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, i.e. f has a continuous derivative and it’s continuous for every x([a,b], where [a,b] is a closed subset of (. Then there exists an (>0 such that |(fn)’(x)|<A<1 for x([p-(,p+(]. The theorem is proved by induction, i.e. the theorem is first proved for k=1. By the meanvalue theorem there exists a (, |(-p|<|x-p|, such that:
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According to the above fn(x) is closer to p than x. The induction assumption is now given by:
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The inequality is then proved to also hold for k+1:
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Induction gives that the inequality holds for every k and then can the following conclusion that fkn(x)(p when k(( can be done.

By the assumption 
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, where [a,b] is a closed subset of (. Then there exists an (>0 such that |(fn)’(x)|>A>1 for x(]p-(,p+([. Take an arbitrary x#p from the interval ]p-(,p+([ and do the antihesis that fkn(x)(U for all k. Then the theorem is proved by induction, i.e. the theorem is first proved for k=1. By the meanvalue theorem there exists a (, |(-p|(|x-p|, such that:
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According to the above fn(x) is further from p than x is from p. The induction assumption is now given by:
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The inequality is then proved to also hold for k+1:
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Induction gives that the inequality holds for every k and then can the conclusion that fkn(x)(( when k(( can be done and the antithesis is false which means that the proof is finished.

Consider an arbitrary interval I=[1/2(,(], 0<(<1/2. Now there exists a natural number k such that 2k-1<1/2<2k( , and Tk(I)=[2k-1(, 2k(]. At the next iteration of T we get:
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The next iteration gives that Tk+2(I)=[0,2(1-2k()](T([2(1-2k(),1[). Hence 1-2k(<1/2 and there exists a number l such that 2l(1-2k()>1/2, and the following holds: 
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By the construction there exists for every interval J([0,1] a natural number k such that T k(I)(J#(. Now the theorem 1.2. can be used, because T(x) is continuous and topologically transitive on [0,1], to finish the proof. 

As for the tent-map can be proved that B(x) is topologically transitive. Bn(x) has 2n fixedpoints, because at the n:th iteration of B the interval [0,1] consists of 2n piecewise linear functions. Take now two n-periodical points x and x' that are not separated by any other periodical points.  The distance between these are now:
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The periodical points are dense on [0,1]. The theorem 1.1. gives now that B(x) is chaotic on [0,1].
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Consider 
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 and h: S1([-1,1].

Now the following holds:
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i.e. f3(h(())=h(g(()). Note that h is not a homeomorphism since it's a two-to-one at most points. The maps g and f3 are semi-conjugate [Dev89]. Hence it is proved that g is chaotic. Example 1.1. shows that 
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 has dense periodical points on the unit circle. The map g is also topological transitive, because for any neighborhood U (in S1) there exists k such that gk(U) covers S1. Hence g is chaotic which also proofs that f3 is chaotic.
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