The Genetic Hybrid Algorithm (operating on UNIX/ALPHA/LINUX/IBMSC). Ralf Östermark 2006 Project: SHAREX Phase: 1 System: 2 SYSTEM_CALLS = 1 REPRESENTATIONS = 3 Super features: superGA_ITER = 1 superMC_ITER = 0 superGA_SIBS = 1 superCROSSOVER = 0 superMUTATION = 0 superSEARCH = 1 Population size: GA-sibs = 2 DIVERSITY_CHECK = 0 DELTA_F_MIN = 0.000e+00 CHECK_KSI = 1 CHECK_VARIABLES = 0 ADD_HISTORY = 0 Genetic operators: CROSSOVER = 1 MUTATION = 2 GRAD_FILTER = 1.000 MUTATE_SIGN = 0 S_INCR = 10 CALL_FIX = 1 F_INCR = 10 BETA = 2.000 WINDOW = 0.500 Random search: RND_STARTPOINTS = 0 RANDOMIZE_w = 0 LOWER_ZONE = 0.000 RANDOM_DENSITY = 0 RND_ACCELERATOR = 0 SMALL_ZONE = 0 UPPER_ZONE = 0.000 Iterations: MC_ITERATIONS = 1 GA_RUNS = 1 GA-iterations = 2 Linesearch: LINEMETHOD = 2 STABLE_GRAD = 0 GET_HESSIAN = 1 GET_RCOND = 1 RCOND_ITERATIONS = 100 RCOND_LIMIT = 1000.000 T_INCR = 5 T_FINAL = 20 T_SLOPE = 0 Penalty: Function = 6 MIN_PENALTY = 5.000 c = 0.500 Search space: REDUCTION = 0 KSI_INTERVAL = 100 change_NVAR = 0 Input/Output: PRINT_LEVEL = 1 ECHO_INTERVAL = 1 UPDATEw_in = 0 Variables: FREE REALS = 6 FREE INTEGERS = 2 DIFF.VARS = 5 FIXED REALS = 0 FIXED INTEGERS = 0 NONDIFF.VARS = 3 Convergence: USE_CONVERGENCE = 0 ConvergenceMean = 0.0001000000 ConvergenceBest = 0.0005000000 GA_run t NOBS best_ksi Dev F mean_ksi worst_ksi 1 1 2 1.924880e+02 0.000000e+00 1.924880e+02 2.012146e+02 2.099412e+02 1 2 4 1.834726e+02 0.000000e+00 1.834726e+02 1.963999e+02 2.099412e+02 total cputime (sec) = 2.100000 * best cputime (sec) = 2.100000 function call time (sec) = 1.50e-01 no of function calls = 1.40000e+01 no of fixations = 6.00000e+00 optimal ksi = 183.4726309992 F = 183.4726309992 Dev = 0.0000000000 Weights: START IMPROVED BEST with gradient LOWER UPPER TYPE REDUCTION ksi 209.9411530670 209.9411530670 183.4726309992 x(0)= 209.9411530670 209.9411530670 183.4726309992 0.0000 0.0000 0.0000 0 0 x(1)= 3.0000000000 3.0000000000 4.0000000000 0.0000 2.0000 7.0000 1 1 x(2)= 3.0000000000 3.0000000000 4.0000000000 0.0000 2.0000 7.0000 1 1 x(3)= 0.0100000000 0.0100000000 0.0521243618 0.0000 0.2000 0.5000 0 1 x(4)= 0.4000000000 0.4000000000 0.4035132354 0.0000 0.2000 0.5000 0 1 x(5)= 0.2000000000 0.2000000000 0.2109759691 0.0000 0.2000 0.5000 0 1 x(6)= 0.5000000000 0.5000000000 0.4830851933 0.0000 0.2000 0.5000 0 1 x(7)= 1.0000000000 1.0000000000 0.9507729758 0.0000 0.5000 1.0000 0 1