In probability calculus we need often to handle sums (discrete variables) or integrals (continuous variable) over the complete support (\mathcal{X}) of a probability distribution. Let X be a discrete random variable and $p(X=x)$ its probability mass function (p.m.f.). Assume we need to evaluate the sum

$$
\begin{equation*}
\sum_{x \in \mathcal{X}} g(x) p(X=x \mid \theta) \tag{1}
\end{equation*}
$$

where $g(x)$ is a function of x and θ is the parameter (sometimes vector) defining the distribution shape. For a typical discrete distribution we may rewrite the p.m.f. as the product

$$
\begin{equation*}
p(X=x)=c(\theta) k(x, \theta) \tag{2}
\end{equation*}
$$

where $c(\theta)$ is the normalizing constant (for a given θ) of the distribution and $k(x, \theta)$ is the kernel function of the p.m.f. (for a given θ). Thus,

$$
\begin{equation*}
c(\theta)^{-1}=\sum_{x \in \mathcal{X}} k(x, \theta) \tag{3}
\end{equation*}
$$

as the p.m.f. must sum to unity over the support \mathcal{X}. For many functions $g(x)$ that are encountered in the calculation of moments, we may use the following approach in the calculation of (1). Rewrite

$$
\begin{equation*}
\sum_{x \in \mathcal{X}} g(x) p(X=x \mid \theta)=c(\theta) \sum_{y \in \mathcal{Y}} k\left(y, \theta^{*}\right), \tag{4}
\end{equation*}
$$

that is, the product of $g(x)$ and $k(x, \theta)$ is recognized as the kernel function of another distribution in the same family, defined by parameter value θ^{*}. Since

$$
\begin{equation*}
\sum_{y \in \mathcal{Y}} k\left(y, \theta^{*}\right)=c\left(\theta^{*}\right)^{-1} \tag{5}
\end{equation*}
$$

the sum may easily be evaluated analytically.
The above technique is analogously applicable to a continuous random variable with probability density function (p.d.f.) $f(x \mid \theta)$. Then we get

$$
\begin{equation*}
f(x \mid \theta)=c(\theta) k(x, \theta) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
c(\theta)^{-1}=\int_{-\infty}^{\infty} k(x, \theta) d x \tag{7}
\end{equation*}
$$

where we assume for simplicity that the distribution is over the real line. The corresponding result may now be written as

$$
\int_{-\infty}^{\infty} g(x) f(x \mid \theta) d x=c(\theta) \int_{-\infty}^{\infty} k\left(y, \theta^{*}\right) d y=c(\theta) c\left(\theta^{*}\right)^{-1}
$$

