
Refinement Calculus Overview

R. J. R. Back
(joint work with Joakim von Wright)

Turku Centre for Computer Science and
Åbo Akademi University

Introduction

New book

Presentation is based on a recent book:

R. J. R. Back and J. von Wright, Refinement Calculus:A
Systematic Introduction. Graduate Texts in Computer
Science, Springer-Verlag, New York 1998 (519 pages), ISBN
0-387-98417-8.

Contents of book

Foundations Lattice theoretic basis for refinement calculus. Higher
order logic basis. Notion of program variables. Reasoning about
simple programs.

Statements Predicate transformer semantics for statements. Refine-
ment calculus hierarchy. Game interpretation of statements. Cor-
rectness and refinement.

Recursion and Iteration Foundations for fixpoint theory. Recursion
and iteration. Continuity. Reasoning about arrays. Derivations of
recursive programs. Analyzing games.

Statement Subclasses Statement subclasses based on homomorphism
properties of statements. Specification statements. Refinement in
context. Iteration of conjunctive statements.

States, agents and contracts

Consider

• a collection of agents

• that operate in a world

• in order to achieve their
goals.

The interaction between agents
is regulated by contracts.

A contract stipulates what
agents are permitted and
expected to do.

We want to analyze what an
agent can achieve with a given
contract.

b

c

a

d

p

q

Questions

• What is a state?

• How do you manipulate the state?

• What is a contract?

• What are the agents, and what can they do?

• What kind of goals can the agents have?

• How does an agent achieve a goal?

• How do the agents interact with each other?

• What has this all to do with program refinement?

Manipulating the state

Observing and changing the state

The world is a state σ in a state space Σ. The
state is observed with state functions

f : Σ→ Γ

A predicate p is a state function of type

p : Σ→ Bool

It describes a property that a state may or may not
have.

We often identify a predicate p with the set of states
{σ | p. σ} that satisfy it.

A state transformer is a function

g : Σ→ Σ

An agent can change the present state σ to a new
state g. σ by applying a state transformer g.

f1 f2

g2

g1

Σ

Nat

Bool

Char

p

Composing state transformers

• Sequential composition of state func-
tions (and state transformers):

(f ; g). σ ∧= g. (f. σ)

• Conditional composition of state
functions (and state transformers):

(p→ f |g). σ ∧=
{

f. σ if p. σ
g. σ if ¬p. σ

States and attributes

The state is observed and changed using a
collection of attributes (or program vari-
ables)

x1, . . . , xn

These can be observed and changed inde-
pendently of each other.

An attribute x ranging over Γ is a pair of func-
tions, x = (valx , setx), where

valx : Σ→ Γ and setx : Γ→ Σ→ Σ

(valx is a state function and setx . γ is a state
transformer)

• valx . σ is the value of attribute x in
state σ, and

• σ′ = setx . γ. σ is the updated state
where attribute x is set to value γ

valx1 valx2

setx1.γ1

setx2.γ2

setx3.γ3

Σ

Nat

Bool

Char

valx3

Properties of program variables

1. You get what you set:

valx . (setx . a. σ) = a

2. An attribute can only record one value:

setx . a; setx . b = setx . b

3. Setting an attribute to the value it already has does not change the state:

setx . (valx . σ). σ = σ

4. Attributes can be set independently of each other (x, y different):

valy . (setx . a. σ) = valy . σ

5. The order in which two different attributes x, y are set should not matter:

setx . a; sety . b = sety . b; setx . a

Example

We can use these properties to determine the value of a program variable in a
given state. Example:

valy . ((setx . 3; sety . 5; setx . 0). σ)
= {associativity of functional composition}

valy . ((setx . 3; (sety . 5; setx . 0)). σ)
= {prop. (5)}

valy . ((setx . 3; setx . 0; sety . 5). σ)
= {definition of forward composition}

valy . (sety . 5. ((setx . 3; setx . 0). σ))
= { property (1)}

5

Expressions and assignments

Expressions are state functions expressed in terms
of attributes. Expression x+y is a function on states:

(x + y). σ = valx . σ + valy . σ

A boolean expression is a predicate:

(x ≤ y + 1). σ ≡ valx . σ ≤ valy . σ + 1

Expressions are used in assignments. The function
x := x + y changes the state, by updating the value
of x to the value of the expression x + y:

(x := x + y). σ = setx . (valx . σ + valy . σ). σ

x+y

x:=x+y

Σ

Nat

Bool
x<y+1

Assignments in general

In general, define

(x := e). σ ∧= setx . (e. σ). σ

Define multiple assignment by

(x1, . . . , xm := e1, . . . , em). σ ∧=
(setx1 . (e1. σ); setx2 . (e2. σ); . . . ; setxm . (em. σ)). σ

where x1, . . . , xm are distinct attributes.

Proving properties involving attributes

Let var x1, . . . , xm state that the attribute properties (1)-(5) hold for attributes
x1, . . . , xm (we then say that the attributes are program variables). Then

var x1, . . . , xm 	 t = t′

states that expressions t and t′ have the same value whenever x1, . . . , xm are
program variables.

Proofs with program variables are monotonic:

var x1, . . . , xm 	 t = t′

var x1, . . . , xm, xm+1, . . . , xn 	 t = t′

The naming of the attributes does also not matter:

var x1, . . . , xm 	 t

var x′1, . . . , x
′
m 	 t[x1, . . . , xm := x′1, . . . , x

′
m]

where x′1, . . . , x
′
m are all distinct and are free for x1, . . . , xm in t.

Working with attributes

var x, y,

valx . σ = 3, valy . σ = 2
	 (x ∗ y). ((x := x + y). σ)
= {definition of assignment}

(x ∗ y). (setx . (valx . σ + valy . σ). σ)
= {assumption}

(x ∗ y). (setx . (3 + 2). σ)
= {arithmetic}

(x ∗ y). (setx . 5. σ)
= {value of expression}

(valx . (setx . 5. σ) ∗ valy . (setx . 5. σ)
= {properties (1) and (4), assumption }

5 ∗ 2
= {arthmetic}

10

Substitution property

In general, we havet the following substitution property (e and f expressions)
in program variable(s) y:

var x, y 	 e. ((x := f). σ) = e[x := f]. σ

Example:

var x, y 	 (x ∗ y). ((x := x + y). σ) = (x ∗ y)[x := x + y]. σ
= ((x + y) ∗ y). σ

Assignment properties

Examples of general properties of assignments:

var x 	 (x := e); (x := f) = (x := f [x := e])
var x, y 	 (x := e) = (y, x := y, e)
var x, y 	 (x := e); (y := f) = (x, y := e, f [x := e])

If x is not free in f and y is not free in e, then

var x, y 	 (x := e); (y := f) = (y := f); (x := e)

Proof of first property

var x

	 ((x := e); (x := f)). σ
= {definition of function composition}

(x := f). ((x := e). σ)
= {definition of assignment}

setx . (f. ((x := e). σ)). ((x := e). σ)
= {definition of assignment}

setx . (f. ((x := e). σ)). (setx . (e. σ). σ)
= {attribute property (2)}

setx . (f. ((x := e). σ)). σ
= {substitution property}

setx . (f [x := e]. σ). σ
= {definition of assignment}

(x := f [x := e]). σ

Alternative ways of describing states

• State is total function σ : Variables → Values, where Variables is set
of all program variable names. Simple theoretically, but is untyped. Does
not utilize typing that already exists in higher order logic. Have to build
in typing into programming logic formalization. Does not allow to change
collection of variables.

• State is partial function σ : Variables → Values. Allows adding and
deleting variables, but otherwise similar to previous.

• State is tuple σ = (x1, . . . , xm). Simple to use in higher order logic, but
does not satisfy monotonicity property above.

• State is record σ = {x1 = a1, . . . , xm = am}. Requires that record types
are built into higher order logic. Program variable names part of type, so
naming of program variables matters.

Attribute model for program variables

The attribute model only states the minimial assumptions that we need about
program variables, without fixing a specific model for program variables. All
models above satisfy properties (1) - (5).

An attribute x is of type

x : (Σ→ Γ)× (Γ→ Σ→ Σ)

Can define

val . (f, g) = f set . (f, g) = g

Then can write val . x instead of valx and set . x instead of setx.

This allows to quantify over attributes, define functions over attributes etc.

Contracts

Contract statements

The behavior of agents is regulated by a contract (statement) S. A contract
is of the form

S ::= 〈f〉 | {p}a | S1;S2 | S1 �a S2

(p is state predicate and f state transformer)

• The update 〈f〉 changes the state by applying the state transformer f . If
the initial state is σ0 then the final state is f. σ0.

An assignment statement 〈x := e〉 is a special kind of update where the
state transformer is an assignment. Another special kind is skip = 〈id〉,
which does not change the state at all.

• In the sequential contract S1;S2 the contract S1 is first carried out,
followed by S2.

• In a choice S1�a S2, either contract S1 or S2 is carried out, depending on
which one agent a chooses.

Sequential composition binds stronger than choice.

Assertions

The assertion {p}a is a requirement that the agent must satisfy
in a given state.

Assertions can be expressed using boolean expressions. Assertion

{x + y = 0}

states that the sum of x and y in the state must be zero.

• If the assertion holds then the state is unchanged, and the
agent carries on with the rest of the contract.

• If the assertion does not hold, then agent a has breached
the contract.

The assertion {true}a is always satisfied.

The assertion {false}a is an impossible assertion. It is never
satisfied, and always forces the agent to breach the contract.

Example contract

Consider the contract

Contract1 = {1 ≤ y ≤ 4}a; 〈x := 0〉;
(〈x := x + 1〉 �a 〈x := x + 2〉);
{y = x}a

• If y < 1 or y > 4, then agent a cannot avoid breaching the
contract.

• If y = 1, then agent a can avoid breaching the contract, by
choosing the left alternative

• If y = 2, then agent a can avoid breaching the contract by
choosing the right alternative

• If y = 3, 4, then agent a cannot avoid breaching the contract.

We write just x := x + 1 for assignment statements in contracts,
rather than 〈x := x + 1〉, when no confusion can occur.

Contract with two agents

The contract of agent a invokes subcontract for agent
b.

Agent a is to carry out the contract S:

S = x := 0; (T �a x := x + 1); {y = x}a

Contract T is to be carried out by another agent b:

T = y := 0 �b y := 1

The overall contract is

Contract2 = x := 0;
((y := 0 �b y := 1) �a x := x + 1);
{y = x}a

S

T

a

b

Programs

Traditional programs can be seen as special kinds of contracts,
where exactly two agents are involved:

• the user a, and

• the computer system b.

Choices are only made by the computer system. It resolves
internal choices in a manner that the user cannot influence or
know (demonic nondetermism).

Example:

Prog = x := x + 1; {x �= 0}a; y := y/x; y := y + 1

Not permitted to do division by zero. User breaks contract if
she attempts that, releasing the system from any obligations.

Abort statement is a total breach of contract:

abort = {false}a

User a

Computer
system b

Interactive system

Permit user to also make choices. The user a chooses
between alternatives in order to influence the computa-
tion.

Interaction = x := 0;
(x := x + 1 �a x := x + 2);
(x := x− 1 �b x := x− 2)

User interaction can be seen as a menu choice.

User should choose

• first alternative, if she wants to establish x ≤ 0.

• second alternative, if she wants to establish x ≥ 0.

User a

Computer
system b

x=0

a

x=1 x=2

x=0 x=-1 x=1 x=0

b b

Interactive system, alternative view

Can also regard a to be the system and b the user. Then
the user choice is done after the system has made its choice.

• User can establish x = 0, no matter what system
does.

• User can also establish x �= 0, no matter what system
does.

User a

Computer
system b

x=0

a

x=1 x=2

x=0 x=-1 x=1 x=

b b

Operational semantics of contracts

We give a formal meaning to contract statements using
structured operational semantics. This describes step
by step how a contract is carried out, starting from a given
initial state.

A configuration is a pair (S, γ), where

• S is either an ordinary contract statement or the
empty statement symbol Λ, and

• γ is either an ordinary state σ, or the symbol ⊥a

(denoting that agent a has breached the contract).

Intuitively: S denotes what remains to be done, γ is present
state.

The transition relations → show what moves are per-
mitted. It is the smallest relation which satisfies the given
axioms and inference rules.

(S0,γ0)

(S1,γ1)

(S2,γ2)

(S3,γ3)

(S4,γ4)

Transition rules

Update
(〈f〉, σ)→ (Λ, f. σ) (〈f〉,⊥a)→ (Λ,⊥a)

Assertion
p. σ

({p}a, σ)→ (Λ, σ)
¬p. σ

({p}a, σ)→ (Λ,⊥a)

({p}a,⊥b)→ (Λ,⊥b)

Sequential composition
(S1, γ)→ (S′1, γ

′), S′1 �= Λ
(S1;S2, γ)→ (S′1;S2, γ′)

(S1, γ)→ (Λ, γ′)
(S1;S2, γ)→ (S2, γ′)

Choice
(S1 �a S2, γ)→ (S1, γ) (S1 �a S2, γ)→ (S2, γ)

σ stands for a proper state
γ stands for a proper state or ⊥a.

Example derivation

(x := 0; ((y := 1 �b y := 2) �a x := x + 1); {y = x}a, (x = 1, y = 1))
→ {sequential composition rule}

(x := 0, (x = 1, y = 1))
→ {update rule}

(Λ, (x = 0, y = 1))
(((y := 1 �b y := 2) �a x := x + 1); {y = x}a, (x = 0, y = 1))

→ {sequential composition rule}
(((y := 1 �b y := 2) �a x := x + 1), (x = 0, y = 1))

→ {choice rule}
(x := x + 1, (x = 0, y = 1))

(x := x + 1; {y = x}a, (x = 0, y = 1))
→ {sequential composition rule}

(x := x + 1, (x = 0, y = 1))
→ {update rule}

(Λ, (x = 1, y = 1))
({y = x}a, (x = 1, y = 1))

→ {assertion rule}
(Λ, (x = 1, y = 1))

All possible derivations

Contract2 =
A; ((B1 �b B2) �a C);D

where

A = x; = 0
B1 = y := 0
B2 = y := 1
C = x := x + 1
D = {y = x}a

(Contract2, (x=1,y=1))

(((B1 b B2) aC);D, (x=0,y=1))

((B1 b B2);D, (x=0,y=1)) (C;D, (x=0,y=1))

a

b

(B1;D, (x=0,y=1)) (B2;D, (x=0,y=1)) (D, (x=1,y=1))

(D, (x=0,y=0)) (D, (x=0,y=1)) (Λ, (x=1,y=1))

x:= 0

x:= x+1

{x=y}ay:=0 y:=1

{x=y}a {x=y}a

a(Λ, (x=0,y=0))

Operational semantics

A behavior of contract S from initial state σ is a maximal sequence of config-
urations (S = S0, σ = σ0):

(S0, σ0)→ (S1, σ1)→ . . .→ (Sn, σn)

where each transition (Si, σi)→ (Si+1, σi+1) is permitted by the axiomatization.

The operational semantics of a contract S is a function

op : Contracts→ Σ→ P(Behaviors)

where

op. S. σ
∧= set of behaviors of S from σ

All behaviors of contracts are finite.

Statement part of configuration always indicates which agent should choose next,
if any.

Contracts vs. programs

• Contracts generalize the traditional notion of a program to allow for any
number of agents. The choices made by the agents determine how the
computation proceeds.

• Batch oriented programs and interactive programs are special cases of con-
tracts.

• Contracts also introduce the new notion of breaching a contract (and
dually, of being released from a contract).

• Contracts are more expressive than traditional program/specification no-
tation.

Analyzing contracts

Achieving goals

Operational semantics describes all possible ways of carry-
ing out a contract.

By looking at the state component of the final configura-
tions, we can see what outcomes (final states) are possible,
if all agents cooperate.

In reality the different agents are unlikely to have the same
goals, and the way one agent makes its choices need not be
suitable for another agent.

Question?: What can one agent (or a coalition of
agents) achieve with a contract.

Establishing goals

Agent a can establish condition q with contract
S in initial state σ, denoted

σ {|S |}a q

if, assuming none of the other agents breach the
contract, a can establish postcondition q no mat-
ter what the other agents do.

Thus σ {|S |}a q holds if the agent can make its
own choices in such a way that

• either a final state is reached where q holds,
or

• some other agent must breach the contract.

Example: Contract1

Contract1 = {1 ≤ y ≤ 4}a; 〈x := 0〉;
(〈x := x + 1〉 �a 〈x := x + 2〉);
{y = x}a

Establishing goals:

(x = 3, y = 1) {|Contract1 |}a x = 1
(x = 3, y = 1) {|Contract1 |}a x = y

(x = 3, y = 2) {|Contract1 |}a x = y

but not

(x = 3, y = 2) {|Contract1 |}a x = 1

Example: Contract2

Contract2 = x := 0;
((y := 0 �b y := 1) �a x := x + 1);
{y = x}a

Establishing goals:

(x = 1, y = 1) {|Contract2 |}a x = y

(x = 1, y = 1) {|Contract2 |}b x = y

Example: Interaction

Interaction = x := 0;
(x := x + 1 �a x := x + 2);
(x := x− 1 �b x := x− 2)

(x = 7) {| Interaction |}a x ≤ 0
(x = 7) {| Interaction |}b x = 0

Enforcing correct behavior

We could also consider more general notions of
what an agent can achieve, like enforcing that,
as long as none of the other agents breach the
contract,

• each state reached satisfies some condition
q (i.e., σ {|S |}a ✷q holds), or

• eventually some state will satisfy condition
q (i.e., that σ {|S |}a ✸q holds), or

• q holds until r holds (σ {|S |}a q U r), or

• q always leads to r (σ {|S |}a ✷(q ⇒ ✸r)).

In figure, a can ensure that ✸✷q.

We will concentrate on establishing goals (post-
conditions) in the sequel, and consider enforce-
ment of temporal properties if time permits.

Correctness

Agent a can establish condition q with
contract S whenever initially p:

p {|S |}a q
∧= (∀σ ∈ p • σ {|S |}a q)

A contract can be suitable for some goals
and unsuitable for others.

We will say that contract S is correct for
the goal q in initial states p for agent a,
when p {|S |}a q. (Might be better to say
that S is appropriate for agents to reach
the goal)

Example:

1 ≤ y ≤ 2 {|Contract1 |}b x = y

y = 1 {|Contract2 |}a x = y

p

Improving contracts

Contract S′ is an improvement of con-
tract S for agent a if any condition that a
can establish with S can also be established
with S′:

S �a S′

∧= (∀σ∀ q • σ {|S |}a q ⇒ σ {|S′ |}a q)

We will say that S is refined by S′ (for
agent a) when S �a S′ holds.

Contracts S and S′ are equivalent from the
point of view of agent a, S =a S′, if S �a

S′ and S′ �a S.

Refinement example

Refinement for agent a means making it easier for a to achieve whatever goal it
desires, by

• adding choices for a,

• removing choices for the other agents,

• decreasing set of states where contract can be breched by a, or

• increasing set of states where other agents can breach contract.

Example refinement

We have that

Contract2 �a Contract3

where

Contract2 = x := 0;
((y := 0 �b y := 1) �a x := x + 1);
{y = x}a

and

Contract3 = x := 0;
{y > 0}b;
(y := 1 �a x := x + 1 �a x := x + 2);
{y ≤ x}a.

Taking sides

We pick out one or more agents whose
side we are taking, and assume that these
agents will co-operate in order to achieve a
common goal.

The other agents may have other goals.

To prepare for the worst, we assume that
the other agents are hostile to the goals
that our agents have and try to prevent
them from reaching this goal.

We call our agents collectively the angel
and the other agents collectively the de-
mon.

An angelic choice is made by our agents,
and a demonic choice by the other
agents.

d

Game interpretation

We consider execution of a contract as a game between the angel and the demon.

• The game is started in a given initial state σ.

• The contract gives the rules of the game.

• The goal of the game is to reach a goal, some final state in q.

The angel tries to reach a final state in q. The angle wins if such a state is
reached or if demon breaches the contract.

Angel looses if it breaches the contract or a state in ¬q is reached.

Winning strategies

Agent a makes its choices according to
a strategy: a function that for every
configuration of the form (S1 �a S2, γ)
returns either (S1, γ) or (S2, γ).

A strategy tells the agent what to do in
every possible choice situation.

Thus σ {|S |}a q holds if and only if
there exists a winning strategy for a
to establish q with contract S in initial
state σ. This can be determined from
op. S. σ and q.

Example shows winning strategy for a
to reach x = y with Contract2 from ini-
tial state (x = 1, y = 0).

(x = 1, y = 1) {|S |}a x = y

(Contract2, (x=1,y=1))

 (((B1 b B2) aC);D, (x=0,y=1))

((B1 b B2);D, (x=0,y=1)) (C;D, (x=0,y=1))

a

b

(B1;D, (x=0,y=1)) (B2;D, (x=0,y=1)) (D, (x=1,y=1))

(D, (x=0,y=0)) (D, (x=0,y=1)) (Λ, (x=1,y=1))

x:= 0

x:= x+1

{x=y}ay:=0 y:=1

{x=y}a {x=y}a

a(Λ, (x=0,y=0))

Symmetric and asymmetric system description

We can consider different ways of grouping
agents with the same contract, and analyze
what different coalitions can achieve with
the contract.

Contract provides a symmetric way of de-
scribing a system.

After we group the agents into angels and
demons, we have an asymmetric (game)
view of the system.

d d

Simplified syntax

After grouping agents into angels and demons, we only have two
agents left. The notation can then be simplified. We write

a � b
∧= a �angel b angelic choice

a � b
∧= a �demon b demonic choice

{p} ∧= {p}angel assertion

[p] ∧= {p}demon assumption

We also take the angels side when analyzing a contract:

σ {|S |} q
∧= σ {|S |}angel q correctness

S � S′
∧= S �angel S′ refinement

Simpler syntax for contract statements with angels and demons:

S ::= 〈f〉 | {p} | [p] | S1;S2 | S1 � S2 | S1 � S2

Notice that this is an asymmetric description of the system.

Assumptions

The assumption [p] is a condition that the angel expects to hold
in a given state. E.g.,

[x + y = 0]

states that the sum of x and y in the state is assumed to be zero.

• If the assumption holds at the specified place then the state
is unchanged, and the angel carries on with the rest of the
contract.

• If the assumption does not hold, then the angel is released
from the contract (because the demon has breached the con-
tract).

The assumption [true] is always satisfied.

The assumption [false] is an impossible assumption. It is never
satisfied, and always releases the agent from the contract. Often
refered to as magic, the so-called miraculous statement.

Weakest preconditions

When can angel reach its goal

Let S be a contract statement. We want
to compute the set of initial states from
which the angel has a winning strategy to
reach goal q with contract S.

We do this by defining a function wp. S (by
induction over the structure of S) such that
it satisfies

wp. S. q = {σ | σ {|S |} q}

This is called the weakest precondition
that guarantees that the angel can achieve
postcondition q.

q

wp.S.q

Swp.S

Computing wp. S. q for update statements

σ ∈ wp. 〈f〉. q
≡ {operational semantics}

f. σ ∈ q

≡ {inverse image: f−1. q = {σ | f. σ ∈ q}}
σ ∈ f−1. q

f

ΣΣ

q
f -1.q

wp.〈f 〉.q

Computing wp. (x := e). q

We compute the weakest precondition for an assignment x := e to establish a
postcondition q, assuming that q is a boolean expression and e an expressions.

wp. 〈x := e〉. q. σ
= {weakest precondition for update statements}

(x := e)−1. q. σ

= {definition of function preimage}
q. ((x := e). σ)

= {substitution lemma}
q[x := e]. σ

Thus, we have the assignment axiom (proved here as a theorem)

wp. 〈x := e〉. q = q[x := e]

Computing wp. S. q for assertion and assumption

Assertion:

σ ∈ wp. {p}. q
≡ {Operational semantics}

σ ∈ p ∧ σ ∈ q

≡ {set theory}
σ ∈ p ∩ q

Assumption:

σ ∈ wp. [p]. q
≡ {Operational semantics}

σ �∈ p ∨ σ ∈ q

≡ {set theory}
σ ∈ ¬p ∪ q

id on
p

ΣΣ

q

wp.{p}.q

ΣΣ

q

wp.[p].q

q

p

q

p

p∩q

¬p∪q

id on
p

Computing wp. S, sequential composition.

Sequential composition:

σ ∈ wp. (S1;S2). q
≡ {Operational semantics}

(∃ r • σ ∈ wp. S1. r ∧ (∀σ′ ∈ r • σ′ ∈ wp. S2. q))
≡ {motivation below}

σ ∈ wp. S1. (wp. S2. q)

Motivation:

(⇒) Assuming that S1 is monotonic: p ⊆ q ⇒
S1. p ⊆ S2. q.

(⇐) Witness r = wp. S2. q. q

r =wp.S2.q

wp.S1.r

S1

S2
wp.S2

wp.S1

Computing wp. S, choice

S1 �S2 is guaranteed to lead to q, if either S1

or S2 are guaranteed to lead to q.

σ ∈ wp. (S1 � S2). q
≡ {Operational semantics}

σ ∈ wp. S1. q ∨ σ ∈ wp. S2. q

≡ {set theory}
σ ∈ wp. S1. q ∪ wp. S2. q

For S1 � S2 if both S1 and S2 must lead to q.

σ ∈ wp. (S1 � S2). q
≡ {Operational semantics}

σ ∈ wp. S1. q ∧ σ ∈ wp. S2. q

≡ {set theory}
σ ∈ wp. S1. q ∩ wp. S2. q

q

wp.S1.q

S1 S2

wp.S2.q

wp.S1 wp.S2

Define wp

We then define wp by induction on the structure of the contract:

wp. 〈f〉 = (λ q • f−1. q)
wp. {p} = (λ q • p ∩ q)
wp. [p] = (λ q • ¬p ∪ q)

wp. (S1;S2) = (λ q • wp. S1. (wp. S2. q))
wp. (S1 � S2) = (λ q • wp. S1. q ∪ wp. S2. q)
wp. (S1 � S2) = (λ q • wpr. S1. q ∩ wp. S2. q)

Winning strategy theorem

We can prove that wp.S has the required
property for any contract statement S, ini-
tial state σ and postcondition q :

σ ∈ wp. S. q ≡ σ {|S |} q

Thus, wp. S. q computes the set of initial
states for which the angel has a winning
strategy for using S to establish postcon-
dition q from initial state σ.

In figure, ws. B. q = {σ | R}, where R says
that angel has winning strategy in B. σ to
reach q.

Contract statements Behaviors

Predicate transformers

op

wp

ws

Example

We compute the set of initial states for which the angel has a winning strategy
to reach x ≥ 0 with contract

S = (x := x + 1 � x := x + 2)
(x := x− 1 � x := x− 2)

We have that

wp. (x := x− 1 � x := x− 2). (x ≥ 0)
= {demonic choice}

wp. (x := x− 1). (x ≥ 0) ∩ wp. (x := x− 2). (x ≥ 0)
= {assignment}

(x− 1 ≥ 0) ∩ (x− 2 ≥ 0)
= {set theory}

(x ≥ 1) ∩ (x ≥ 2)
= {set theory}

(x ≥ 2)

Similarly, we compute that

wp. (x := x + 1 � x := x + 2). (x ≥ 2) = x ≥ 0

Hence,

wp. S. (x ≥ 0) = x ≥ 0

Correctness and refinement

The winning strategy theorem gives us immediately the following
corollary for correctness:

p ⊆ wp. S. q ≡ p {|S |} q

The following corollary holds for refinement:

S � S′ ≡ (∀ q • wp. S. q ⊆ wp. S′. q)

This result allows us to prove correctness and refinement without
having to rely on the operational semantics of contracts. Sufficient
to analyze properties of the predicate transformer wp. S.

Determining achievability

• Computing wp for a contract allows us to determine the intial states in
which an agent can reach a given goal, without having to rely on the
operational semantics.

• The notion of correctness introduced here generalizes traditional correct-
ness, where only system can make choices (demonic nondeterminism). To-
tal correctness then means achieving a postcondition no matter how the
system resolves its choices.

• The notion used here also defines correctness for interactive systems, where
it is sufficient that there is some way for the user to make choices so that
the final condition is established.

• In general, we have defined correctness when both user and system can
make choices as the existence of a winning strategy for the user to reach
its goal.

• The general case can, e.g., be used to define correctness of an interactive
system with concurrency (e.g., background processes)

Generalizing contracts

Conditional statements

Can define conditional statement by

if x ≥ 0 then x := x + 1 else x := x− 1 fi

= {x ≥ 0}a;x := x + 1 �a {x < 0}a;x := x− 1

Agent a chooses the alternatives for which the guarding assertion is true; choos-
ing the other alternative would breach the contract. (Choice of agent a does not
matter here)

Using angels and demons, we have that

{x ≥ 0};x := x + 1 � {x < 0};x := x− 1
= [x ≥ 0];x := x + 1 � [x < 0];x := x− 1

Conditional with demonic choice:

if b1 → S1[] . . . [] bn → Sn fi

= {b1 ∪ . . . ∪ bn}; ([b1];S1 � . . . � [bn];Sn)

Angelic conditional statements

if b1 :: S1[] . . . [] bn :: Sn fi

= [b1 ∪ . . . ∪ bn]; ({b1};S1 � . . . � {bn};Sn)

Models user choosing an item from a menu.

• bi is conditions for menu item i to be enabled.

• Si is action taken when item i is chosen.

• System guarantees that some menu item is enabled

• User can freely choose any enabled menu item.

• User breaches contract if she chooses an item that is not enabled.

Relational assignment

We generalize ordinary (functional) assignment to relational as-
signment:

(x := x′ | x′ > x + y)

relates state σ to state σ′ if

the value of x in σ′ is greater than the sum of the
values of x and y in σ and all other attributes are
unchanged:

Thus

(x := x′ | x′ > x + y). σ. σ′

≡
(∃x′ • σ′ = setx . x′. σ ∧ x′ > valx . σ + valy . σ)

Define in general

(x := x′ | b). σ. σ′
∧= (∃x′ • σ′ = setx . x′. σ ∧ b. σ)

Relational update

Let R be a state relation. The relational update

{R}a

permits an agent to choose any final state related by
R to the initial state.

If no such final state exists, then the agent breaches
the contract.

Example:

{x := x′ | 0 ≤ x′ < x}a =

”change the state so that the new value
x′ satisfies 0 ≤ x′ < x, without changing
the values of the other attributes.”

x effect
0 abort
1 x := 0
2 x := 0 �a x := 1

Example contract

• a is a user of a program

• b is the main program module

• c and d are submodules of the pro-
gram.

Contract:

• a chooses some input which must be
between 0 and 100

• Then b chooses whether to pass on
the value to

– c (which is permitted if the
value is below 50), or

– d (which is always permitted).

a

b

c dS1 S2

S

S = {x := x′ | 0 ≤ x′ ≤ 100}a;
({x < 50}b;S1 �b S2)

Input statements and specifications

User can influence the computation by giving input to the program
during its execution. This can be achieved by a relational assignment.

Example: Compute the square root with given approximation.

{x, e := x′, e′|x′ ≥ 0 ∧ e′ > 0}user ;
{x := x′| − e < x′2 − x < e}system

• The first statement specifies the user’s responsibility (to give an
input value that satisfies the given conditions)

• the second statement specifies the system’s responsibility (to
compute a new value for x that satisfies the given condition).

This contract thus specifies the interaction between the user and the
computing system.

Arbitrary choice

Finite choice is generalized to arbitrary choice:

(�a i ∈ I • Si)

Agent a chooses a statement from the set {Si | i ∈ I}.

Index set I may be infinite.

If I is empty, then the agent breaches the contract.

Example:

(�ai ∈ Nat • x := x + i) = {x := x′ | x′ ≥ x}a

Recursion

Permit also recursive contract statements:

S ::= . . . | X | (recaX • S1)

• X is a variable that ranges over contract state-
ments

• (recaX • S1) is the contract statement S1

where each occurrence of X in S1 is inter-
preted as a recursive invocation of the contract
(recaX • S1)

• Agent a breaches the contract if the recursion
does not terminate

• Operational semantics has to be extended with
infinite behavior

a
X

S1

Defining recursion

Can define recursion in terms of arbitrary
choice. Let

S0 = aborta

Si+1 = S[X := Si], i = 0, 1, 2, . . .

Intuitively, Si unfolds recursion at most i−
1 times, i = 1, 2, . . ., before aborting. Then

(recaX • S) =a (�a i ∈ Nat • Si)
S0 = abort

S1

a

S2

Sk

.

.

.

.
.

S3

X

X

X

X

Motivation

• Agent will try to reach goal by unfolding recursion as many times as pos-
sible

• If in some initial state n unfoldings are sufficient to reach goal, then agent
can as well choose Sn+1 directly, the effect is the same.

• If recursion does not terminate, then no number of unfoldings is sufficient.
Agent can then as well choose any Si directly, each Si will eventually
abort, as will the whole choice statement.

Unbounded nondeterminacy

Above characterization assume that there are no situations where some agent
can choose between an infinite number of different states (unbounded non-
determinacy). This is, however, a very common situation in specifications,
e.g.,

{x := x′ | x′ > x}a

is unbounded.

For unbounded nondeterminacy, we need to use the ordinals. Define

S0 = aborta

Sγ+1 = S[X := Sγ],
Sβ = (�a γ < β • Sγ), β is limit ordinal

Then there exists a least ordinal α such that Sα+1 = Sα. Define

(recaX • S) =a Sα

Angels and demons

Can again simplify notation when there are only two agents involved:

{R} ∧= {R}angel angelic update

[R] ∧= {R}demon demonic update

(�i ∈ I • Si)
∧= (�angel i ∈ I • Si) arbitrary angelic choice

(�i ∈ I • Si)
∧= (�demon i ∈ I • Si) arbitrary demonic choice

(µX • S) ∧= (recangelX • S) least fixpoint

(νX • S) ∧= (recdemonX • S) greatest fixpoint

General syntax for contract statements with angels and demons:

S ::= 〈f〉 | {p} | [p] |
{R} | [R] |
S1;S2 | S1 � S2 | S1 � S2 |
(�i ∈ I • Si) | (�i ∈ I • Si) |
X | (µX • S) | (νX • S)

Weakest preconditions for generalized constructs

We determine the weakest preconditions for the generalized contracts.

wp. {R}. q. σ = (∃ γ ∈ Γ • R. σ. γ ∧ q. γ)
wp. [R]. q. σ = (∀ γ ∈ Γ • R. σ. γ ⇒ q. γ)

wp. (�i ∈ I • Si). q. σ = (∃ i ∈ I | wp. Si. q. σ)
wp. (�i ∈ I • Si). q. σ = (∀ i ∈ I | wp. Si. q. σ)

wp. (µX • S). q. σ = (µ. (λ X • wp. Si)). q. σ
wp. (νX • S). q. σ = (ν. (λ X • wp. Si)). q. σ

The last two definitions assume that wp. X = X.

F = (λ X • wp. Si) is a function from predicate transformers to predicate trans-
formers, and µ. F is the least fixpoint of F , and ν. F is the greatest fixpoint
of F .

Weakest precondition for update statement

σ

σ

q

q

[R]

{R}

Predicate transformer statements

Let us define the following predicate transformers, called basic statements:

〈f〉 ∧= (λ q • f−1. q)

{p} ∧= (λ q • p ∩ q)

[p] ∧= (λ q • ¬p ∪ q)

{R} ∧= (λ q σ • (∃ γ ∈ Γ • R. σ. γ ∧ q. γ))

[R] ∧= (λ q σ • (∀ γ ∈ Γ • R. σ. γ ⇒ q. γ))

Define the following operations on predicate transformers:

(F �G). q ∧= F. q ∩G. q

(F �G). q ∧= F. q ∪G. q

(F ;G). q ∧= F. (G. q)

A statement is a predicate transformer term that is built out of basic statements
using these operations.

Contracts as statements

We have a direct interpretation of contracts as statements:

wp. 〈f〉 = 〈f〉
wp. {p} = {p}
wp. [p] = [p]

wp. {R} = {R}
wp. [R] = [R]

wp. (S;T) = wp. S;wp. T

wp. (S � T) = wp. S � wp. T

wp. (S � T) = wp. S � wp. T

wp. (� i ∈ I • Si) = (� i ∈ I • wp. Si)
wp. (� i ∈ I • Si) = (� i ∈ I • wp. Si)

Hence, we often identify a contract statement with only two agents, an angel and
a demon, with a predicate transformer statement, denoting both by S, T,

Iteration

Iteration by a:

while a g do S od

= (recaX • if g then S;X else skip fi)

Demonic iteration

do g1 → S[] . . . [] gm → Sm od

= (µX • [g1];S;X � . . . � [gm];Sm;X � [¬g1 ∩ . . . ∩ ¬gm])

Angelic iteration (User can always terminate)

do g1 :: S[] . . . [] gm :: Sm od

= (µX • {g1};S1;X � . . . � {gm};Sm;X � skip)

Angelic iteration (User can terminate when there is no other choice)

= (µX • {g1};S1;X � . . . � {gm};Sm;X � {¬g1 ∩ . . . ∩ ¬gm})

Parallel sort

Sort items x1, . . . , x5.

• User initializes state.

• Then concurrent execu-
tion of exchange actions
starts.

• If xi > xi+1 holds, then
system can choose swap
xi, xi+1 := xi+1, xi

without breaching con-
tract, i = 1, 2, 3, 4.

• The system terminates
when none of the swap
actions is enabled.

x1 x2 x3 x4 x5

{x1, x2, x3, x4, x5 := a1, a2, a3, a4, a5 | true};
do x1 > x2 → x1, x2 := x2, x1

[] x2 > x3 → x2, x3 := x3, x2

[] x3 > x4 → x3, x4 := x4, x3

[] x4 > x5 → x4, x5 := x5, x4

od

Event loop

User can choose from menu items A, B, or C, or
she can choose to terminate Q.

• System initializes state.

• Then event loop starts.

• If gA holds, then user can choose alternative
A without breaching contract. System then
executes SA (guards gA, gB, gC may then
change). The loop is then repeated.

• If gB holds, then user can choose alterna-
tive B ...

• If gC holds, then user can choose alterna-
tive C...

• The user can always choose last alternative,
which leads to termination after SQ.

A
C
Q
B
C
Q

Init ;
(µX •

{gA};SA;X
� {gB};SB;X
� {g};SC;X
� SQ)

Playing games: Nim

Players a and b take turns to remove either
one or two sticks from a pile. The player
who takes the last stick has lost. Player a
starts.

1. First check whether b already has lost
(if no matches in pile, then b must
breach the contract).

2. Otherwise, player a removes one or
two sticks from the pile.

3. Then check whether player a has lost.

4. Otherwise, player b removes one or
two sticks from the pile.

5. Repeat until either player breaches
the contract.

(recaX •

1 : {x �= 0}b;
2 : (x := x− 1 �a x := x− 2);
3 : {x �= 0}a;
4 : (x := x− 1 �b x := x− 2);
5 : X)

a

b

Proving properties of
contracts

Correctness of loops

Theorem Assume that g1, . . . , gn, p, and q are predicates and Si are monotonic
statements for i = 1, . . . , n. Assume that {rw | w ∈W} is a ranked collection of
predicates, with r = (∪w ∈W • rw) and g = g1 ∨ · · · ∨ gn. Then

p {| do g1 → S1 [] . . . [] gn → Sn od |} q

provided that

• p ⊆ r,

• (∀w ∈W • rw ∩ gi {|Si |} r<w), for i = 1, . . . , n, and

• r ∩ ¬ g ⊆ q.

Here

• first condition states that the loop invariant r holds initially;

• second condition asserts that each iteration of the loop preserves the loop
invariant while decreasing the rank of the particular predicate rw; and

• third condition states that the postcondition q is established upon termi-
nation of the loop.

Nim game

The state has only one attribute, x, the number of matches, ranging over the
natural numbers. The state space is thus the type Nat.

We define the state relation

Move
∧= (x := x′ | x− 2 ≤ x′ < x)

(since we are talking about natural numbers, we follow the convention that
m− n = 0 when m ≤ n).

Then the Nim-game can be expressed in the following simple form:

Nim ∧= while true do [x �= 0]; {Move}; {x �= 0}; [Move] od

The loop guard true shows that the game never ends in a draw in finite time.
The body shows the sequence of moves that is repeated until the game ends (or
indefinitely).

The moves

• First, the guard statement [x �= 0] is a check to see whether Player has
already won (Opponent has lost if the pile of matches is empty when it is
Player’s move).

• If there are matches left (x �= 0), then Player moves according to the
relation Move, i.e., removes one or two matches (decreases x by 1 or 2).

• Now the dual situation arises. The assert statement {x �= 0} is a check to
see whether Player has lost.

• If there are matches left, then Opponent moves according to the relation
Move, i.e., removes one or two matches.

Proving existence of winning strategy

How do we prove the existence of a winning strategy?

Assume that the loop while g do S od represents a game and that the initial
board is described by the predicate p.

If the loop establishes postcondition false from precondition p, then from the
semantics of statements we know that Player can make choices in the angelic
updates in such a way as to be guaranteed to win, regardless of what choices
Opponent makes in the demonic updates.

Thus there exists a winning strategy for Player under precondition p if the
following total correctness assertion holds:

p {|while g do S od |} false

Rule for existence of winning strategy

By instantiating in the correctness rule for loops, we get the following rule for
proving the existence of winning strategies in two-person games.

Theorem Player has a winning strategy for game while g do S od under pre-
condition p, provided that the following three conditions hold for some ranked
collection of predicates {rw | w ∈W}:

• p ⊆ r,

• (∀w ∈W • rw {|S |} r<w), and

• r ⊆ g.

The ranked predicate rw is usually described as a conjunction of an invariant I
and a variant t, so that rw is I ∧ t = w. Note that in the case that g = true,
the third condition in loop rule is trivially satisfied.

Proof

By specializing q to false in loop rule, we get the following three conditions:

• p ⊆ r,

• (∀w ∈W • g ∩ rw {|S |} r<w), and

• ¬ g ∩ r ⊆ false.

Straightforward simplification shows that the third of these conditions is equiva-
lent to r ⊆ g and also to (∀w ∈W • rw ⊆ g). This can then be used to simplify
the second condition.

Winning strategy for Nim

For Player to be assured of winning this game, it is necessary that he always
make the number x of matches remaining satisfy the condition x mod 3 = 1. The
strategy consists in always removing a number of matches such that x mod 3 = 1
holds.

Correctness formulation

Assume that the precondition p is

x mod 3 �= 1

(since Player moves first, this is necessary to guarantee that Player can actually
establish x mod 3 = 1 in the first move).

The invariant I is simply p, and the variant t is x.

Since the guard of the iteration that represents Nim was true, the third condition
is trivially satisfied. Furthermore, the choice of invariant is such that the first
condition is also trivially satisfied. Thus, it remains only to prove the second
condition, i.e., that

x mod 3 �= 1 ∧ x = n {|S |} x mod 3 �= 1 ∧ x < n

holds for an arbitrary natural number n, where

S = [x > 0]; {Move}; {x > 0}; [Move]

The proof

We prove (∗) by calculating S. (x mod 3 �= 1 ∧ x < n) in two parts. First, we
find the intermediate condition:

({x > 0}; [Move]). (x mod 3 �= 1 ∧ x < n)
= {definitions}

x > 0 ∧ (∀x′ • x− 2 ≤ x′ < x ⇒ x′ mod 3 �= 1 ∧ x′ < n)
= {reduction, arithmetic}

x mod 3 = 1 ∧ x ≤ n

This is the condition that Player should establish on every move.
Continuing, we find the precondition

([x > 0]; {Move}). (x mod 3 = 1 ∧ x ≤ n)
= {definitions}

x = 0 ∨ (∃x′ • x− 2 ≤ x′ < x ∧ x′ mod 3 = 1 ∧ x′ ≤ n)
⊇ {reduction, arithmetic}

x mod 3 �= 1 ∧ x = n

Thus we have shown that the required condition holds, i.e., that the game has
a winning strategy.

Lattice properties of
contracts

Basic mathematical entities

• State function f : Σ→ Γ is an ob-
servation of the state. Expressions
are state functions.

• State predicate p : Σ → Bool is a
property of the state. A boolean ex-
pression describes a state predicate.

• State transformer f : Σ→ Σ maps
states to states . An assignment is a
state transformer.

• State relation R : Σ → Σ → Bool
relates a state σ to a state σ′ when-
ever R. σ. σ′ holds. Relational assign-
ment is a state relation.

• Predicate transformers F : (Σ →
Bool) → (Σ → Bool). Contracts are
interpreted as predicate transform-
ers.

f

T

F

Bool

p
e

R Σ

Γ

state transformer
state relation

state predicate
state function

predicate transformer

F

Ordering

A relation � is a partial ordering, if it is reflexive, transi-
tive and antisymmetric.

• Truth values Bool are partially ordered by implication:
b � c iff b⇒ c

• Predicates Pred = Σ → Bool are partially ordered by
inclusion, p � q iff p ⊆ q. This is an extension of
the implication ordering:

p ⊆ q
∧= (∀σ • p. σ ⇒ q. σ)

• Relations Rel = Σ → Pred = Σ → (Σ → Bool) are also
partially ordered by inclusion: R � R′ iff R ⊆ R′.
This is an extension of the inclusion ordering:

R ⊆ Q
∧= (∀σ • R. σ ⊆ Q. σ)
≡ (∀σ∀σ′ • R. σ. σ′ ⇒ Q. σ. σ′)

truth values

predicates

relations

Refinement ordering

A predicate transformer is a function that maps predi-
cates to predicates

F : Pred→ Pred

The predicate transformer ordering extends the inclusion
ordering on predicates:

F � F ′
∧= (∀ q • F. q ⊆ F ′. q)

The ordering � on predicate transformers is a partial or-
dering.

We have defined for contracts that S � S′ if and only if
wp. S � wp. S′. Hence � on predicate transformers is called
the refinement ordering.

We write F : Σ #→ Γ for F : P(Γ)→ P(Σ). This allows for
different initial and final state spaces.

truth values

predicates

relations

predicate
transformers

Stepwise refinement method

Transitivity of the refinement ordering justifies the stepwise refinement method
for program derivation:

S0 � S1 � S2 � . . . � Sn ⇒ S0 � Sn

Here S0 is initial high level statement (specification) that describes what we
want to achieve, and Sn is final program that implements the specification.

Example:

[x := x′ | x′ ≥ x ∧ x′ ≥ y]
� {reduce nondeterminism}

x := x max y

= {properties of conditional statement}
if x < y then x := y else skip fi

� {add choices}
if x < y then x := y else skip fi � x := 0

Central lattices

Truth values, predicates, relations and predicate transformers on
a give state space are all complete boolean lattices.

Lattice Truth values Predicates Relations Predicate transformers
ordering � ⇒ ⊆ ⊆ �
bottom ⊥ F false False abort
top ⊥ T true True magic
meet � b ∧ c p ∩ q P ∩Q F �G
join � b ∨ c p ∪ q P ∪Q F �G
negation ¬ ¬b ¬p ¬Q ¬F

Operations defined by pointwise extension:

false. σ = F abort. q = false
true. σ = T magic. q = true

(p ∩ q). σ = p. σ ∧ q. σ (F � F ′). q. = F. q ∩ F ′. q
(p ∪ q). σ = p. σ ∨ q. σ (F � F ′). q. = F. q ∪ F ′. q

(¬p). σ = ¬p. σ (¬F). q = ¬F. q

Interpretation contracts as predicate transform-
ers

• Contract refinement is interpreted as predicate transformer refinement

• Angelic choice is join on predicate transformers

• Demonic choice is meet on predicate transformers

• Impossible contract (abort) is bottom of predicate transformer lattice

• Miraculous contract (magic) is top of predicate transformer lattice.

Lattices

A poset A is a lattice if any two elements
b1 and b2 have a meet b1 � b2 and a join
b1 � b2 in A such that :

• Lower bound:

b1 � b2 � b1 and b1 � b2 � b2

• Greatest lower bound:

a � b1 ∧ a � b2 ⇒ a � b1 � b2

• Upper bound:

b1 � b1 � b2 and b2 � b1 � b2

• Least uppper bound:

b1 � c ∧ b2 � c ⇒ b1 � b2 � c

b1 b2

c

a

b1 b2

b1 b2

Lattice properties

• Idempotence: a � a = a and a � a = a

• Commutativity: a � b = b � a and a � b = b � a

• Associativity :

a � (b � c) = (a � b) � c and
a � (b � c) = (a � b) � c

• Absorption

a � (a � b) = a and a � (a � b) = a

• Correspodence

a � b = a ≡ a � b and
a � b = b ≡ a � b

Contract interpretation

• Idempotence: S �S = S. Two identical alternatives for the demon does
not give anything new.

• Commutativity: S � T = T � S. The order of alternatives does not
matter for demon.

• Associativity: S � (T �U) = (S � T)�U . The order of choices does not
matter.

• Absorption: S � (S � T) = S. Demon does not give the angel a choice if
possible

• Correspodence: S � T = S ≡ S � T

– If S �T = S, then T does not give any advantage for the demon, i.e.,
T can only be an improvement for the angel

– If S � T , then demon should not choose T over S, i.e, S � T = S.

Complete lattices

Poset A is complete, if each set of elements B ⊆ A has a
meet �B and a join �B in A, where

• Lower bound: b ∈ B ⇒ �B � b

• Greatest lower bound: (∀ b ∈ B • a � b) ⇒ a �
�B

• Upper bound: b ∈ B ⇒ b � �B

• Least uppper bound: (∀ b ∈ B • b � a)⇒ �B � a

A complete lattice A is bounded, i.e., it has a least element
⊥ and a greatest element $:

• Least element: ⊥ = �A and ⊥ = �∅

• Greatest element: $ = �A and $ = �∅

Lattice

Contract interpretation of abort and magic

Consider following examples of properties for contracts:

• abort is zero for demonic choice: S � abort = abort

• magic is unit for demonic choice: S �magic = S

• abort is unit for angelic choice: S � abort = S

• magic is zero for angelic choice: S �magic = magic

S

demon

S

demon

S

angel

S

angel

Distributive and boolean lattices

A lattice is distributive if for any elements a, b and c,

• Meet distributive: a � (b � c) = (a � b) � (a � c)

• Join distributive: a � (b � c) = (a � b) � (a � c)

A complete distributive lattice is complete boolean lattice, if every element
a has a unique complement ¬ a in A satisfying the conditions

• Contradiction: a � ¬ a = ⊥

• Exhaustiveness: a � ¬ a = $

Distributivity for contracts

• Distributivity: S � (T � T ′) = (S � T) � (S � T ′)

S

demon

S

demon

angel

T'

angel

T S

demon

T T'

Duality

The dual F ◦ : Σ #→ Γ of a predicate transformer F : Σ #→ Γ is defined by

F ◦. q
∧= ¬F. (¬ q)

A consequence of the definition is that (F ◦)◦ = F , so dualization is an involution.

The following dualities hold between predicate transformers:

〈f〉◦ = 〈f〉 (S1;S2)◦ = S◦1 ;S◦2
{p}◦ = [p] (� i ∈ I • Si)◦ = (� i ∈ I • S◦i)
{R}◦ = [R]

Thus, the operations for constructing statements come in pairs, each one with
its dual. Functional update and sequential composition are their own duals. In
particular, we have that

magic◦ = abort skip◦ = skip

Monotonic predicate
transformers

Categories

A category C consists of a collection of objects and a
collection of morphisms. Each morphism has a source
object and a target object. Write A

f−→ B for morphism
f with source A and target B.

A composition operator takes a morphism A
f−→ B

and a morphism B
g−→ C to the morphism A

f ;g−→ B.

For every object A there is a special morphism 1A, the
identity morphism on A.

A category satisfies the following two properties:

• Composition is associative: f ; (g;h) = (f ; g);h

• Identity is unit: 1; f = f and f ; 1 = f .

B

A

C

f

g

f;g

1A

1B

1C

Order enriched categories

Consider category C where for any objects A and B, the
morphisms C(A, B) between these objects are ordered by
�A,B . We say that C is an order-enriched category, if
composition is monotonic in both arguments:

f �A,B f ′ ∧ g �B,C g′ ⇒ f ; g �A,C f ′; g′

The category is left (right)order-enriched, if composi-
tion is only monotonic in the left (right) argument:

f �A,B f ′ ⇒ f ; g �A,C f ′; g (left)
g �B,C g′ ⇒ f ; g �A,C f ; g′ (right)

BA

State categories

State predicates, state transformations, state relations and predicate transform-
ers all form categories, where objects are state spaces and morphisms are pred-
icates, functions, relations and predicate transformers:

Σ
p−→ Σ p : P(Σ)

Σ
f−→ Γ f : Σ→ Γ

Σ R−→ Γ R : Σ↔ Γ
Σ F−→ Γ S : Σ #→ Γ

State relations form a complete boolean lattice-enriched category.

Predicate transformers form a left complete boolean lattice-enriched cat-
egory with refiement ordering and operations

F ;G ∧= F ◦G 1Σ
∧= (λ q • q) : Σ #→ Σ

State predicates and state transformers also form (trivial) order-enriched cate-
gories.

Monotonic predicate transformers

Predicate transformers only form a left-orderd category, because seqeuential
composition is only montonic in the left argument:

F � F ′ ⇒ F ;G � F ′ : G

Lattice meet and join are monotonic in both arguments:

F � F ′ ∧G � G′ ⇒ F �G � F ′ �G′

F � F ′ ∧G � G′ ⇒ F �G � F ′ �G′

A predicate transformer S is monotonic, if

q ⊆ q′ ⇒ F. q ⊆ F. q′, for each q ⊆ Σ

The collection of monotonic predicate transformers form a complete lattice-
enriched category:

F � F ′ ∧G � G′ ⇒ F ;G � F ′;G′

Top-down replacement

Monotonicity of statements allows top-down construction of statements:

S[T]
� {monotonicity}

T
� {motivation}

T ′

S[T ′]

This allows us to transform large programs by making small local changes to
them.

Example:

. . . [x := x′ | x′ ≥ x ∧ x′ ≥ y] . . .
� {motivation}

. . . if x < y then x := y else skip fi . . .

Statements and monotonic predicate transform-
ers

Theorem: All statements are
monotonic.

Proof establishes that

• 〈f〉, {p},[p],{R} and [R] are
all monotonic predicate trans-
formers

• Meet, join and sequential com-
position of predicate trans-
formers preserve monotonic-
ity.

monotonic
predicate transformers

StatementsContracts wp

predicate transformers

Recursive contracts are well-defined

Monotonicity of statement constructors implies that the weakest preconditions
for recursive contracts is well-defined. We defined

wp. (µX • S). q. σ = (µ. (λ X • wp. Si)). q. σ
wp. (νX • S). q. σ = (ν. (λ X • wp. Si)). q. σ

The function F = (λ X • wp. Si) is a monotonic function from a complete
lattice (the monotonic predicate transformer lattice) to itself. Hence, by the
Knaster-Tarski fixpoint theorem, the function F has a least fixpoint µ. F and
a greatest fixpoint ν. F .

Main properties:

• µ. F and ν. F are fixpoints of F :

F. (µ. F) = µ. F F. (ν. F) = ν. F

• µ. F is the least , ν. F the greatest of all fixpoints:

F. x = x⇒ µ. F � x F. x = x⇒ x � ν. F

Expressibility of statements

Theorem: Any monotonic predicate transformer term can be expressed as a
predicate transformer statement.

Proof constructs a normal form for monotonic predicate transformers

• F = {h. F}; [k. F], for any monotonic predicate transformer F .

• Characterization is implicit, because F also occurs on the right hand side.

Contracts as reduced games

Any contract can be expressed as

S = {P}; [Q]

This corresponds to a simple game between angel
and demon, with only two turns.

[Q]

{P}

[Q]

.........

.........

Reducability of statements

Can reduce statement constructs to a few only. Define

|p|. σ. σ′ ≡ p. σ ∧ σ = σ′ |f |. σ. σ′ ≡ f. σ = σ′

Then

{p} = { |p| } [p] = [|p|] 〈f〉 = { |f | } = [|f |]

As recursion also can be expressed using arbitrary join, it is sufficient to consider
statements generated by

F ::= {R} | [R] | F1;F2 | (�i ∈ I • Fi) | (�i ∈ I • Fi)

With duality, this can be further reduced to

F ::= {R} | F1;F2 | (�i ∈ I • Fi) | F ◦1
Normal form implies that actually

F ::= {R}; [Q]

is sufficient to express the meaning of all contracts.

Preconditions and guards

Let S : Σ→ Γ be a predicate transformer. Define

t. S
∧= wp. S. true

a. S
∧= ¬ t. S

m. S
∧= wp. S. false

g. S
∧= ¬m. S

• The abortion guard (or termination precondition) t. S characterizes
those initial states in which the angel can avoid a breach of contract (it
guards against abortion).

• The abortion precondition a. S characterizes those initial states in which
the angel cannot avoid breaching the contract (abortion will occur).

• The miracle precondition m. S characterizes those initial states in which
the angel can choose to be released from the contract (a miracle can occur)

• The miracle guard g. S characterizes the complement of this, i.e., the
initial states in which release from the contract is not possible.

Partitioning of initial states

It is easily seen that m. S ⊆ t. S. Hence, the abor-
tion and the miracle guards partition the initial state
space into three disjoint sets:

• m. S: Our agent can choose to be released from
its obligations to satisfy the contract.

• t. S ∩ g. S: Discharge of obligation is impos-
sible for our agent, and a breach of contract
can be avoided, so some postcondition will be
established.

• a. S: Our agent cannot avoid breaching the
contract.

a.S

m.S

t.S ∩ g.S

Homomorphism of
statement constructors

Homomorphism properties

Consider a function h : A→ B, where A and B are both lattices. Then

• h is a meet homomorphism if h. (a �A b) = h. a �B h. b.

• h is a join homomorphism if h. (a �A b) = h. a �B h. b.

• h is a negation homomorphism if h. (¬A. a) = ¬Bh. a.

• h is a bottom homomorphism if h.⊥A = ⊥B .

• h is a top homomorphism if h.$A = $B .

a b

c

Homomorphism properties, cont

Consider a function h : A → B, where A and B are both complete lattices.
Then

• h is a universal meet homomorphism if for all {ai | i ∈ I},

h. (�A i ∈ I • ai) = (�B i ∈ I • h. ai)

• h is a positive meet homomorphism if for all {ai | i ∈ I}, I �= ∅,

h. (�A i ∈ I • ai) = (�B i ∈ I • h. ai)

Implications between homomorphisms

monotonic

meet hom. join hom.

pos. meet hom. pos. join hom.

univ. meet hom. univ. join hom.

 top hom. bottom hom.

Operations between categories

The statement constructors can be seen as operations themselves. Thus, e.g.,
(λ R • {R}) maps relations to predicate transformers.

RelTran

Bool

Pred

Ptran

dom.R
 ran.R

a.S t.S
g.S m.S

∀.p
∃.p

[R] { R} [p] { p}

| f |
| p |

〈f 〉

;

∪ ∩

∨ ∧

; ∪ ∩

;

Preserving category operations

All basic statement constructors preserve identity and composition:

(c) 〈f ; g〉 = 〈f〉; 〈g〉 〈id〉 = skip
(d) {P ;Q} = {P}; {Q} {Id} = skip
(e) [P ;Q] = [P]; [Q] [Id] = skip
(f) (S1;S2)◦ = S◦1 ;S◦2 skip◦ = skip

f g f;g

<f> <g>

<f,g > =

<f>;<g>
;

< > < > < >

;

Updates

The update constructors satisfy the following homo-
morphism properties:

(a) f = g ≡ 〈f〉 = 〈g〉
(b) P ⊆ Q ≡ {P} � {Q}

P ⊆ Q ≡ [P] ([Q]
(c) {False} = abort

[False] = magic
(d) {∪i ∈ I • Ri} = (� i ∈ I • {Ri})

[∪i ∈ I • Ri] = (� i ∈ I • [Ri])

(demonic choice is homomorphic onto dual lattice).

P Q P ∪ Q

[P] [Q]

[P ∪ Q] =

[P] [Q]

[] [] []

∪

Tabular description

We summarize the homomorpism properties of statement constructors in the
following two tables.

is monot. ⊥-hom $-hom �-hom �-hom ¬-hom 1-hom ;-hom
(λ p • {p}) yes yes no yes 1 yes no yes yes
(λ p • [p]) yes◦ yes◦ no yes◦1 yes◦ no yes yes
(λ f • 〈f〉) yes - - - - - yes yes
(λ R • {R}) yes yes no no yes no yes yes
(λ R • [R]) yes◦ yes◦ no no yes◦ no yes yes
1when the meet is taken over nonempty sets

is monot. ⊥-hom $-hom �-hom �-hom ¬-hom 1-hom ;-hom
(λ S • S;T) yes yes yes yes yes yes no no

(λ S • S � T) yes yes no yes yes no no no
(λ S • S � T) yes no yes yes yes no no no
(λ S • ¬S) yes◦ yes◦ yes◦ yes◦ yes◦ yes no no
(λ S • S◦) yes◦ yes◦ yes◦ yes◦ yes◦ yes yes yes

Examples

In general:

{false} = abort (but {true} �= magic)
[false] = magic (but [true] �= abort)

magic � T = magic (but magic � T �= magic)
abort;T = abort (but skip;T �= skip)

Example proof

As an example of using homomorphisms in proofs, we show that the property
〈f〉; [f−1] � skip holds for an arbitrary state transformer f :

〈f〉; [f−1]
= {properties of mapping relation construct}

[|f |]; [f−1]
= {homomorphism}

[|f |; f−1]
� {|dom. R| ⊆ R;R−1 }

[|dom. |f ||]
= {all functions are total}

[|true|]
= {|true| = Id, demonic update is functor}

skip

The homomorphisms allow us to move between levels in the refinement hierarchy.

Refinement calculus hierarchy

Reasoning can be done at different levels in the hierarchy of state categories.

• Reasoning about assignment statements 〈x1 := e1〉; . . . ; 〈xn := em〉) is
reduced to reasoning about assignments (x1 := e1; . . . ;xm := em), i.e.,
reasoning is carried out at state transformer level.

• Reasoning about predicates (inclusion, equality) and relations is often sim-
plest to carry out at the boolean level.

• Reasoning about predicate transformers can be reduced to reasoning about
simpler notions like predicates, state transformers, or state relations.

Should reason at the level where it is easiest

• Boolean logic (with quantifiers) is very concrete, and often the simplest.

• Arguments shorter with predicate transformers using algebraic laws

• No single level is the right one, one should choose the most suitable level

• Monotonicity and homomorphism properties transfer between levels.

Statement subclasses

Homomorphic predicate transformers

Have previously only identified one subclass of pred-
icate transformers, monotonic predicate trans-
formers.

Can classify predicate transformers generally accord-
ing to the homomorphism properties they satisfy.

• Conjunctive predicate transformers
Ctran = positively meet homomorphic
predicate tranformers.

• Disjunctive predicate transformers
Dtran = positively join homomorphic predi-
cate tranformers.

• The functional predicate transformers
Ftran = positively join and positively meed
homomorphic predicate tranformers.

Superscript on statement class shows whether it is
⊥-homomorphic or $-homomorphic or both.

Ptran

Mtran

Sublanguages and normal forms

Subclass Language Normal form
Ctran� S ::= [g] | 〈f〉 | [R] | S1;S2 | (�i ∈ I • Si) [R]
Ctran S ::= {g} | [g] | 〈f〉 | [R] | S1;S2 | (�i ∈ I • Si) {p}; [R]
Dtran⊥ S ::= {g} | 〈f〉 | {R} | S1;S2 | (�i ∈ I • Si) {R}
Dtran S ::= {g} | [g] | 〈f〉 | {R} | S1;S2 | (�i ∈ I • Si) [p]; {R}
Ftran⊥,� S ::= 〈f〉 | S1;S2 | (conditional, prim.rec.) 〈f〉
Ftran⊥ S ::= {g} | 〈f〉 | S1;S2 | (conditional, rec.) {p}; 〈f〉
Ftran S ::= {g} | [g] | 〈f〉 | S1;S2 | (conditional, rec.) {p}; [q]; 〈f〉

• Ftran⊥,� are the total functions.

• Ftran⊥ is usual class of deterministic programs with possibility for nonter-
mination and run-time abortion.

• Ctran� is language of relations.

• Ctran is Guarded Command’s langauge (no continuity restriction).

• Dtran⊥ is language for angelic choice (search algorithms).

Choice semantics

Forward and backward semantics

Predicate transformer semantics maps postconditions to (weakest) precondi-
tions:

S : (Γ→ Bool)→ (Σ→ Bool)

Define a new function S̄ of type

S̄ : Σ→ ((Γ→ Bool)→ Bool)

by

S̄. σ. q
∧= S. q. σ

Thus, S̄ is a function from initial states to sets of predicates on the final
states.

Lemma: If S is monotonic, then S̄ is upward closed:

(∀ p, q • p ∈ S̄. σ ∧ p ⊆ q ⇒ q ∈ S̄. σ)

Lemma: Given an upward closed family of sets of states Aσ ⊆ P(Γ) for every
state σ, there is a unique monotonic predicate transformer S such that S. σ = Aσ

for all σ.

Choice semantics

We define the choice semantics ch. S of a contract statement S inductively.

ch. {R}. σ = {q | R. σ ∩ q �= ∅}
ch. [R]. σ = {q | R. σ ⊆ q}

ch. (S1;S2). σ = (∪ p ∈ ch. S1. σ • (∩σ′ ∈ p • ch. S2. σ
′))

ch. (� i ∈ I • Si). σ = (∩ i ∈ I • ch. Si. σ)
ch. (� i ∈ I • Si). σ = (∪ i ∈ I • ch. Si. σ)

ch. S is a function that maps every initial state to a set of predicates over the
final state space. The contract statement S is seen as a simple game in which
the angel chooses a predicate q ∈ ch. S. σ, and the demon then chooses a final
state γ ∈ q.

If ch. S. σ is empty, then the angel loses, since it cannot choose any predicate.

If the angel chooses the empty predicate false, then it wins, since the demon
cannot choose any state in false.

Comparing all three semantics

Contract statements Behaviors

Predicate transformers

op

wp

ws

New domains

The choice semantics introduces two new domains into the refinement calculus
hierarchy:

Res(Γ) ∧= {Q : P(P(Γ)) | Q upward closed }
Stran(Σ,Γ) ∧= Σ→ Res(Γ)

• Res(Γ) is a complete lattice when ordered by subset inclusion ⊆.

• Stran(Σ,Γ) is a complete lattice when ordered by the pointwise extension
of subset inclusion.

Extended hierarchy

Bool

Pred(Γ)

Ptran(Σ, Γ)

Γ

Tran(Σ, Γ)

Rel(Σ, Γ)

Stran(Σ, Γ) = Σ → Res(Γ)

Res(Γ) = Pred(Γ) → Bool

Conclusions

Conclusions

• We describe a computing system in terms of agents that interact with each
other.

• The agents manipulate the world by changing a state, described in terms
of program variables.

• We give a language of contracts that allows us to describes the options
and obligations that the agents have, and an operational semantics for
this language.

• We study whether a group of agents can reach their goal by co-operating
in their choices, in spite of hostile actions from the other agents (existence
of winning strategy)

• We show that by extending the traditional weakest precondition semantics,
we get simple rules for computing when a collection of agents can reach
their goal.

• The same weakest precondition rules allow us to reason about correctness
of contracts, games and programs, as well as about refinement of these.

• We study the lattice theoretic properties of contracts, when interpreted as
predicate transformers

• We study how to reason at different levels of the refinement calculus hier-
archy.

• We identify standard subclasses of contracts, corresponding to traditional
semantics

• We introduce a new forward semantics for contracts.

