Definition 5 Unrestricted exchangeability for binary sequences. Let xi(ni)
denote a vector of binary random quantities xi1, ..., xini, i = 1, ...,m. Se-
quences of binary random quantities xi1, xi2, ..., i = 1, ...,m, are said to be
unrestrictedly exchangeable if each sequence is infinitely exchangeable and, in
addition, for all ni ≤ Ni, i = 1, ...,m,

p(x1(n1), ...,xm(nm)|y1(N1), ..., ym(Nm)) =
m∏
i=1

p(xi(ni)|yi(Ni)) (55)

where yi(Ni) = xi1 + · · ·+ xiNi, i = 1, ...,m.
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In addition to the exchangeability of the individual sequences, this definition
encapsulates the judgement that, given the total number of successes in the
first Ni observations from the ith sequence, i = 1, ...,m, only the total for the
ith sequence is relevant when it comes to beliefs about the outcomes of any
subset of ni of the Ni observations from that sequence.

The unrestricted exchangeability implies that

p(x11, ..., x1n1
, ..., xm1, ..., xmnm) (56)

= p(x1π1(1), ..., x1π1(n1), ..., xmπm(1), ..., xmπm(nm)) (57)

for any unrestricted choice of permutations πi of {1, ..., ni}, i = 1, ...,m.
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For example, given 15 deaths in the first 100 patients receiving Drug 1 (N1 =

100, y1(N1) = 15) and 20 deaths in the first 80 patients receiving Drug 2
(N1 = 80, y1(N1) = 20), we would typically judge the latter information to
be irrelevant to any assessment of the probability that the first tree patients
receiving Drug 1 survived and the fourth one died (x11 = 0, x12 = 0, x13 =

0, x14 = 1). Given the definition of unrestricted exchangeability, we may
establish a generalization of the earlier stated representation theorem.
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Proposition 6 Representation theorem for several sequences of binary
random quantities. If xi1, xi2, ..., i = 1, ...,m, are unrestrictedly infinitely
exchangeable binary random sequences with joint probability measure P , there
exists a distribution function Q such that

p(x1(n1), ...,xm(nm)) =
∫

[0,1]m

m∏
i=1

ni∏
j=1

θ
xij
i (1− θi)1−xijdQ(θ) (58)

where yi(ni) = xi1 + · · ·+ xini, i = 1, ...,m, and

Q(θ) = lim
all ni→∞

P

[(
y1(n1)

n1
≤ θ1

)
∩ · · · ∩

(
ym(nm)

nm
≤ θm

)]
. (59)
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Let us investigate, for simplicity, a modeling situation under the above scenario
with m = 2.

Our belief model will be completed by the specification of Q(θ1, θ2) whose
detailed form will, of course, depend on the particular beliefs considered appro-
priate.

Two examples of beliefs are as follows:

• Knowledge of the behavior of one of the sequences would not change beliefs
about outcomes in the other sequence, so that we have the independent
form of prior specification Q(θ1, θ2) = Q(θ1)Q(θ2).

• The limiting relative frequency for the second sequence will be necessary
greater than that for the first sequence, so that Q(θ1, θ2) is zero outside
the range 0 ≤ θ1 < θ2 ≤ 1.
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Example 16 Heterogeneous thumbtack example continued. Suppose we
make tosses with k = 2 thumbtacks made of different materials. We can
model the parameters θi, i = 1, ..., k, as exchangeable Beta(µλ, (1 − µ)λ)
random quantities. Here µ is like the average probability of observing a toss
with point up and λ is like a measure of similarity, since the larger λ is, the more
similar will θi’s be. The posterior distribution of θi given (µ, λ,

∑ni
j=1 xij) is

Beta(µλ+
∑ni
j=1 xij, (1−µ)λ+ni−

∑ni
j=1 xij). Correspondingly, the posterior

density of (µ, λ) is proportional to

p(µ, λ)
Γ(λ)k

Γ(µλ)kΓ((1− µ)λ)k
× (60)

×
k∏
i=1

Γ(µλ+
∑ni
j=1 xij)Γ((1− µ)λ+ ni −

∑ni
j=1 xij)

Γ(λ+ ni)
. (61)
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Basic Bayesian inference procedures

We have earlier considered representation and revision of beliefs as the basis of
empirical learning.

Here we shall investigate some simple examples.
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Example 17 Single observation from a normal distribution. Let x have a
normal distribution N(θ, v) with unknown mean θ and known variance v, and
let the prior distribution for θ be N(m,w). Let the precision parameters be
λ0 = 1/v and λ1 = 1/w. Then,

p(x|θ, v) =
1√
2πv

exp(− 1

2v
(x− θ)2) (62)

p(θ|m,w) =
1√

2πw
exp(− 1

2w
(θ −m)2).

By multiplying together the prior and the likelihood, and expanding the squares,
we get the exponential

exp
(
−1

2
λ0(x2 − 2xθ + θ2)− 1

2
λ1(θ2 − 2θm+m2)

)
. (63)
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The exponential can be further written as

−1

2
λ0x

2 + λ0xθ −
1

2
λ0θ

2 − 1

2
λ1θ

2 + λ1θm−
1

2
λ1m

2 (64)

= −1

2
(λ0 + λ1)θ2 + θ(λ0x+ λ1m)− 1

2
(λ0x

2 + λ1m
2)

= −1

2
(λ0 + λ1)

θ − 2θ
λ0x+ λ1m

λ0 + λ1
+

(
λ0x+ λ1m

λ0 + λ1

)2
 + c

where c does not depend on θ. Since the constants cancel in

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

, (65)

the posterior is recognized as the density function of the normal distribution

N

(
λ0x+ λ1m

λ0 + λ1
, λ0 + λ1

)
, (66)
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where the mean is a weighted average of prior mean m and observation x.
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Therefore the posterior mean (as well as mode and median) is a compromise
between the prior information and the sample information.

We see also that each source of information is weighted proportionately to its
precision.

Consequently, the posterior mean will lie closer to whichever source has the
stronger information.

If, for instance, prior information is very weak, expressed by λ1 being close to
zero, then the posterior mean will be close to x.

The posterior precision is the sum of the prior and data precisions, reflecting
the combination of information from the two sources.

The posterior information is stronger than either source of information alone.
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Example 18 Several observations from a normal distribution. In the pre-
vious example we had only a single observation available for making inference
about the mean of the distribution. However, typically, we would utilize several
observations. Let x1, ..., xn be conditionally independent observations from a
normal distribution N(θ, 1) with unknown mean θ and known variance 1. Sup-
pose the prior distribution for θ is again N(m,w), i.e. the precision parameter
is λ = 1/w. The likelihood function can be written as

p(x|θ) = (2π)−n/2 exp

−n
2

(θ − x̄)2 − 1

2

n∑
i=1

(xi − x̄)2

 , (67)

where x̄ = n−1∑n
i=1 xi is the sample mean. Multiplying the likelihood and

prior together and simplifying yields the following expression for the numerator
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of the posterior formula,

exp

(
−n+ λ

2

(
θ − λm+ nx̄

λ+ n

)2
)
, (68)

thus, the posterior isN(λm+nx̄
λ+n , 1/(λ+n)). We see that the posterior variance

decreases (i.e. the precision increases) as the sample size increases, and similarly
that the dependence on the prior mean decreases as well.
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Example 19 Predictive distribution of a future observation. Let us con-
tinue analysis of the previous example by considering the predictive density of
a future observation xn+1

p(xn+1|x) (69)

=
∫
p(xn+1|θ)p(θ|x)dθ (70)

=
∫

1√
2π

exp
(
−1

2
(x− θ)2

)√
n+ λ√

2π
exp

(
−n+ λ

2

(
θ − λm+ nx̄

λ+ n

)2
)
dθ

=

√
n+ λ√

2π(n+ λ+ 1)
exp

(
− n+ λ

2(n+ λ+ 1)

(
y − λm+ nx̄

λ+ n

)2
)
,

which is the density of the normal distribution N(λm+nx̄
λ+n , 1 + 1/(λ + n)).

Thus, we see that the excess uncertainty in the predictive distribution, which is
due to the ”estimation” of the unknown parameter θ, vanishes as the sample
size tends to infinity. This procedure is in perfect harmony with intuition about
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how information is gathered and utilized.
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Example 20 Observations from a Poisson distribution. Let x have the
Poisson distribution with unknown mean θ,

p(x|θ) =
θx

x!
e−θ, (71)

and suppose that the prior density has the Gamma(α, β) form

p(θ) =
αβθβ−1

Γ(β)
e−αθ, θ > 0. (72)

by combining the prior and the likelihood we enter into the Gamma(α+1, β+x)
posterior. When the likelihood comprises n observations x1, ..., xn

p(x|θ) =
θ
∑n
i=1 xi∏n

i=1 xi!
e−nθ,

use of the same prior as above, gives us the Gamma(α + n, β +
∑n
i=1 xi)

posterior. The mean of this distribution equals β +
∑n
i=1 xi/(α+ n) and the
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variance β +
∑n
i=1 xi/(α+ n)2.
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Example 21 Bayesian estimation of Shannon entropy. We now consider
a considerably more complicated inference situation than encountered in the
previous examples, taken from Yuan and Kesavan (1997). Recall from the
previous chapter the concept of the entropy for a discrete random quantity x
taking values conveniently labeled by a finite set of integers {1, ..., s} associated
with a probability distribution p =(p1, ..., ps) satisfying pi > 0, i = 1, ..., s,
and

∑s
i=1 pi = 1. The entropy is defined as

h = −
s∑
i=1

pi log pi. (73)

Here we use the natural logarithm in the definition of entropy, however, other
bases are also often used in the literature. If the true distribution is known, then
the calculation of the entropy is straightforward. In practice, however, we often
have to estimate h from data under no or vague knowledge about the underlying
probability distribution p. Suppose we have frequency data generated from a
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multinomial distribution p, leading to the likelihood( n

n1 · · ·ns

)
p
n1
1 · · · p

ns
s (74)

where n =
∑s
i=1 ni and

(
n

n1···ns

)
is the multinomial coeffi cient. We recall

from earlier that the maximum likelihood estimate p̂i of pi is provided by the
observed relative frequency ni/n, i = 1, ..., s. Apparently, this procedure leads
to the entropy estimate

hn = −
s∑
i=1

p̂i log p̂i. (75)

While the above estimate may be deemed satisfactory for large n relative to
s, its properties could be improved upon when the converse is true. From
the definition of entropy we see that the values of x having zero observed
frequencies make no contribution to the estimate hn.
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Assume we have a prior guess about the unknown distribution p, say π =

(π1, ..., πs), with
∑s
i=1 πi = 1, πi > 0. We could now use the Dirichlet

D(απ1, ..., απs) distribution to describe our prior beliefs, where the parameter
α is a measure of our confidence about our guess. A larger value of α implies
more concentration of the prior around (π1, ..., πs). If we do not have any prior
knowledge, a uniform prior D(1, ..., 1) could be used.

Under the above Dirichlet prior we get an explicit expression for the posterior
mean of the entropy, which equals

hB = −
s∑
i=1

απi + ni
α+ n

[ψ(απi + ni + 1)− ψ(α+ n+ 1)] , (76)

where ψ(t) = Γ′(t)/Γ(t) is the digamma function. When α is large compared
with n, hB is mainly determined by the prior, and consequently, the contribution
of the data is small. With the increase of n, the behavior of hB is as that of
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hn. When the prior is uniform we get the expression

hB0
= −

s∑
i=1

1 + ni
s+ n

[ψ(ni + 2)− ψ(s+ n+ 1)] . (77)
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Robustness and sensitivity

A major question in any application of Bayesian methods is the extent to which
the inferences are sensitive to possible mis-specification of the prior distribution
or the likelihood.

And if different specifications lead to different inferences, can we determine
which is the ’correct’or ’better’specification?

In most real applications of probability modeling, it has to acknowledged that
both prior distribution and likelihood have only been specified as more or less
convenient approximations to whatever the investigator’s true belief might be.

If the inferences from the Bayesian analysis are to be trusted, it is important to
determine that they are not sensitive to such variations of prior and likelihood
as might also be consistent with the investigator’s stated beliefs.
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In arriving at a particular parametric model specification, by means of whatever
combination of formal and pragmatic judgements have been deemed appro-
priate, a number of simplifying assumptions will necessarily have been made
(either consciously or unconsciously).

Therefore, it would always be prudent to try to review the judgements that
have been made. For instance, one might ask questions like:

• Is it reasonable to assume that all the observables form a ”homogeneous
sample”, or might a few of them be ”aberrant” in some sense?

• Is it reasonable to apply the modeling assumptions to the observables on
their original scale of measurement, or should the scale be transformed to
logarithms, reciprocals, or whatever?

• When considering temporally or spatially related observables, is it reason-
able to have made a particular conditional independence assumption, or
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should some form of dependence be taken into account?

• If some, but not all, potential covariates have been included in the model,
is it reasonable to have excluded the others?

Several procedures for checking robustness are discussed in the literature. How-
ever, their suitability depends firmly on the modeling situation at hand, which
means that a general discussion is diffi cult at the level of the current material.
Instead, this topic will be examined through computer examples.
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Model comparison, Part I

The choice of an appropriate structure to represent features observed in data
is an inherent part of data analysis.

In statistical modeling this corresponds to the choice of an appropriate proba-
bility model and necessitates formulation of the model structure and often also
estimation of its dimension.

The question of how one should compare probability models is to a large extent
a philosophical issue.

In broad terms a widely accepted Occam’s razor principle says that unnecessary
parts should be eliminated from a scientific theory, i.e. the parts which cannot
be empirically verified.

In the current context it is quite natural to restrict ourselves to the empirical
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verification, although other forms, such as the use of logic, can be considered
in general.

We shall see that the Occam’s razor principle is automatically built in the
subjectivist’s approach.
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In reality, in general, there always exists a discrepancy between models and
observations.

Such a discrepancy might already arise from the consideration of the accuracy
of some measurements that are made and give rise to our data.

Second, since all data analysis is performed by computers where any numbers
are represented by finite precision binary digits, it is natural to view models
involving densities for continuous variables as approximations for the data.

Nevertheless, to give us guidance in the construction of tools for model com-
parison, it is sometimes useful to imagine a ”computer game scenario”, where
the observations are generated from a model which belongs to a class of models
known to us.

The uncertainty in this situation arises from the fact that we don’t know which
of the models can be seen as responsible for the data.
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This imaginary construct enables us to distinguish good ideas (model compar-
ison strategies) from the less good ones in the ideal world.

What one really hopes then, is that the solutions found to be good in the com-
puter game scenario, would continue to be good in the real world if our models
are suffi ciently good descriptions of the regularities involved in the phenomenon
under investigation.

Conversely, if a model comparison strategy turns out to be a poor one in the
ideal world, we expect it to be a poor one even in the real world.

From the Bayesian point of view, one could easily say that models exist in our
heads, representing subjective beliefs about some phenomenon.

They are abstract constructs aimed to give perceivable structures to compli-
cated real-world phenomena that can be communicated with others.

The typical statistical interpretation of models as data generating machines is
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not very realistic or elaborate in this respect (remember the earlier quote of
Rissanen).
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At least three broad goals can be distinguished in statistical analysis:

• Estimation of unknown parameters

• Model comparison

• Prediction.

We will see that for some approaches these goals can in fact be united.
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Model comparison, Part II

Given the fundamental concepts from the previous chapters, let us now consider
the model comparison issue in the Bayesian framework.

To proceed as concretely as possibly, assume that all elements in our class of
belief models I are such that the joint density of the observations may be
described in terms of a finite-dimensional parameter.

Thus, the predictive distributions (also called marginal likelihoods) for the al-
ternative models are described by

pi(x) = p(x|Mi) =
∫
pi(x|θi)pi(θi)dθi, i ∈ I (78)
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Notice, that each element in I constitutes according to our beliefs a possible
predictive model for the data.

In order to proceed coherently in the Bayesian framework we then have to build
an overall belief model for x by assigning weights to the different alternatives,
so that our subjective beliefs are represented probabilistically.

The overall model takes the form

p(x) =
∑
i∈I

P (Mi)p(x|Mi) (79)

where P (Mi) are the weights of the individual belief models such that∑
i∈I

P (Mi) = 1 (80)

.
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In the literature there has been a considerable amount of discussion about the
interpretation of the weights P (Mi).

On one hand, they may be considered as a priori probabilities that the corre-
sponding models are ”true”.

On the other hand, they can simply be regarded as means of representing the
degree of dominance (or perhaps functions of odds) of a subjective belief over
another.

We first investigate the case where the only action to be taken is a choice of a
model Mi, i ∈ I.
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Let ω be an unknown of interest, such that the utility function for our decision
problem has the form u(Mi, ω).

Using the decision theoretic approach we know that the optimal decision is to
choose the model M∗ which maximizes the expected utility according to

ū(M∗|x) = sup
i∈I

ū(Mi|x) (81)

where

ū(Mi|x) =
∫
u(Mi, ω)p(ω|x)dω, i ∈ I (82)

where p(ω|x) represents the beliefs about ω having observed x. These have
further the form

p(ω|x) =
∑
i∈I

pi(ω|Mi,x)P (Mi|x) (83)
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where

P (Mi|x) =
P (Mi)p(x|Mi)∑
i∈I P (Mi)p(x|Mi)

(84)

is the posterior predictive weight or subjective posterior probability of the indi-
vidual model being the ”true”model.

Notice that there is certainly nothing wrong in the latter definition if one re-
stricts the interpretation to an observer’s narrow (or perhaps naive) perception
of the world.
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If we let the above unknown of interest ω be simply the ”true”model among
those in I, the decision problem is concretized as follows.

A natural utility function takes the form (0-1 loss)

u(Mi, ω) =

{
1 if ω = Mi
0 if ω 6= Mi

(85)

It then follows that

pi(ω|Mi,x) =

{
1 if ω = Mi
0 if ω 6= Mi

(86)

and

p(ω|x) =

{
P (Mi|x), if ω = Mi
0, if ω 6= Mi

(87)
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The expected utility of the choice Mi is

ū(Mi|x) =
∫
u(Mi, ω)p(ω|x)dω (88)

= P (Mi|x)

As might be intuitively expected we see that the optimal decision in this case
is to choose the model with the highest posterior probability.

It can be shown that, under the ”computer game scenario”mentioned earlier,
P (Mi|x) → 1 for the ”true” model as n → ∞, meaning that the Bayes
procedure is consistent.

In the case where only two models (say M1 and M2) are available for compar-
ison, a measure of plausibility is the Bayes factor specified below.
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Definition 6 Bayes factor. Given two models M1 and M2 for data x, the
Bayes factor in favor of M1 (and against M2) is give as the posterior to prior
odds ratio

B12 =
p(x|M1)

p(x|M2)
=
P (M1|x)

P (M2|x)
/
P (M1)

P (M2)
(89)

Intuitively, the Bayes factor says whether the data have increased (B12 > 1)

or decreased (B12 < 1) the odds on M1. Clearly, if the prior weights are
uniform, the Bayes factor is simply a ratio of the posterior weights. A thorough
discussion about the properties and guidelines for interpretation of the Bayes
factor can be found in Kass and Raftery (1995).
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Example with Bayes factor

Consider again the thumbtack tossing or the cigar box sampling problems dis-
cussed earlier.

We proceed now by assuming that two sequences of n1 and n2 binary ob-
servations are made, respectively, and there are two potential models for the
data.

Each of the sequences is such that it could potentially be modeled with the
thumbtack tossing scenario, however, the thumbtack properties might be dif-
ferent in the two situations.

M1 states that all n1 + n2 observations are exchangeable.

M2 states that the two sequences of n1 and n2 observations are separately
exchangeable, but not when combined.
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This can be given an operational interpretation that the generating probability
distribution is distinct for the two sequences under M2 and the same under
M1.

The operational parameters forM2 are labeled as θ and ψ, whereas forM1 we
only have a single parameter, say θ.

Given M1, the predictive probability of the data can be written as

p(x1, ..., xn1, xn1+1, ..., xn1+n2|M1) =
∫ 1

0

n1+n2∏
i=1

θxi(1− θ)1−xip(θ)dθ.

(90)

If the prior is defined equal to the conjugate Beta(α, β) distribution as previ-
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ously, then the predictive distribution will take the explicit form

p(x1, ..., xn1, xn1+1, ..., xn1+n2|M1)

=
Γ(α+ β)Γ(α+

∑n1+n2
i=1 xi)Γ(β + n1 + n2 −

∑n1+n2
i=1 xi)

Γ(α)Γ(β)Γ(α+ β + n1 + n2)
.

Under model M2 it is necessary to specify two distinct prior distributions, one
for both parameters θ and ψ.

The predictive distribution of the data is then

p(x1, ..., xn1|M2)p(xn1+1, ..., xn1+n2|M2) (91)

=
∫ 1

0

n1∏
i=1

θxi(1− θ)1−xip(θ)dθ ×

×
∫ 1

0

n1+n2∏
i=n1+1

ψxi(1− ψ)1−xip(ψ)dψ.
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If the Beta(α, β) prior is assigned to both θ and ψ, the predictive distribution
can be written as

p(x1, ..., xn1|M2)p(xn1+1, ..., xn1+n2|M2)

=
Γ(α+ β)Γ(α+

∑n1
i=1 xi)Γ(β + n1 −

∑n1
i=1 xi)

Γ(α)Γ(β)Γ(α+ β + n1)
×

Γ(α+ β)Γ(α+
∑n1+n2
i=n1+1 xi)Γ(β + n2 −

∑n1+n2
i=n1+1 xi)

Γ(α)Γ(β)Γ(α+ β + n2)
.
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Finally, the Bayes factor for model comparison now equals

p(x1, ..., xn1, xn1+1, ..., xn1+n2|M1)

p(x1, ..., xn1|M2)p(xn1+1, ..., xn1+n2|M2)

=

Γ(α+β)Γ(α+
∑n1+n2
i=1 xi)Γ(β+n1+n2−

∑n1+n2
i=1 xi)

Γ(α)Γ(β)Γ(α+β+n1+n2)

Γ(α+β)Γ(α+
∑n1
i=1 xi)Γ(β+n1−

∑n1
i=1 xi)

Γ(α)Γ(β)Γ(α+β+n1)
×

×
Γ(α+β)Γ(α+

∑n1+n2
i=n1+1 xi)Γ(β+n2−

∑n1+n2
i=n1+1 xi)

Γ(α)Γ(β)Γ(α+β+n2)

.

Behavior of this Bayes factor will be examined during the lectures using ’the
cigar box simulation scenario’.

Also, one course exercise focuses on investigating the behavior as a function of
the prior hyperparameters.
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The previously mentioned approach focusing on choosing a single model as
representation for data as such is not the most sensible solution in all situa-
tions, especially if we are aiming to produce some kind of statements about
observables using our models (e.g. prediction of future values).

An optimal strategy under such circumstances does not even necessitate a
choice of a model, which can be formalized using a different utility structure.

Let a be an answer relating to the unknown of interest ω.

The answer can for instance be a value of a future observation or an estimate
of parameter common to all models in I.

With the utility function u(a, ω), the expected utility of an answer a∗ becomes

ū(a∗|x) =
∫
u(a∗, ω)p(ω|x)dω (92)
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and this is indeed the optimal answer if

ū(a∗|x) = sup
a
ū(a|x) (93)

Note that p(ω|x) still has the posterior weighted mixture form.

This type of a strategy is often called Bayesian model averaging, and its sen-
sibility for the problem at hand is dependent on whether the chosen utility
function reflects the relevant issues (which ultimately need to be considered by
the modeler).
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An important question yet to be stated is that: What happens if all models in
I are poor descriptions of x?

It should be clear from the above that we cannot use the previously stated
formalism to directly detect this.

Notice that the crucial question in such a situation is not the comparison of
models, but the criticism of a model without suggesting anything to replace it.

If one had, for instance, a more general model in mind than those included
in I, the problem would be easily resolved by taking that model also into
consideration and proceeding as before.

Indeed, in many situations a generalization of the finite-dimensional parametric
models p(x|θ) could be obtained by considering models involving directly a
probability measure on the space of distribution functions (these are typically
called non-parametric models in the Bayesian framework).
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Including such models to the class I and then performing the formal analysis,
can be seen as one promising strategy to check formally the plausibility of the
various parametric assumptions (e.g. Gutiérrez-Peña and Walker, 2001).
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Example 22 Genetic differentiation among populations. We consider in-
vestigation of the genetic similarity of some geographically separated popu-
lations using the approach of Corander et al. (2003, 2004). We invoke a
sampling design where individuals are gathered from NP distinct populations
based on available prior knowledge concerning their geographical separation.
Assume that genotypes are observed at NL independent marker loci (meaning
e.g. that they are located in different chromosomes), where at each locus j
there are NA(j) possible alleles to be distinguished.
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Since the true underlying population substructure is unknown, the number of
populations with differing allele frequencies is treated as a parameter ν, having
the range of reasonable values [1, NP ] where the upper bound is directly given
by the sampling design.

In the sequel, a population refers thus to a genetic source having allele frequen-
cies distinct from other sources.

At locus j, the unobserved probability of observing allele Ajk (allele frequency)
in population i is represented by pijk (i = 1, ..., ν; j = 1, ..., NL; k =

1, ..., NA(j)).

To simplify the notation, θ will be used as a generic symbol jointly for the allele
frequencies (θi for population i).

Similarly n will represent jointly the observed marker allele counts nijk.

The partition of the original populations can be represented by a parameter
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S = (s1, ..., sν), where si, i = 1, ..., ν, contains the indices of the sample
populations deemed to have equal allele frequencies.

The joint distribution of the observed marker allele counts and the model pa-
rameters is specified by

π(θ,ν, S, n) = π(n|θ, ν, S)π(θ|ν, S)π(S|ν)π(ν) (94)

∝
ν∏
i=1

NL∏
j=1

A(j)∏
k=1

[
p
nijk
ijk π(pijk)

]
π(S|ν)π(ν),

where

π(n|θ,ν, S) ∝
ν∏
i=1

NL∏
j=1

A(j)∏
k=1

p
nijk
ijk (95)
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is the multinomial likelihood,

π(θ|ν, S) =
ν∏
i=1

NL∏
j=1

A(j)∏
k=1

π(pijk) (96)

is the prior density of θ, and

π(S|ν)π(ν) (97)

is the joint prior of the structure parameters.

Notice that when the allele frequencies of two original populations are stated
to be equal in the model (their indices belong to the same si), their observed
counts in n can be summed together in the likelihood.

If the prior beliefs about allele frequencies are represented by the Dirichlet
distribution with hyperparameter λijk, then, for a fixed value of (ν, S), the
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joint distribution of the data under our predictive probability model equals

π(n|νP , S) =
∫
π(n|θ)π(θ)dθ (98)

=
νP∏
i=1

NL∏
j=1

Γ(
∑
λijk)

Γ(
∑
λijk + nijk)

A(j)∏
k=1

Γ(λijk + nijk)

Γ(λijk)
(99)

The above model arises theoretically from the assumption of specific generalized
exchangeability (Corander et al. 2007, 2009).

In particular, they combined this property with the reference prior having λijk =

1/NA(j), k = 1, ..., NA(j), which dates back already to Perks (1947).
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Example 23 Genetic differentiation among populations (continued). In
the earlier considered example concerned with genetic differentiation, we ob-
tained a predictive model for the observed allele counts given the structure
parameter S (specifying the groups of populations with different allele fre-
quencies). Let the predictive model be abbreviated as π(n|S). The posterior
distribution of the structure parameter thus becomes

π(S|n) =
π(n|S)π(S)∑
S∈S π(n|S)π(S)

(100)
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For small values of NP we may calculate the posterior probabilities exactly by
exhaustive enumeration.

The number of distinct values of S (i.e. partitions of the finite set {1, ..., NP})
equals the sum

∑NP
νP=1 σ

NP
νP where σNPνP is the Stirling number of the second

kind.

For example, for NP = 10, we get
∑NP
νP=1 σ

NP
νP = 115,975.

For moderate or large values of NP , simulation techniques need to be used for
estimation of the posterior probabilities.

In this genetics example it is sometimes also natural to consider model aver-
aging over the posterior distribution S. When one is interested in a quantity
depending on the allele frequencies θ, such as the degree of genetic differentia-
tion among the populations, its posterior distribution is obtained by averaging
the conditional posterior distributions of pijk over (100).
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Model comparison, Part III

In this section we investigate some concepts of frequentist statistical analysis
in the context of model comparison.

In particular, we shall see some connections with the Bayesian approach intro-
duced in the previous section.

The classical Neyman-Pearson theory for testing models requires pairwise process-
ing of the elements of a model class I, and therefore, let us concentrate for a
moment on the situation where I contains only two models: M1 and M2.

A generally accepted device for comparing models’appropriateness for a par-
ticular data set x is the likelihood ratio

p(x|M1)

p(x|M2)
, (101)
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which is identical to the Bayes factor in the case of completely specified models
(no parameters are estimated) and equal prior probabilities.

Typically, however, models contain unknown parameters and the frequentist
comparison procedure differs from the Bayes factor.

Using Neyman-Pearson theory we formulate the null hypothesis H1 : the ob-
servations have arisen from the model M1, and the alternative H2 : the obser-
vations have arisen from the model M2.

To be able to formulate a regular likelihood ratio test (see e.g. Cox and Hinkley,
1974) of H1 against H2, assume the ”nested hypothesis” case where M2 is
the full model andM1 a reduced version ofM2 where some parameter(s) have
been given fixed values.

Let d(θi) generally denote the number of unrestricted parameters inMi, i ∈ I.
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The likelihood ratio test is formulated as: reject H1 if

λn =
L(θ̂1|x)

L(θ̂2|x)
< c < 1 (102)

where c is a priori specified threshold and θ̂i is the maximum likelihood estimate
of θi, i ∈ I.

We notice the difference with the Bayes factor where the uncertainty about
parameters is accounted for by integrating them out with respect to the prior
distribution, instead of maximization.

Under general regularity conditions on L(θi|x) (e.g. d(θi) remains fixed as
n→∞), −2 log λn is approximately chi-square distributed with d(θ2)−d(θ1)

degrees of freedom (denoted by χ2
d(θ2)−d(θ1)).

As illustrated in Gelfand and Dey (1994), an inconsistency of this procedure is
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evident, since

lim
n→∞{P (choose M2|M1 true)} = lim

n→∞{P (λn < c|M1 true)} (103)

= lim
n→∞{P (−2 log λn > −2 log c)}

= P (χ2
d(θ2)−d(θ1) > −2 log c) > 0

Thereby, even with unlimited amounts of data the procedure is not guaranteed
to pick out the correct model.

A more severe problem associated with the above testing scenario is that it
provides no general yardstick for comparison of a range of different models.

For instance, when the evidence against each of the models in I is measured
by the p-value according to (102) where the unrestricted modelM2 is the most
general model in I, it follows that the p-value is a decreasing function of the
number of restrictions imposed on θ.
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Thereby, the largest possible model is by definition associated with a p-value
equal to unity, while the remaining models attain p-values smaller than or equal
to unity depending on their degree of fit to data with respect to the full model.

Generally, this framework makes especially the comparison of non-nested models
diffi cult.

Hypothesis tests are designed to detect any discrepancies between a model and
reality.

Since models are virtually never exact descriptions of reality, we know by defin-
ition that for large enough samples the discrepancies will be detected by (102)
and lead to a rejection of M1 even if it is a good model for the purpose at
hand.

The point is that rejection of M1 does not necessarily mean that M2 offers a
better description of the data, and hence, one should compare the two models
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instead of simply looking at the discrepancy between M1 and the data.

In this respect, a fundamental flaw of the hypothesis test scenario is that it
cannot provide directly evidence for a model but only against it.

Even some of the advocates of the frequentist approach to statistical inference
have clearly pointed out that such framework is unfortunate in the context of
model selection and suggested that other approaches, such as those discussed
in the following section, should preferably be followed (e.g. see Lindsey, 1996).
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Model comparison, Part IV

Recall from the section where reference priors were introduced, that the prior
opinion for a mathematically derived formula is often expressed as

p(θ) ∝ g(θ) (104)

where the proportionality meant that the prior distribution is understood as
proportional to a real-valued function g(θ) for which

∫
Θ g(θ)dθ 6= 1, but

which satisfies ∫
p(x|θ)g(θ)dθ <∞ (105)

Under this assumption the ”posterior”

p(x|θ)g(θ)∫
p(x|θ)g(θ)dθ

(106)
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is a well-defined probability measure, since the unknown proportionality con-
stant cancels in the above formula.

In the model comparison framework the improper priors introduce a more severe
problem, since the above ”logic of proportionality” is not applicable to the
situation where θi have varying dimensions.

This is due to the fact that the imagined constants do not cancel, e.g. in (89).

To resolve this problem, a wide range of approaches has been suggested in the
statistical literature, see e.g. Key et al. (1999).

Here we review some of the more prominent proposals.

For simplicity, consider again the case where I contains only two models M1

and M2.
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Suppose that the data x1, ..., xn is split into two parts such that

x1, ..., xm, xm+1, ..., xn = (y, z) = x (107)

Let y be a training data set.

For an improper prior of the above type, the partial Bayes factor (89) for M1

against M2 based on z after the training data y, equals

B12(z|y) =
p(z|M1,y)

p(z|M2,y)
(108)

=

∫
p(z|θ1)p(θ1|y)dθ1∫
p(z|θ2)p(θ2|y)dθ2

which is well-defined if the posteriors

p(θi|y) =
p(y|θi)g(θi)∫
p(y|θi)g(θi)dθi

, i = 1, 2 (109)
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are proper densities.

Department of Mathematics and statistics, University of Helsinki, Spring 2010 197



Bayesian theory'

&

$

%

While this approach seems to resolve the indeterminacy problem, it is unsatis-
factory in the sense that it is dependent on the arbitrary division of the data.

Also, the question of how much data should be used in the training has to be
considered.

We may consider a training set y as a proper one if the integrals in (108)
converge.

Then, if no subset of y is proper, the training set may be called minimal.

While this concept is useful in some problems, it should be noted, however, that
for most discrete data problems minimal training sets are not defined, which
greatly limits the applications.

The intrinsic Bayes factors of Berger and Pericchi (1996) are based on averaging
the partial Bayes factors over all possible minimal training sets.

O’Hagan (1995), in turn, introduced an idea which is based on using a minimal
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fraction 0 < b < 1 of the likelihood as a training set, which leads to

p(x|Mi, b) =

∫
p(x|θi)g(θi)dθi∫
{p(x|θi)}

bg(θi)dθi
(110)

Since b = m/n, the likelihood p(y|θi) is approximately the full likelihood
p(x|θi) raised to the power b (notice that this requires the likelihood to have
the product form with n conditionally independent terms).

This procedure corresponds to using a fraction of the average information in
the data, and also leads to a well-defined ”partial”Bayes factor.

Apart from the two approaches mentioned above, there is a wealth of more or
less related ”automated”methods for Bayesian model comparison.

As was seen in the previous section, the frequentist approach to model selection
via hypothesis testing typically uses the large sample behavior of the likelihood
ratio.
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Similar ideas may be fruitfully pursued in the Bayesian framework.

Here we intend to give a heuristic derivation of the central results without
focusing on the somewhat involved technical details.
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Model comparison, Part V

Consider the parametric case with a model labeled by θ ∈ Θ for an exchange-
able sequence of observations. We then have

p(θ|x) ∝ p(θ)
n∏
i=1

p(xi|θ) (111)

∝ exp{log p(θ) + log p(x|θ)}

Let θ̂0 and θ̂n denote the respective maxima of the two logarithmic terms in
(111), i.e. the prior mode and the maximum likelihood estimate, respectively.

These are determined by setting ∇ log p(θ) = 0 and ∇ log p(x|θ) = 0, re-
spectively.
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By expanding both logarithmic terms about their respective maxima we obtain

log p(θ) = log p(θ̂0)− 1

2
(θ − θ̂0)′H(θ̂0)(θ − θ̂0) +R0 (112)

log p(x|θ) = log p(x|θ̂n)− 1

2
(θ − θ̂n)′H(θ̂n)(θ − θ̂n) +Rn

where R0, Rn denote remainder terms and

H(θ̂0) =

(
−∂

2 log p(θ)

∂θi∂θj

)∣∣∣∣∣
θ=θ̂0

(113)

H(θ̂n) =

(
−∂

2 log p(x|θ)

∂θi∂θj

)∣∣∣∣∣
θ=θ̂n

are the Hessian matrices.

Under regularity conditions which ensure that the remainder terms R0, Rn are
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small for large n, we get the result

p(θ|x) ∝ exp
{
−1

2
(θ − θ̂0)′H(θ̂0)(θ − θ̂0)− 1

2
(θ − θ̂n)′H(θ̂n)(θ − θ̂n)

}
(114)

The Hessian matrix H(θ̂n) measures the local curvature of the log-likelihood
function at it maximum θ̂n and is typically called the observed information
matrix.

Further, by ignoring the prior terms (which are swamped by the data as n
grows) we see that the posterior can be approximated by the multivariate normal
distribution with mean θ̂n and covariance matrix Σ̂n = H(θ̂n)−1.
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However, asymptotics also reveal that

lim
n→∞

{
1

n

(
−∂

2 log p(x|θ)

∂θi∂θj

)}
= lim

n→∞

1

n

n∑
l=1

(
−∂

2 log p(xl|θ)

∂θi∂θj

)(115)
=

∫
p(x|θ)

(
−∂

2 log p(x|θ)

∂θi∂θj

)
dx

so thatH(θ̂n)→ nI(θ̂n), where I(θ) is (again) the Fisher information matrix,
defined as

(I(θ))ij =
∫
p(x|θ)

(
−∂

2 log p(x|θ)

∂θi∂θj

)
dx (116)

The above results can be utilized in the model comparison framework through
an approximation to the key quantity p(x) =

∫
p(x|θ)p(θ)dθ, the marginal

likelihood.
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An important assumption concerning the validity of the asymptotic approxima-
tion is that the dimension d(θ) of θ remains fixed as n→∞.

Using the properties of the multivariate normal distribution (i.e. the form of
its normalizing constant), an approximation to the marginal likelihood can be
written as

p(x) =
∫
p(x|θ)p(θ)dθ (117)

≈ (2π)d(θ̂n)|Σ̂n|1/2p(θ̂0)p(x|θ̂n)

Using this approximation the posterior weights of the different models in I can
be calculated.

Under the assumption that the prior is continuous in Θ and bounded at θ̂0,
an approximate Bayes solution to the model comparison problem under the 0-1
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loss scheme given in (85), is to choose the model which maximizes

log p(x|θ̂n) +
1

2
log |Σ̂n|+ d(θ̂n) log(2π) (118)

This result is valid under a rather general setting (see Kim, 1998) and defines
a consistent model selection procedure.

However, a yet simpler and still consistent model comparison criterion is ob-
tained, when terms not depending on n are ignored, and an asymptotic expan-
sion of log |Σ̂n| is used.

Under certain conditions (see Kim, 1998) the log-determinant can be written
as

log |Σ̂n| = −2 log

d(θ̂n)∏
l=1

sl(n)

 +R0 (119)
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where the remainder is bounded in n and the terms sl(n) are the rates of
convergence of the maximum likelihood estimate θ̂l(n) to the true value of the
(l)th component θl of θ.

Under regular
√
n-convergence we are led to the criterion

log p(x|θ̂n)− log

d(θ̂n)∏
l=1

n1/2

 = log p(x|θ̂n)− d(θ̂n)

2
logn (120)

This is precisely the widely-known criterion derived by Schwarz (1978), often
called BIC or SBC (sometimes the above is multiplied by two).

In the two model case, we can more concretely write

logB12 ≈ log p(x|θ̂1(n))− log p(x|θ̂2(n))−
d(θ̂1(n))− d(θ̂2(n))

2
logn

(121)
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Although (120) is a rather rough approximation, it can generally be considered
as guideline for model comparison in a situation where the prior information is
vague and diffi cult to specify precisely.

Notice that also from (120) one can derive approximate posterior weights for
the elements of I.

Generally, the criterion (120) has in various simulation studies shown to be con-
servative, such that for small n it may underestimate the true model dimension.

Since the introduction of the model comparison criterion AIC by Akaike (1974),
a considerable interest has been attained in the statistical literature to criteria
of the penalized maximum likelihood type

log p(x|θ̂n)− c · d(θ̂n) log g(n) (122)

where different choices of c and g(n) lead to different suggested criteria.
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For instance, c = 1 and g(n) = e1 give rise to the AIC, c = 1 and g(n) = logn

to the criterion of Hannan and Quinn (1979), and c = 1/2 and g(n) = n to
(120).

It can be shown that for problems where d(θ̂n) is not increasing with n, any
choice of g(n) equal to a constant, will lead to an inconsistent criterion.

In particular, AIC is not consistent, and it typically leads to a gross overestima-
tion of a reasonable dimension of θ when n is large.

On the other hand, AIC and criteria alike it can have better future predictive
performance in situations where the model structure itself is not of interest.
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Computational tools for Bayesian modelling

Computer simulation forms a central part of Bayesian data analysis, since it
greatly enhances our possibilities to fit useful (often complicated) models to
data.

A set of realizations from a posterior distribution also provides a convenient
means to specify numerical inference summaries, such as histograms, means,
quantiles etc.

One prominent computational strategy for Bayesian modelling is known as
Markov chain Monte Carlo (MCMC), see e.g. Gilks et al. (1996), Robert
and Casella (1999, 2004).

Some of the most popular MCMC algorithms are known as the Gibbs sampler,
Metropolis-Hastings, and reversible jump Metropolis-Hastings algorithms.
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There exists a huge MCMC literature, and there are hundreds of different vari-
ants of these and other algorithms available for Bayesian computation.
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Let the Bayesian joint model for the data and parameters be specified as:

p(x|θ)p(θ) (123)

From the joint model, we get the posterior as

p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

(124)

Further, let the parameters be divided into m groups, such that

θ = (θ1, ..., θm). (125)

In general, any component θi ∈ Θi of θ ∈ Θ may be considered as a scalar,
vector, or matrix.

The purpose of the (single component) Metropolis-Hastings (MH) algorithm
is to simulate a Markov chain, which has the stationary distribution equal to

Department of Mathematics and statistics, University of Helsinki, Spring 2010 212



Bayesian theory'

&

$

%

(124).

This may be done as follows.

Let θ0 be an initial value of the parameter θ.

Further, let θt denote the tth value of θ in the Markov chain θ0, θ1, ... ,
with transition between different states (here from θt to θ∗) governed by the
acceptance ratio

α(θt, θ∗) = min

1,
p(x|θt−i, θ∗i )p(θt−i, θ

∗
i )

p(x|θt−i, θti)p(θt−i, θ
t
i)

q−i(θ
t
i|θt−i, θ∗i )

q−i(θ
∗
i |θt−i, θti)

 , i = 1, ...,m,

(126)
where

q−i(·|θt−i, θti) (127)

is a so called proposal distribution for the component θi, given the current
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values of the remaining components of θ, denoted by θt−i, and also θ
t
i.

An example of a proposal distribution is a multivariate normal distribution with
mean θti and fixed covariance matrix Σ.
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In practice, the MH algorithm typically proceeds as:

At a given t (often called a sweep), for i = 1, ...,m :

1. Simulate θ∗i ∼ q−i(·|θ
t
−i, θ

t
i)

2. Simulate u ∼ Uniform(0, 1)

3. If u ≤ α(θt, θ∗), set θti = θ∗i , else keep θ
t
i.
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A special case of the single component Metropolis-Hastings algorithm is the
Gibbs sampler.

In Gibbs sampler, the proposal distribution is the full conditional distribution,
which is not dependent of the current value θti,

q−i(·|θt−i, θti) =
p(x|θt−i, θi)p(θt−i, θi)∫
p(x|θt−i, θi)p(θt−i, θi)dθi

. (128)

Notice that the normalizing constant cancels in the acceptance ratio.

For the Gibbs sampler each proposal value will thus be accpted as the accep-
tance ratio equals always 1.

Various sampling techniques may be utilized for generating values from the full
conditional distributions (direct sampling, rejection sampling etc).

In many applications the dimension of θ varies between different putative mod-
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els we are interested in, so that θ∗ may have a larger or smaller dimension than
θt.

In the so called reversible jump (RJ) MCMC algorithm introduced by Green
(1995), the dimension switch is handled by a transformation of variables such
that θ∗ is a deterministic function of θt and a realization of another random
variable, generated from a distribution specified in the setup of the proposal
mechanism.

Often the transformation is such that the proposal densities involve a Jacobian
that needs to be calculated explicitly.

The RJ MCMC approach has been widely adopted for the calculation of pos-
terior probabilities of models.

From the realization of such MCMC simulation it is possible to obtain an
approximation to the posterior probabilities (84) by the relative number of
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visits in the chain to a specific model Mi.

Let M t ∈ I be the index of the model at t, then

P̂ (Mi|x) = n−1
n∑
t=1

I(M t = Mi) (129)

is a consistent estimate of the posterior probability of Mi.

Also, the model averaging idea is crystallized in the variable dimensional MCMC,
where, e.g. predictions can be generated at each t.

The model structures which have most support from the data, will then be
most often used to generate the predictions.
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Example 24 Genetic differentiation among populations (continued). In
the earlier considered example concerned with genetic differentiation, we ob-
tained a predictive model for the observed allele counts given the structure
parameter S (specifying the groups of populations with different allele frequen-
cies). The posterior distribution of the structure parameter was specified as

π(S|n) =
π(n|S)π(S)∑
S∈S π(n|S)π(S)

(130)

Since we are in general unable to use complete enumeration to calculate∑
S∈S

π(n|S)π(S), (131)

MCMC provides a useful strategy for the estimation problem.
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Corander et al. (2004a) introduced a Metropolis-Hastings algorithm, which
simulates a Markov chain having the stationary distribution equal to the above
posterior.

In fact, they investigated a slightly more general problem, where the sample
populations were also allowed to consist of a single individual only.

Their MH algorithm is defined by the transition kernel, which determines the
probability of a transition from a current state S to a proposed new state S∗,
as

min

(
1,
π(n|S∗)
π(n|S)

q(S|S∗)
q(S∗|S)

)
, (132)

where the π(n|S) (marginal likelihood) is defined according to

νP∏
i=1

NL∏
j=1

Γ(
∑
λijk)

Γ(
∑
λijk + nijk)

A(j)∏
k=1

Γ(λijk + nijk)

Γ(λijk)
(133)
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q(S∗|S) is the probability of choosing state S∗ as the candidate for the next
state when in S

q(S|S∗) is the probability of restoration of the current state S.
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The proposal mechanism to derive S∗ from S considered by Corander et al.
(2004) was constructed from the following four different possibilities:

• With probability 1/2, merge two randomly chosen classes sc, sc∗.

• With probability 1/2 split a randomly chosen class sc into two new classes,
whose cardinalities are uniformly distributed between 1 and |sc| − 1, and
whose elements are randomly chosen from sc.

• Move an arbitrary item from a randomly chosen class sc, |sc| > 1, into
another randomly chosen class sc∗.

• Choose one item randomly from each of two randomly chosen classes sc
and sc∗, and exchange them between the classes.
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Assuming that S consists of k classes, the respective proposal probabilities
q(S∗|S) corresponding to these different transition types can be written as:

1 :
(k

2

)−1

/2 (134)

2 :


k−1 b|sc|/2c−1

( |sc|
|sc∗|

)−1
/2, if |sc∗| < |sc|/2

k−1 b|sc|/2c−1
( |sc|
|sc∗|

)−1
/4, if |sc∗| = |sc|/2

3 : τ(S)−1(k − 1)−1|sc|−1

4 :
(k

2

)−1

|sc|−1|sc∗|−1,

where sć∗ in the second transition type is one of the two new classes formed
by splitting sc, having the smallest cardinality |sc∗|.

Further, τ(S) in the third transition type is the number of classes with |sc| > 1.
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When the current state S is such that not all move types are available, trivial
changes will be imposed on the proposal probabilities.

The above specified transition mechanism defines an aperiodic and irreducible
finite Markov chain.

Since the state space S of the chain is finite, it follows (e.g. Häggström, 2002)
that (132) defines also a positive recurrent Markov chain.

Thus, for a realization of the chain {St, t = 0, 1, ...} we have

lim
n→∞ pn(S|n) = p(S|n), (135)

where

pn(S|n) = n−1
n∑
t=0

I(St = S) (136)

is the relative frequency of occurrence of state S.
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Clearly, the optimal Bayesian classification is obtained from the realization
{St, t = 0, 1, ...} as the value of S, which maximizes the marginal likelihood.

However, convergence of the chain may be slow in reality for large spaces S,
and therefore, Corander et al. (2004a) proposed an alternative estimate

p∗n(S|n) =
π(n|S)∑

S∈S∗ π(n|S)
, (137)

where S∗ is the set of distinct values of S visited inm independent realizations
of the Markov chain {Stj, t = 0, 1, ...; j = 1, ...,m}.

Under the stated conditions, (137) is also a consistent estimate of p(S|n).

The advantages of using this estimate rather than (136) are the relative stability
of the sum

∑
S∈S∗ π(n|S), and that results from independent realizations of

the chain can be joined in a meaningful way, which is not possible for (136).

In the relative frequency based estimation, some chains may become stuck in
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regions of S associated with low values of π(n|S), and obtain thereby too
much weight in the estimate (136).

In typical applications the number of chains m needed for reliable estimates
ranges from some dozens to several hundreds. Corander et al. (2004a) used a
parallel solution to produce the chains, in order to aid in visual inspection of
the convergence of the estimation procedure.
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