The Genetic Hybrid Algorithm (operating on UNIX/ALPHA/LINUX/IBMSC). Ralf Östermark 2006 Project: SHAREX Phase: 1 System: 1 SYSTEM_CALLS = 1 REPRESENTATIONS = 2 Super features: superGA_ITER = 1 superMC_ITER = 0 superGA_SIBS = 1 superCROSSOVER = 0 superMUTATION = 0 superSEARCH = 1 Population size: GA-sibs = 1 DIVERSITY_CHECK = 0 DELTA_F_MIN = 0.000e+00 CHECK_KSI = 1 CHECK_VARIABLES = 0 ADD_HISTORY = 0 Genetic operators: CROSSOVER = 0 MUTATION = 2 GRAD_FILTER = 1.000 MUTATE_SIGN = 0 S_INCR = 10 CALL_FIX = 1 F_INCR = 10 BETA = 2.000 WINDOW = 0.500 Random search: RND_STARTPOINTS = 0 RANDOMIZE_w = 0 LOWER_ZONE = 0.000 RANDOM_DENSITY = 0 RND_ACCELERATOR = 0 SMALL_ZONE = 0 UPPER_ZONE = 0.000 Iterations: MC_ITERATIONS = 1 GA_RUNS = 1 GA-iterations = 1 Linesearch: LINEMETHOD = 2 STABLE_GRAD = 0 GET_HESSIAN = 1 GET_RCOND = 1 RCOND_ITERATIONS = 100 RCOND_LIMIT = 1000.000 T_INCR = 5 T_FINAL = 20 T_SLOPE = 0 Penalty: Function = 6 MIN_PENALTY = 5.000 c = 0.500 Search space: REDUCTION = 0 KSI_INTERVAL = 100 change_NVAR = 0 Input/Output: PRINT_LEVEL = 1 ECHO_INTERVAL = 1 UPDATEw_in = 0 Variables: FREE REALS = 3 FREE INTEGERS = 4 DIFF.VARS = 2 FIXED REALS = 0 FIXED INTEGERS = 0 NONDIFF.VARS = 5 Convergence: USE_CONVERGENCE = 0 ConvergenceMean = 0.0001000000 ConvergenceBest = 0.0005000000 GA_run t NOBS best_ksi Dev F mean_ksi worst_ksi 1 1 2 1.106770e+03 7.021532e-01 1.103259e+03 1.130807e+03 1.154844e+03 total cputime (sec) = 1.240000 * best cputime (sec) = 0.720000 function call time (sec) = 1.90e-01 no of function calls = 3.00000e+00 no of fixations = 1.00000e+00 optimal ksi = 1106.5174211580 F = 1103.0066553443 Dev = 0.7021531627 Weights: START IMPROVED BEST with gradient LOWER UPPER TYPE REDUCTION ksi 1154.8435960735 1154.8435960735 1106.5174211580 x(0)= 1151.8435960735 1151.8435960735 1103.0066553443 0.0000 0.0000 0.0000 0 0 x(1)= 5.0000000000 5.0000000000 4.0000000000 0.0000 2.0000 4.0000 1 1 x(2)= 0.0000000000 0.0000000000 4.0000000000 0.0000 2.0000 4.0000 1 1 x(3)= 0.0000000000 0.0000000000 7.0000000000 0.0000 2.0000 15.0000 1 1 x(4)= 0.0000000000 0.0000000000 2.0000000000 0.0000 1.0000 15.0000 1 1 x(5)= 0.3000000000 0.3000000000 0.2845760656 0.0000 0.1000 0.9500 0 1 x(6)= 0.7000000000 0.7000000000 0.5824229029 0.0000 0.0300 0.9000 0 1