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A dynamical system consists of two components, the other describes its state and the other is a function f:
[image: image65.wmf] that determines its future. The state that is a n-dimensional vector, is written Xt, where t is a time-index. If the timeindex is allowed to run continuously over time then Xt is a continuous system. In this course we study discrete dynamical systems, for these the timeindex are from the set of natural numbers, 
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The starting point (start-state) is denoted by X0. Latter states of the system are calculated by iteration of f(X0). The composition f(f(x)) is denoted by f2(x), f(f(f(x))) by f3(x), i.e. the n:th iteration of x is denoted by fn(x). 

The state at time t+1 of a discrete dynamical system is according to [May76]:

Xt+1 = f (Xt)





(1.1)
Equation (1.1) may for example describe the size of a population [May76]. The interesting thing with discrete dynamical systems is to study the asymptotic behavior of the iterative process (1.1). Assumed that the starting point is known, the state of the system at time t+1 may be calculated by t+1 iterations of X0:

 



Xt+1 = ft+1(X0)




(1.1a)

The forward orbit of a point x is a set O+  that consits of the points: x, f(x), f2(x), . . .. The backward orbit of x, written O - , consists of: x, f-1(x), f-2(x), . . ., assumed that the function f is invertibel.

A point 
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 is a fixedpoint if 

 f(x)=x 




(1.2)

The point x is a periodical point with prime period
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, if n is the least natural number for which:

 fn(x)=x




(1.3)
The set of periodical points of period n of the function f is written Pern(f).

Pern(f)={x | fn(x)=x}



 (1.4)

The set of fixedpoints may be written as Per1(f). An essential term that is needed later in the definition of chaos is the definition of density.  

Definition 1.1. Assume that f: V→V. The set of periodical points 

{Pern(f), 
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The closure of 
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  is the union of all periodic points.

Example 1.1.
The function g(
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)=sin(3
[image: image9.wmf]q

) has periodic points that are dense in S1. For an integer k the following holds: g(
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+k2
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)=g(
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). The periodic points may be calculated from (1.3) by the following:
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The periodic points can be written as 
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, where q is a rational number. The rational numbers are dense on 
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 and thus on S1 gives:
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1.1. 

It’s interesting to study the qualitative changes in the periodic points as the function f changes. The periodic points may be stabile or instabile. The classification of these are described in the next chapter.

1.1.1.

The classification of fixed- and periodic points, in one dimensional systems, may be done by the derivative [Dev89]. Assume that 
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, the point p is said to be:

· hyperbolic if |(fn)’(p)| # 1
· attracting if |(fn)’(p)| < 1
· repelling if |(fn)’(p)| > 1
When choosing a start point x0 from an open interval around an periodic point the behavior of the forward orbit depends on the map in question. If the periodic point p is hyperbolic the forward orbit will strongly depend on the place of the starting point versus p. For attractive periodic points the following theorem can be proved:

Theorem
Assume that 
[image: image18.wmf])

f

(

Per

p

n

Î

 and |(fn)’(p)| < 1. Then there is an open interval 
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Proof.

The above theorem says that an attractor of period n is surrounded by an open interval I which is mapped inside itself by fn. Such a neighborhood is called the local stable set and is denoted by 
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. For repelling periodic points an analogous theorem exists:

Theorem
Assume that 
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 and |(fn)’(p)| > 1. Then there is an open interval 
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Proof.

The interval U in above theorem is called the local unstable set and is denoted by 
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Example 1.2. The function 
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 has the fixedpoints: {-1,0,1}. Their stability can be determined with the derivative: 
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. That is the points -1 and 1 are repelling fixedpoints and the point 0 is attractive. From the figure below the forward orbits for the following startpoints {-1.1, -0.8, 0.8, 1.1} may be seen.

Figure 1. The forward orbit O+(x0), where x0 is in {-1.1, -0.8, 0.8, 1.1}.
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. Alternatively the forward orbit O+ can be drawn as an function of 
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Figure 2. The first points of the forward orbits of 
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If the function f is linear, then (1.1) may be written as a difference equation of first order:
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(1.5)
From (1.5) the behavior of the sequence Xt depends on the values of a, b and X0, a thorough description can be found in [Gol58]. 

1.1.2.

The classification of periodical points in multidimensional systems is done by the eigenvalues of the Jacobian. The set of the eigenvalues 
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 of the matrix A is denoted by 
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, (k>1). The Jacobian matrix of the map f is denoted by Df and defined by the following:
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The eigenvalues of Df can be calculated from the equation: 
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· hyperbolic if 
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· attracting if 
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1.1.2.1.

A linear system of the form (1.1) can also be written as (a system of first order difference equations):



Xt+1 =A Xt +b




          (1.6)
Where A is a n dimensional square matrix, X and b are vectors with n elements. The Jacobian to the system (1.6) is simply the matrix A, from which the stability of the periodical points can be determined. For linear multidimensional systems the following theorem has been proved: 

Theorem
Assume that Xt+1=L(Xt), where L is a linear map, 
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Proof 

The theorem is proved for n=3 in pp. 175-176 of [Dev89].

Iteration of (1.6) gives:



X1=AX0+b
X2=AX1+b=A2X0+Ab+b
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Xk=AkX0+(Ak-1+ Ak-2 + . . . +A+I)b



(1.7)

If I-A is invertible, that is equivalent to that 1 isn't an eigenvalue of A, we get:

(Ak-1+ Ak-2 + . . . +A+I)=(I-Ak)(I-A)-1 
And (1.7) can thus be written as:

Xk= AkX0 + (I-Ak)(I-A)-1 b    




(1.8)

With the eigenvalues of A the behavior of discrete multidimensional systems can be summarized as the following [Sch96]:

(i , i=1, . . . , n
Xt , t((

|(i| < 1, ( i

|(i| > 1, for some i

|(i| ( 1, ( i, |(i| = 1, for some i
(I-A)-1 b

(
(

Table 1. Possible behavior of a linear system Xt+1 =A Xt +b.

In the above table it is assumed that the startpoint isn't a fixed- or periodic point. In the case (  (in table 1) the system might behave in different ways depending on the startpoint. 

If A is diagonalizable and one of its eigenvalues is 1, Ak can be expressed with help of  the matrices S and ( , where S is a matrix with the eigenvectors (of A) as columns and ( is a diagonal matrix whose diagonal entries are (i , i=1, . . . , n, by the following:

        Ak = (S(S-1) ( ( ( (S(S-1)



 = S((S-1S)((S-1S) ( ( ( (S-1S)(S-1


 = S(kS-1 
(1.7) can thus be written as:

                   Xk
= AkX0+(Ak-1+ Ak-2 + . . . +A+I)b
= S(kS-1X0 +S((k+ (k-1+ ( ( ( + I)S-1b


(1.9)
By the assumption A is diagonalizable which is equivalent to saying that its eigenvectors are linearly independent. This means that the startpoint X0 may be written as a linear combination of the eigenvectors si, (i=1, . . . , n). Thus we may write X0 = c1s1+ c2s2+ . . .+ cnsn, and the following can be done:

       X1
= AX0+b
= c1As1+ c2As2 +  . . . + cnAsn + b

= c1(1s1+ c2(2s2 +  . . . + cn(nsn + b
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       Xk
= c1(k1s1+ c2(k2s2 +  . . . + cn(knsn +(Ak-1+ Ak-2 + . . . +A+I)b

= c1(k1s1+ c2(k2s2 +  . . . + cn(knsn +S((k-1+ (k-2 + . . . +(+I)S-1b   
(1.10)

From above can be seen that if some (i is such that |(i|>1 the system Xk will diverge. 

If the matrix A is nondiagonalizable it can be written as: A=SJS-1 , where J is in Jordan form [Sch97]. In this case (1.7) can be written as:

        Xk
= SJkS-1X0 +S(Jk+ Jk-1+ ( ( ( + I)S-1b
 



(1.11)

A thorough analysis of (1.11) can be found in [Sch97]. Generally, the behavior of linear systems doesn't depend on the diagonalizability of A.

1.1.2.2.

Nonlinear systems can, if not |(i|=1 for every i, in a neighborhood of the fixedpoints be approximated by linear functions. Assume that the n-dimensional function f is nonlinear and that x* is a fixedpoint. Thus f can be approximated by:

f(x)(Df(x-x*)+f(x*)  



(1.12)

The stability of periodical points of nonlinear systems can be determined by calculating the eigenvalues of Df and applying the theory of linear systems.

Example 1.3. 
The 2-dimensional map
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has the fixedpoints: 
[image: image53.wmf].
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The eigenvalues of the Jacobian 
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can be found by solving the equation det((I-Df(xi*))=0, i=1,2,3. The eigenvalues of the Jacobian of the different fixedpoints and their behavior can be seen from table 2.

x*
(i , i=1,2
|(i|, i=1,2
Behavior of x*

x1*

x2*

x3*
0.25(1.35534i

1.5745, -1.0745

0.25(0.902281i
1.3782

1.5745, 1.0745

0.935275
Repellive

Repellive

Attractive

Table 2. The behavior of the fixedpoints of f(x).

The linearisation may fail if the eigenvalues realparts are 0. In such cases other methods can be used to determine the stability of the fixedpoints [Sch96].

1.1.2.3.

Dynamical systems or timeseries that are described by linear difference equations may be rewritten to the general form (1.1) of a dynamical system, and thus its theory can be applied. Consider a linear difference-equation of order k+1: 

Xt+1=a0Xt + a1Xt-1 + . . . + akXt-k 


        (1.13) 

Make the following substitution: 

ut=(ut0, ut1, . . . , utk)T =(Xt, Xt-1, . . . , Xt-k )T
 apply it to (1.13)
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(1.14)
Thus the theory from previous chapters can be used to analyze the behavior of (1.14). Consider the following linear difference equation of second degree:

Xt+1=aXt + bXt-1 



(1.15)
Put as above:
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The eigenvalues of A can be calculated from:
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(1.16)

1.2.

The graphical analysis is very useful in creation of intuition and understanding of mathematical phenomenom. Mathematical programs [Eme97] as, for example Matlab, Mathematica, Mathcad, Maple etc. are very easy to use for this purpose. 

Fixed- and periodical points can be calculated from equations (1.2) and (1.3). They can also be determined by graphical analysis by the following. By drawing the function f(x) and the identity function id(x)=x, the fixedpoints are the points where f(x) and id(x) intersect. Analogously the periodical points can be found by drawing fn(x) and id(x).

Example 1.4.
The fixedpoints {0,2/3} to f(x)=3x(1-x) can be solved from: 3x(1-x)=x.

The function doesn’t have periodical points which can be verified graphically:

Figure 3. The fixedpoints 0 and 2/3.

Figure 4. id(x) and fn(x), n=2,3,4,5.

The behavior of different points may easily be visualized by drawing the first points of the forward orbit, by putting Xt on the vertical axis and the time t on the horisontal axis. Alternatively the behavior can be analysed by first drawing the function f(x) and id(x) followed by a choice of startpoint X0. Then a horisontal line is drawn from f(X0) to id(f(X0)). The point id(f(X0)) is now X1 , from which a line is drawn to f(X1) and from there a line to id(f(X1)), (which is now X2). The procedure is repeated until some of the following events occur: an attracting fixedpoint is found, an periodic orbit is found or the system seems to diverge. The above described methods are used in figures 2 and 1. [Example]

The forward orbit may also be drawn in two or three dimensions.

1.3

Theorem


Proof



Theorem


Proof



Example 1.5.
Consider the function fa(x)=x2+a, its fixedpoints are 
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 . The different bifurcations that occur can be seen from the table 3.

a
|f’(x*l)| , l=1,2
bifurcation-type

a<-3/4

a=-3/4

-3/4<a<1/4

a=1/4

a>1/4
1<|f’(x*1)|< |f’(x*2)|

|f’(x*1)|=1, |f’(x*2)|=3

|f’(x*1)|<1<|f’(x*2)|

|f’(x*1)|= |f’(x*2)|=1

|f’(x*1)|= |f’(x*2)|>1
perioddoubling

saddle, transcritical

Table 3. Fixedpoints of fa(x).

Note that if a=1/4 both a saddle and a transcritical bifurcation occur, thus x1*=x2*=1/2. For a>1/4 the fixedpoints are complex, [Dev89], then the absolute values of the derivatives in the fixedpoints are: 
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Graphical analyses visualizes the behavior of the real fixedpoints, see figure 5.

Figure 5. The graph of fa(x)=x2+a, for a({-3/2, -3/4, 0, ¼, 1}.

From the figure can be seen that the function has for a<1/4 two real fixedpoints (of which the larger is repelling and for a=1/4 these coincide.

Bifurcations also occur in two- and higher-dimensional systems. In two dimensions a unique type of bifurcation may occur, i.e. the Hopf-bifurcation. In a Hopf-bifurcation a attractive fixedpoints become reppeling and an attracting closed invariant curve is borned. This occurs when the eigenvalues cross the unit-circle [Dev89].

1.3.1.

The different types of bifurcations can be visualised by so called bifurcation-diagrams. In such a diagram the stabile fixed- and periodic points are drawn as functions of the parameter [Dev89]. From figure 6 the bifurcationdiagram for fa(x) in example 1.5 can be seen. This is done by iterating  fa(x) 1000 times for a-values between –2 and ¼, finally the last 100 points of each iteration is plotted at each a-value. 

Figure 6. Bifurcationdiagram for fa(x)=x2+a, a([-2,1/4].

From the above figure can be seen that  fa has an attracting fixedpoint when a is in 

[-1/2-(,1/4], and the first perioddoubling occurs at the point a=-1/2-(, ((>0). The perioddoubblings occur more often for smaller a and seems to converge to a limit point ac. For a< ac the function is caotic which can be seen from the figure as a black region [Dev89]. By zooming in the figure 6 for a-values in [-1.8,-1.7], see figure 7, for a(-1.76 an attracting 3-period cycle can be detected. From figure 7 can be seen that for a<-1.76 a periodoubbling occurs followed by an 6-periodic cycle followed by an 12-periodic cycle.

Figure 7. 

Approximations of parameter-values when bifurcations occur can be done by zooming in the diagrams as above.

Feigenbaum [Fei78] did the notation that for the logistic map (f((x)= (x(1-x), (([0,4], x([0,1]) the parametervalues can be calculated from:
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(1.17)
1.4.

The word chaos is used in many contexts in daily life, i.e. a desk may see chaotic, someones life may seem to be chaotic. Here is used the mathematical meaning of chaos, that isn’t any “disorder” or “mess”. Despite the popularity of chaos in the recent years, there has not been any universally accepted mathematical definition of chaos [Ban92]. According to [Dev89] a chaotic system has the following three components: topological transitivity, sensitive dependence on initialconditions and dense periodic points. The first ones are defined as:

Definition
f:V(V is topological transitive if there for all non-empty subsets I and J of V exists a natural number k such that fk(I)(J((. 

Definition
f:V(V is sensitive dependent on initial conditions if there is a real number (>0 such that for every x(V and for every (>0 exists y and n(N such that: | x-y | < ( and | fn(x)- fn(y) | > (.

With the above definitions and the definition 1.1 (density of periodical points) chaos

can , according to [Dev89], be defined on metric spaces as:

Definition 1.2.
Let V be a metric space. A continupus map f:V(V is said to be chaotic on V if: 

(i) f is transitiv

(ii) the periodic points of f are dense in V
(iii) f has sensitive dependence on initial conditions

The first criteria (i) in the above definition says that a chaotic system isn’t reducible. The density of periodic points gives that some regularity exists. The third criteria is considered as the main criteria (also known as the “Butterfly”-effect), the idea with is that minute differences can lead to large scale divergence. 

A redundancy has been found in definition 1.2. because [Ban92] has proved the following theorem.

Theorem 1.1. 
If  f:V(V is transitive and has dense periodic points then f has sensitive dependence on initial conditions.

If I is an interval on the real axis then it is (for chaos) enough to show that the map is 

Transitive, because the following theorem has been proved by [Vel94]: 

Theorem 1.2.
Let I be a, not necessarily finite, interval and f:I(I a continuous and topologically transitive map. Then 

(1)
the periodic points of f are dense in I and

(2)
f has sensitive dependence on initial conditions.

Sometimes it is easier to investigate an similar map g to determine if an map f is

chaotic or not. This is possible if the maps are topologically conjugate.

Definition
Assume

1.4.1.

The sensitive dependency may be examplified with a pinball machine [Lor93]. 

Figure 8. Sensitive dependency on initial conditions in a pinball machine.

Some examples of chaotic maps:

· The logistic map

· The map 

· Tent map T(x) is chaotic on the interval [0,1]. 
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Proof.

· The Baker map 
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is chaotic on [0,1].

Proof.

Figure 9. Tent- and bakermap.
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