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The classification problem

 In a traditional classification problem the main purpose 

is to assign one of k labels (or classes) to each of n 

objects, in a way that is consistent with some 

observed data, i.e. to determine the class of an 

observation based on a set of variables known as 

predictors or input variables

 Typical classification problems in finance are for 

example

 Financial failure/bankruptcy prediction

 Credit risk rating



Classification methods

 There are several statistical and mathematical 
methods for solving the classification problem, e.g.

 Discriminant analysis

 Logistic regression

 The recursive partitioning algorithm (RPA)

 Mathematical programming

 Linear programming models

 Quadratic programming models

 Neural network classifiers

 New methods are continuously being developed

 The lecture notes describe these methods, with 
focus laid on discriminant analysis.



Discriminant analysis

 Discriminant analysis is the most common 

technique for classifying a set of observations 

into predefined classes

 The model is based on a set of observations 

for which the classes are known

 This set of observations is sometimes referred 

to as the training set or estimation sample



Discriminant Analysis – Historical 

background

 Discriminant analysis is concerned with the problem to 
assign or allocate an object (e.g. a firm) to its correct 
population

 The statistical method originated with Fisher (1936)

 The theoretical framework was derived by Anderson 
(1951)

 The term discriminant analysis emerged from the 
research by Kendall & Stuart (1968) and Lachenbruch 
& Mickey (1968)

 Discriminant analysis was originally applied in 
accounting by Altman (1968) using U.S. data and by 
Aatto Prihti (1975) on Finnish data



Discriminant analysis...

 Based on the training set, the technique constructs a 

set of linear functions of the predictors, known as 

discriminant functions, such that 

L = 1x1 + 2x2 + … + nxn + c,

where the 's are discriminant coefficients, the x's 

are the input variables or predictors and c is a 

constant.

 Two types of discriminant functions are discussed later

 Canonical discriminant functions (k-1)

 Fisher’s discriminant functions (k)



Discriminant functions

 The discriminant functions are optimized to provide a 
classification rule that minimizes the probability of 
misclassification

 See figure on the next page

 In order to achieve optimal performance, some 
statistical assumptions about the data must be met

 Each group must be a sample from a multivariate 
normal population

 The population covariance matrices must all be equal

 In practice the discriminant has been shown to 
perform fairly well even though the assumptions on 
data are violated



Score

Class 1 Class 2

Distributions of the discriminant scores 

for two classes 

A discriminant function 

is optimized to minimize 

the common area for the 

distributions



Canonical discriminant functions

 A canonical discriminant function is a linear 
combination of the discriminating variables which are 
formed to satisfy certain conditions
 The coefficients for the first function are derived so 

that the group means on the function are as different 
as possible

 The coefficients for the second function are derived to 
maximize the difference between group means under 
the added condition that values on the second function 
are not correlated with the values on the first function

 A third function is defined in a similar way having 
coefficients which maximize the group differences while 
being uncorrelated with the previous function and so on

 The maximum number on unique functions is 
Min(Groups – 1, No of discriminating variables)



Fisher’s Discriminant functions

 The discriminant functions are used to predict 

the class of a new observation with unknown 

class

 For a k class problem, k discriminant functions 

are constructed

 Given a new observation, all the k discriminant 

functions are evaluated and the observation

is assigned to class i if the i:th discriminant 

function has the highest value



Interpretation of the Fisher’s 

discriminant function coefficients

 The discriminant functions are used to compute the 
discriminant score for a case in which the original 
discriminating variables are in standard form

 The discriminant score is computed by multiplying 
each discriminating variable by its corresponding 
coefficient and adding together these products

 There will be a separate score for each case on each 
function

 The coefficients have been derived in such a way that 
the discriminant scores produced are in standard form

 Any single score represents the number of standard 
deviations the case is away from the mean for all 
cases on the given discriminant function 



Interpretation of the Fisher’s discriminant 

function coefficients…

 The standardized discriminant function coefficients are 
of great analytical importance

 When the sign is ignored, each coefficient represents 
the relative contribution of its associated variable for 
that function

 The sign denotes whether the variable is making a 
positive or negative contribution

 The interpretation is analogous to the interpretation of 
beta weights in multiple regression

 As in factor analysis, the coefficients can be used to 
”name” the functions by identifying the dominant 
characteristics they measure



Variable selection: Analyzing group 

differences

 Although the variables are interrelated and the 
multivariate statistical techniques such as discriminant 
analysis incorporate these dependencies, it is often 
helpful to begin analyzing the differences between 
groups by examining univariate statistics

 The first step is to compare the group means of the 
predictor variables
 A significant inequality in group means indicates the 

predictor variable’s ability to separate between the 
groups

 The significance test for the equality of the group means 
is an F-test with 1 and n-g degrees of freedom

 If the observed significance level is less than 0.05, the 
hypothesis of equal group means is rejected 



Analyzing group differences: Wilks’ 

Lambda

 Another statistic used to analyze the univariate 
equality of group means is Wilks’ Lambda, sometimes 
called the U-statistic

 Lambda is the ratio of the within-groups sum of 
squares to the total sum of squares

 Lambda has values between 0 and 1

 A lambda of 1 occurs when all observed group means 
are equal

 Values close to 0 occur when within-groups variability 
is small compared to total variability

 Large values of lambda indicate that group means do 
not appear to be different while small values indicate 
that group means do appear to be different



Multivariate Wilks’ Lambda statistic

 In the case of several variables {X1, X2,...,Xp}, the 

total variability is expressed by the total cross 

product matrix T

 The sum of cross-product matrix T is decomposed 

into the within-group sum of cross- product matrix W

and the between-group sum of cross-product matrix 

B such that

T = W + BW = T - B



Multivariate Wilks’ Lambda statistic...

 For the set of the X variables, the multivariate global Wilks’ 

Lambda is defined as

p = |W| / |W + B| = |W| / |T| ~ (p,m,n)

where

|W| = the determinant of the within-group SSCP matrix

|B| = the determinant of the between-groups SSCP matrix

|T| = the determinant of the total sum of cross product matrix

(p,m,n) = Wilks’ Lambda distribution

For large m, Bartlett's (1954) approximation allows Wilks' 

lambda to be approximated by a Chi-square distribution
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Variable selection: Correlations 

between predictor variables

 Since interdependencies among the variables affect 
most multivariate analyses, it is worth examining the 
correlation matrix of the predictor variables

 Including highly correlated variables in the analysis 
should be avoided as correlations between variables 
affect the magnitude and the signs of the coefficients

 If correlated variables are included in the analysis, 
care should be exercised when interpreting the 
individual coefficients



Case: Bankruptcy prediction in the 

Spanish banking sector

 Reference: Olmeda, Ignacio and Fernández, Eugenio: 

"Hybrid classifiers for financial multicriteria decision 

making: The case of bankruptcy prediction", 

Computational Economics 10, 1997, 317-335.

 Sample: 66 Spanish banks

 37 survivors

 29 failed

 Sample was divided in two sub-samples

 Estimation sample, 34 banks, for estimating the model 

parameters

 Holdout sample, 32 banks, for validating the results



Case: Bankruptcy prediction in the 

Spanish banking sector

Input variables
 Current assets/Total assets

 (Current assets-Cash)/Total assets

 Current assets/Loans

 Reserves/Loans

 Net income/Total assets

 Net income/Total equity capital

 Net income/Loans

 Cost of sales/Sales

 Cash flow/Loans



Empirical results

 Analyzing the total set of 66 observations

 Group statistics – comparing the group means

 Testing for the equality of group means

 Correlation matrix

 Classification with different methods

 Estimating classification models using the 

estimation sample of 34 observations

 Checking the validity of the models by classifying 

the holdout sample of 32 observations



Group statistics

Class 0 N=37 Class 1 N=29 Total N=66

Mean St.dev Mean St.dev Mean St.dev

CA/TA ,410 ,114 ,370 ,108 ,393 ,112

(CA-Cash)/TA ,268 ,089 ,264 ,092 ,266 ,089

CA/Loans ,423 ,144 ,390 ,117 ,409 ,133

Reserves/Loans ,038 ,054 ,016 ,012 ,028 ,043

NI/TA ,008 ,005 -,003 ,019 ,003 ,014

NI/TEC ,167 ,082 -,032 ,419 ,079 ,299

NI/Loans ,008 ,005 -,003 ,020 ,003 ,015

CofS/Sales ,828 ,062 ,957 ,188 ,885 ,147

CF/Loans ,018 ,029 ,004 ,012 ,012 ,024



Tests of equality of group means

Wilks’ 

Lambda
F df1 df2 Sig.

CA/TA ,969 2,072 1 64 ,155

(CA-Cash)/TA 1,000 ,027 1 64 ,871

CA/Loans ,985 ,981 1 64 ,326

Reserves/Loans ,932 4,667 1 64 ,034

NI/TA ,864 10,041 1 64 ,002

NI/TEC ,889 8,011 1 64 ,006

NI/Loans ,863 10,149 1 64 ,002

CofS/Sales ,805 15,463 1 64 ,000

CF/Loans ,918 5,713 1 64 ,020

No 

significant 

difference 

in group 

means

Insignificant difference
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Tests of equality of group means

 The tests of equality of the group means indicate that 
for the three first predictor variables there does not 
seem to be any significant difference in group means

 F-values < 3.99, the 5 % critical value for F(1,64)

 Significance > 0.05 

 The result is confirmed by the Wilks’ lambda values 
close to 1

 As the results indicate low univariate discriminant 
power for these variables, some or all of them may be 
excluded from analysis in order to get a parsimonious 
model  



Pooled Within-Groups Correlation 

Matrix

CA/TA (C-C)/TA CA/Loa Res/Loa NI/TA NI/TEC NI/Loa CS/Sal CF/Loa

CA/TA 1,000

(C-C)/TA ,760 1,000

CA/Loa ,917 ,641 1,000

Res/Loa ,013 -,230 ,099 1,000

NI/TA ,038 -,007 ,058 ,174 1,000

NI/TEC -,023 -,016 -,035 ,033 ,956 1,000

NI/Loa ,048 -,015 ,072 ,194 ,999 ,947 1,000

CS/Sal -,087 -,147 -,104 -,288 -,565 -,419 -,570 1,000

CF/Loa -,007 -,013 ,014 ,116 ,223 ,181 ,225 -,372 1,000



Correlations between predictor 

variables

 The variables Current assets/Total assets and Current 
assets/Loans are highly correlated (Corr = 0,917)

 The variables explain the same variation in the data

 Including both the variables in the discriminant 
function does not improve the explanation power but 
may lead to multicollinearity problem in estimation

 Only one of the variables should be selected into the 
set of explanatory variables

 For the same reason, only one of the variables Net 
income/Total assets, Net income/Total equity capital
and Net income/Loans should be selected



Summary of Canonical Discriminant 

Functions

Function Eigenvalue % of 

Variance

Cumulative 

%

Canonical 

Correlation

1 ,417a 100,0 100,0 ,542

a. First 1 canonical discriminant functions were used in the analysis.

Eigenvalues

Test of 

Function(s)

Wilk’s 

Lambda

Chi-square df Sig.

1 ,706 20,899 8 ,007

Wilk’s Lambda



Canonical Discriminant Function 

Coefficients

Function 1

Standardized Unstandardized

CA/TA -1,318 -11,825

(CA-Cash)/TA ,625 6,940
CA/Loans ,612 4,601

Reserves/Loans -,228 -5,510

NI/TA 1,134 85,998

NI/TEC -1,264 -4,456

CofS/Sales ,780 5,884

CF/Loans -,180 -7,864

Constant -3,957

Relative contribution 

of each variable to 

discriminant function



Functions at group centroids

Class Function 1

0 -,563

1 ,718

Unstandardized 

canonical discriminant 

functions evaluated at 

group means



Example of classifying an observation 

by the canonical discrimiant function

Obs. 1 Coeff. Score

Constant -3,957 -3,957

CA/TA 0.4611 -11,825 -5,453

CA_Cash/TA 0.3837 6,940 2,663

CA/Loans 0.4894 4,601 2,252

Res/Loans 0.0077 -5,510 -0,042

NI/TA 0.0057 85,998 0,490

NI/TEC 0.0996 -4,456 -0,444

CofS/Sales 0.8799 5,884 5,177

CF/Loans 0.0092 -7,864 -0,072

Total Score 0,614

Distance to group 

centroid for Group 1 

(Failed), 0,718, 

smaller than 

distance to group 

centroid for Group 0 

(Survived), -0,563 

Classification to the 

closest group Failed



Fisher’s discriminant function 

coefficients

Survived Failed

Constant -66,485     -71,653

CA/TA 15,352 ,207

CA_Cash/TA 82,320 912,208

CA/Loans -29,866 -23,973

Res/Loans 81,189  74,071

NI/TA 2006,853     2116.987

NI/TEC -65,300 -71,007

CofS/Sales 126,771 134,307

CF/Loans 185,726 175,654



Example on classifying an observation 

by Fisher’s discriminant functions

Obs. 1 Survived Score Failed Score

Constant -66,485     -66,485 -71,653 -71,653

CA/TA 0.4611 15,352 7,079 ,207 0,095

CA_Cash/TA 0.3837 82,320 31,586 912,208 34,997

CA/Loans 0.4894 -29,866 -14,616 -23,973 -11,732

Res/Loans 0.0077 81,189  0,625 74,071 0,570

NI/TA 0.0057 2006,853     11,439 2116.987 12,067

NI/TEC 0.0996 -65,300 -6,054 -71,007 -7,072

CofS/Sales 0.8799 126,771 111,546 134,307 118,177

CF/Loans 0.0092 185,726 1,709 175,654 1,616

Total Score 76,378 77,064

Larger score 

Classification: Failed



Confusion matrix – Classification results

Predicted class

Survived Failed

True 

class

Survived 28 9

75,7 % 24,3 %

Failed 4 25

13,8 % 86,2 %



Summary of classifications with different 

classification methods(Estimation sample)

SW NE Correct SW NE

RPA 30 1 3 34 88.24 % 2.94 % 8.82 %

MDA 30 0 4 34 88.24 % 0.00 % 11.76 %

MDA-Q 31 0 3 34 91.18 % 0.00 % 8.82 %

MDA-W 31 0 3 34 91.18 % 0.00 % 8.82 %

LogR 33 0 1 34 97.06 % 0.00 % 2.94 %

LP 28 1 5 34 82.35 % 2.94 % 14.71 %

LP-Q 34 0 0 34 100.00 % 0.00 % 0.00 %

LPG 33 0 1 34 97.06 % 0.00 % 2.94 %

LPGQ 34 0 0 34 100.00 % 0.00 % 0.00 %

Kohonen 24 3 7 34 70.59 % 8.82 % 20.59 %

PercentsTotal 

number
Method

ErrorsCorrect 

class



Summary of classifications (Holdout 

sample)

SW NE Correct SW NE

RPA 27 2 3 32 84.38 % 6.25 % 9.38 %

MDA 25 4 3 32 78.13 % 12.50 % 9.38 %

MDA-Q 20 7 5 32 62.50 % 21.88 % 15.63 %

MDA-W 25 5 2 32 78.13 % 15.63 % 6.25 %

LogR 28 3 1 32 87.50 % 9.38 % 3.13 %

LP 24 5 3 32 75.00 % 15.63 % 9.38 %

LP-Q 21 7 4 32 65.63 % 21.88 % 12.50 %

LPG 25 4 3 32 78.13 % 12.50 % 9.38 %

LPGQ 21 7 4 32 65.63 % 21.88 % 12.50 %

Kohonen 16 4 12 32 50.00 % 12.50 % 37.50 %

Percents
Method

Correct 

class

Total 

number

Errors



Classification results – Error types

 The classification results for the different methods 

differ in

 Total classification accuracy

 Descriptive (Estimation sample)

 Predictive (Holdout sample)

 Error types

 Classifying a survivor as failed

 Classifying a failed as survivor

 Many methods may be calibrated to take into account 

the relative severity of the two types of errors



The multiplication rule

The multiplication rule for probabilities is

(1) PAB = PA|B • PB and PBA = PB|A • PA

← Correct classification

← Misclassification: Object A is 

allocated to group B

← Misclassification: Object B is 

allocated to group A

← Correct classification

A

A

B

B

A

B

PA

PB

PA|A

PB|A

PA|B

PB|B



Probability of erroneous assignment

 Assume that we have a sample X T×p of random 

measurements and k regions Ri, i = 1,…,k. The 

probability distribution for region i is fi(x).

 By the multiplication rule,

(2) pij = pi|j pj, (i, j = 1,…,k)

is the probability of assigning an object belonging to 

population j erroneously to group i. 



Probability of erroneous assignment…

 All we have to do in order to evaluate the probability of 
misclassifying an object belonging to population j is to 
sum (2) over all k non-overlapping regions

(3)

 pi|j = the conditional probability of an object from j

being assigned to group i. That is equivalent to the 

probability mass of fj over region Ri:

(4)
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Probability of correct classification

 Using (4), we may write (3) as:

(5)

 The probability of correct classification of an object is

(6)
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The maximization problem for optimal 

allocation

 We obtain the last equality because

and the probability distribution for region Rj is obtained 

by substituting pi|j in (4)

 The allocation problem is to maximize                      in 

(6) by choosing an optimal partition (R1,…, Rk) of the 

sample space:

(7) Maximize

k

i
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Two populations and known 

distributions

 When the distributions are unknown, like in practice, 

they must be assumed/estimated

 The same formulae are still used

 When k = 2, the maximization problem (7) becomes

(8) Maximize 

 Hogg and Craig (1978) used a similar proof as for the 

Newman-Pearson lemma for statistical tests of simple 

hypotheses to extract the optimal partitioning 

(maximum of (8))
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The optimal partitioning - Proof

(9) 

 We present the key steps of the proof below (cf. 

Karson, 1982)

 Let 1, 2 be arbitrary of the sample space X such that 

1 2 = X and 1 2 = .

 Let R1 = { x | 1(x) 2(x) } and

(10) R2 = { x | 1(x) < 2(x) }, where

i(x), i = 1,2 are continuous functions in X p

 Then R1 R2 = X and R1 R2 = 

1

2

2

1
2

1

2

2

1
1

)(

)(
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The optimal partitioning – Proof…

 Let 

 Consider the difference
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The optimal partitioning – Proof…

 We know that R1 = (R1 2) (R1 1)

R2 = (R2 1) (R2 2)

1 = ( 1 R1) ( 1 R2)

2 = ( 2 R1) ( 2 R2)

 We can therefore write (10) as

(12)
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The optimal partitioning – Proof…

 We note that  =  and  = , hence they are 

eliminated and (11) reduces to

(13)

 By assembling the terms involving identical regions, 

i.e.,  &  and  &  respectively, we obtain

(14)
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Some comments on hypothesis 

testing

Assume that we – as a bank institution – want to

distinguish between non-distressed (H0) vs. distressed

(H1) firms using a suitable financial ratio FR (for

example based on the discriminant score), in order to

reduce the financial risk in loan decisions

To do this, we need to compare the FR of a firm with a

critical value FRc

 If FR > FRc, then the firm is assumed to be distressed,

otherwise not.



Some comments on hypothesis testing…

There is a tension between type I and type II errors

The first type is smaller, the higher is the significance

(i.e. the smaller is ): The probability of rejecting H0

falsely is smaller, the smaller is

Type I error is the probability of rejecting H0 even if it is

true

With = 10% this probability is twice that of = 5% and

ten times that of = 1%

We throw away a gold nugget among the rubbish in 10%

of all cases by rejecting H0 for firms that actually are

non-distressed.



If we get an extremely high FR for a firm, however,
everybody will realize that the probability of that firm
being non-distressed is practically negligible:

The probability of such an outcome being generated by
chance is very low.

In such a case it is safe to conclude that the firm is
financially distressed and, for example, to reject
financing a project that the firm is contemplating.

On the other hand, the more we shift the critical
significance level (FRc) to the right, the less frequently
we will reject H0

If FRc is extremely high, we will accept H0 almost always:
Everybody will receive a loan from our bank.

Some comments on hypothesis testing…



Some comments on hypothesis testing…

But the more we shift the critical level FRc to the right, the 
more often we will accept H0 even if it is false: there 
will be firms in our clientele that should not be there

These firms are distressed, even though we have failed 
to detect this because of a high FRc. This latter error is 
denoted Type II

Because of the high FRc the test has a low power: the 
probability of failing to reject a false null hypothesis is 
unduly high

The probability of type I vs. type II errors depend on the 
significance level , the properties of the test statistic 
(here: FR) and the statistical properties of the 
database

Statistical experts warn against a slavish usage of the 
standard type I significance test in a statistical context.



Logistic regression
The recursive partitioning algorithm (RPA)
Mathematical programming
Linear programming models
Quadratic programming models
Neural network classifiers

Other techniques in financial classification



Logistic Regression

 Logistic regression is part of a category of statistical 
models called generalized linear models

 Whereas discriminant analysis can only be used with 
continuous independent variables. Logistic regression 
allows one to predict a discrete outcome, such as 
group membership, from a set of variables that may be 
continuous, discrete, dichotomous, or a mix of any of 
these

 Generally, the dependent or response variable is 
dichotomous, such as presence/absence or 
success/failure. 



Logistic Regression...

 Even though the dependent variable in logistic 

regression is usually dichotomous, that is, the 

dependent variable can take the value 1 with a 

probability of success q, or the value 0 with 

probability of failure 1-q, applications of logistic 

regression have also been extended to cases 

where the dependent variable is of more than 

two cases



Logistic Regression...

 The independent or predictor variables in logistic 

regression can take any form, i.e. logistic regression 

makes no assumption about the distribution of the 

independent variables

They do not have to be normally distributed, linearly 

related or of equal variance within each group

 The relationship between the predictor and response 

variables is not a linear function, instead, the logistic 

regression function is used, which is the logit 

transformation of probability q



Logistic Regression...

 The Model:

where is the constant of the equation and, :s are  

the coefficient of the predictor variables

 An alternative form of the logistic regression equation 

is:
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Logistic Regression...

 The goal of logistic regression is to correctly 

predict the category of outcome for individual 

cases using the most parsimonious model

 To accomplish this goal, a model is created 

that includes all predictor variables that are 

useful in predicting the response variable.

 Different methods for model creation

 Stepwise regression

 Backward stepwise regression



Logistic Regression...

 Stepwise regression 

 Variables are entered into the model in the 
order specified by the researcher or logistic 
regression can test the fit of the model after 
each coefficient is added or deleted

 Used in the exploratory phase of research 
where no a-priori assumptions regarding 
the relationships between the variables are 
made, thus the goal is to discover 
relationships



Logistic Regression...

 Backward stepwise regression

 The analysis begins with a full or saturated model 

and variables are eliminated from the model in an 

iterative process

 The fit of the model is tested after the elimination 

of each variable to ensure that the model still 

adequately fits the data

 When no more variables can be eliminated from 

the model, the analysis has been completed

 The preferred method of exploratory analyses



Logistic Regression...

 Two main uses of logistic regression

 The prediction of group membership

 Calculates the probability or success over the 

probability of failure

 The results of the analysis are in the form of an odds 

ratio

 For example, logistic regression is often used in 

epidemiological studies where the result of the 

analysis is the probability of developing cancer after 

controlling for other associated risks

 Logistic regression also provides knowledge of the 

relationships and strengths among the variables



Recursive Partitioning Algorithm 

(RPA)

 A decision tree model for classification

 For each independent variable the 
observations in each class are sorted in 
increasing order, and the cumulative density 
functions for each class are defined

 The maximum absolute difference between 
the cumulative functions defines the cutting 
variable and cutting point for a node in the 
decision tree



Recursive Partitioning Algorithm, an 

example

 Assume that we have a sample of 9 

cases of which 5 belong to class 1 and 4 

to class 2. The cases are measured by 

two predictor variables x1 and x2. The 

input data is presented in the following 

table:



Recursive Partitioning Algorithm, an 

example...

Case Class x1 x2

1 1 2 7

2 1 1 8

3 1 7 9

4 1 2 5

5 1 4 8

6 2 6 3

7 2 3 1

8 2 8 6

9 2 8 3



Recursive Partitioning Algorithm, an 

example...

 The cases are first ordered in ascending order 

of the first predictor variable x1

 Then, the empirical cumulative distributions 

F1(x1) and F2(x1) are computed, and the 

absolute difference |F1(x1) - F2(x1)| is 

computed

 The results of the computations are presented 

in the following table:



Recursive Partitioning Algorithm, an 

example...

Case x1 Class F1(x1) F2(x1) |F1(x1) - F2(x1)|

2 1 1 0,20 0,00 0,20

1 2 1 0,40 0,00 0,40

4 2 1 0,60 0,00 0,60

7 3 2 0,60 0,25 0,35

5 4 1 0,80 0,25 0,55

6 6 2 0,80 0,50 0,30

3 7 1 1,00 0,50 0,50

8 8 2 1,00 0,75 0,25

9 8 2 1,00 1,00 0,00



Recursive Partitioning Algorithm, an 

example...

 The maximum value of the absolute difference 
between the cumulative distribution functions for the 
first predictor variable is 0.60, corresponding to value 
x1 = 2.

 The best discrimination based on variable x1 is 
achieved by assigning the three cases with the value 
of x1 less than or equal to 2 to the class to which the 
majority of the cases in this subgroup, i.e. to class 1, 
and the six cases with x1 greater than 2 to class

 Thus, two of the nine cases are misclassified by 
variable x1



Recursive Partitioning Algorithm, an 

example...
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Recursive Partitioning Algorithm, an 

example...

 The same procedure is then performed 

with the other predictor variable x2, in 

order to find the best univariate 

discriminator

 The computational results and the 

corresponding graphs are presented 

below:



Recursive Partitioning Algorithm, an 

example...

Case x2 Class F1(x2) F2(x2) |F1(x2) - F2(x2)|

7 1 2 0,00 0,25 0,25

6 3 2 0,00 0,50 0,60

9 3 2 0,00 0,75 0,75

4 5 1 0,20 0,75 0,55

8 6 2 0,20 1,00 0,80

1 7 1 0,40 1,00 0,60

2 8 1 0,60 1,00 0,40

5 8 1 1,00 1,00 0,20

3 9 1 1,00 1,00 0,00



Recursive Partitioning Algorithm, an 

example...
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Recursive Partitioning Algorithm, an 

example...

 The maximum value of the absolute difference 
between the cumulative distributions is now 0.8, 
corresponding to value x2 = 6

 Thus the best discrimination based on variable x2 is 
achieved by assigning the five cases with x2 less than 
or equal to 6 into class 2 and the other four cases into 
class 1.

 By this partitioning, only one of the nine cases is 
misclassified, i.e. variable x2 is superior to variable x1, 
in terms of univariate discrimination power.



Recursive Partitioning Algorithm, an 

example...

 Mathematically, the best univariate discriminator is 

found by comparing the maximum distances D(x1) and 

D(x2) and selecting the variable with the maximum 

D(xj)

 As the maximum D(xj) is

Max(D(x1),D(x2)) = Max(0.6;0.8) = 0.8 = D(x2)

x2 is the variable with the greatest univariate 

discrimination power and the first splitting is done in 

the way suggested by the second predictor variable



Recursive Partitioning Algorithm, an 

example...

 As one of the two subgroups contains cases from both 
classes, an additional partitioning of the subgroup 
consisting of observations 4, 6, 7, 8 and 9 is possible

 The maximum distance in this second partitioning is 
1.0 corresponding to value x1 = 2

 The optimal partitioning now is to assign the case with 
x1 equal to 2 into class 1 and the other four cases into 
class 2

 All the nine cases are now correctly assigned in pure 
classes 



Recursive Partitioning Algorithm, an 

example... The decision tree

X2

X1 Class 1

Class 1 Class 2

> 6≤ 6

> 2≤ 2



The Linear Programming classification 

model by Freed and Glover (1981)

 Given observations xi and groups Gj, find the linear 

transformation a, and the appropriate boundaries bj
L

and bj
U, to 'properly' categorize each xi

 Bounds bj
L and bj

U represent respectively the lower 

and upper boundaries for points assigned to group j. 

 Thus the task is to determine a linear predicting or 

weighting scheme a and breakpoints bj
L and bj

U, such 

that
bj

L ≤ xka ≤ bj
U ⇔ xk ∈ Gj

and
b1

L < b1
U < b2

L < b2
U < ... < bg

U



The Linear Programming classification model 

by Freed and Glover (1981) …

 The points xi may of course be distributed in a way 

that makes complete group differentiation impossible

 Therefore, it becomes important to endow the 

weighting scheme with the power to establish the 

foregoing group differentiation with minimum exception

 This implies that we should determine a predictor a

such that:

xia ≥ bj
L, xia ≤ bj

U for all xi ∈ Gj.



The Linear Programming classification model 

by Freed and Glover (1981) …

 To ensure that the target is achieved as nearly 

as possible, we impose the following goal 

constraints:

where g = number of groups and 0 < ε.

 The objective function is defined as

1

1

  Minimize
g-

j

jα

1-1,..., for ,1 gjbb j

L

j

U

j



Neural Network classification

 Neural networks are computation models that 

mimic the human learning process (cf. Östermark [2009])

 A network is trained by 

 Giving one observation at a time as input

 Computing the output value for the observation with 

the current net

 Comparing the computed output value with the 

known correct result

 Adjusting the net weights based on the difference 

between the computed and observed output values



An example of a neural network 

classifier

Classification

Output layer

Second hidden layer

First hidden layer

Input layer

Predictor variables x1 x2 x3 x4

0/1



3. Case: Bankruptcy prediction in 

the Spanish banking sector

 Reference: Olmeda, Ignacio and Fernández, Eugenio: 

"Hybrid classifiers for financial multicriteria decision 

making: The case of bankruptcy prediction", 

Computational Economics 10, 1997, 317-335.

 Sample: 66 Spanish banks

 37 survivors

 29 failed

 Sample was divided in two sub-samples

 Estimation sample, 34 banks, for estimating the model 

parameters

 Holdout sample, 32 banks, for validating the results



Case: Bankruptcy prediction in the 

Spanish banking sector

Input variables
 Current assets/Total assets

 (Current assets-Cash)/Total assets

 Current assets/Loans

 Reserves/Loans

 Net income/Total assets

 Net income/Total equity capital

 Net income/Loans

 Cost of sales/Sales

 Cash flow/Loans



Empirical results

 Analyzing the total set of 66 observations

 Group statistics – comparing the group means

 Testing for the equality of group means

 Correlation matrix

 Classification with different methods

 Estimating classification models using the 

estimation sample of 34 observations

 Checking the validity of the models by classifying 

the holdout sample of 32 observations



Confusion matrix – Classification results for 

the holdout sample using Logistic Regression

Predicted class

Survived Failed

True 

class

Survived 17 1

94.44 % 5.56 %

Failed 3 11

21.43 % 78.57 %



Summary of classifications 

(Estimation sample)

SW NE Correct SW NE

RPA 30 1 3 34 88.24 % 2.94 % 8.82 %

MDA 30 0 4 34 88.24 % 0.00 % 11.76 %

MDA-Q 31 0 3 34 91.18 % 0.00 % 8.82 %

MDA-W 31 0 3 34 91.18 % 0.00 % 8.82 %

LogR 33 0 1 34 97.06 % 0.00 % 2.94 %

LP 28 1 5 34 82.35 % 2.94 % 14.71 %

LP-Q 34 0 0 34 100.00 % 0.00 % 0.00 %

LPG 33 0 1 34 97.06 % 0.00 % 2.94 %

LPGQ 34 0 0 34 100.00 % 0.00 % 0.00 %

Kohonen 24 3 7 34 70.59 % 8.82 % 20.59 %

PercentsTotal 

number
Method

ErrorsCorrect 

class



Summary of classifications 

(Holdout sample)

SW NE Correct SW NE

RPA 27 2 3 32 84.38 % 6.25 % 9.38 %

MDA 25 4 3 32 78.13 % 12.50 % 9.38 %

MDA-Q 20 7 5 32 62.50 % 21.88 % 15.63 %

MDA-W 25 5 2 32 78.13 % 15.63 % 6.25 %

LogR 28 3 1 32 87.50 % 9.38 % 3.13 %

LP 24 5 3 32 75.00 % 15.63 % 9.38 %

LP-Q 21 7 4 32 65.63 % 21.88 % 12.50 %

LPG 25 4 3 32 78.13 % 12.50 % 9.38 %

LPGQ 21 7 4 32 65.63 % 21.88 % 12.50 %

Kohonen 16 4 12 32 50.00 % 12.50 % 37.50 %

Percents
Method

Correct 

class

Total 

number

Errors



Classification results – Error 

types

 The classification results for the different methods 

differ in

 Total classification accuracy

 Descriptive (Estimation sample)

 Predictive (Holdout sample)

 Error types
 Classifying a survivor as failed

 Classifying a failed as survivor

 Many methods may be calibrated to take into account 

the relative severity of the two types of errors



Fisher’s discriminant function 

coefficients

Survived Failed

Constant -758.242     -758.800

CA/TA 48.588 34.572

CA_Cash/TA 9.800 23.506

CA/Loans -18.031 -16.947

Res/Loans 351.432  342.204

NI/TA -246 563.200     -236 546.700

NI/TEC 774.368 740.035

NI/Loans 23 681.300   21 4974.000

CofS/Sales 1 499.659 1 505.547

CF/Loans 14 625.844 14 245.368



Example on classifying an observation 

by discriminant functions

Obs. 1 Survived Score Failed Score

Constant -758.24 -758.24 -758.800 -758.80

CA/TA 0.4611 48.59 22.40 34.572 15.94

CA_Cash/TA 0.3837 9.80 3.76 23.506 9.02

CA/Loans 0.4894 -18.03 -8.82 -16.947 -8.29

Res/Loans 0.0077 351.43 2.71 342.204 2.63

NI/TA 0.0057 -246563.2 -1405.41 -236546.7 -1348.32

NI/TEC 0.0996 774.37 77.13 740.035 73.71

NI/Loans 0.0061 23681.3 1364.46 214974.0 1311.34

CofS/Sales 0.8799 1499.66 1319.55 1505.547 1324.73

CF/Loans 0.0092 14625.84 134.56 14245.368 131.06

Total Score 752.08 753.02

Larger score 

Classification: Failed



4. Some comments on hypothesis 

testing

Assume that we – as a bank institution - want to distinguish between non-distressed

(H0) vs. distressed (H1) firms using a suitable financial ratio FR (for example

based on the discriminant score), in order to reduce the financial risk in loan

decisions. To do this, we need to compare the FR of a firm with a critical value

FRc. If FR> FRc, then the firm is assumed to be distressed, otherwise not.

There is a tension between type I and type II errors. The first type is smaller, the

higher is the significance (i.e. the smaller is ): The probability of rejecting H0

falsely is smaller, the smaller is . Type I error is the probability of rejecting H0

even if it is true. With =10% this probability is twice that of =5% and ten times

that of =1%. We throw away a gold nugget among the rubbish in 10% of all

cases by rejecting H0 for firms that actually are non-distressed.

If we get an extremely high FR for a firm, however, everybody will realize that the

probability of that firm being non-distressed is practically negligible: The

probability of such an outcome being generated by chance is very low. In such a

case it is safe to conclude that the firm is financially distressed and, for example,

to reject financing a project that the firm is contemplating.



Some comments on hypothesis 

testing…

On the other hand, the more we shift the critical significance level (FRc) to the right, 

the less frequently we will reject H0. If FRc is extremely high, we will accept H0 

almost always: Everybody will receive a loan from our bank.

But the more we shift the critical level FRc to the right, the more often we will accept 

H0 even if it is false: there will be firms in our clientele that should not be there. 

These firms are distressed, even though we have failed to detect this because of 

a high FRc.

This latter error is denoted Type II. Because of the high FRc the test has a low power: 

the probability of failing to reject a false null hypothesis is unduly high.

The probability of type I vs. type II errors depend on the significance level , the 

properties of the test statistic (here: FR) and the statistical properties of the 

database. Statistical experts warn against a slavish usage of the standard type I 

significance test in a statistical context.
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