
INCREMENTAL SOFTWARE CONSTRUCTION

Ralph-Johan Back

7th August 2004

Marktoberdorf, August 2004

OVERVIEW OF LECTURES

Mathematical framework for incremental software construction and con-
trolled software evolution.

• Refinement diagrams: a visual way of presenting the construction and
architecture of large software systems.

• Diagrams are based on lattice theory, allow reasoning about lattice ele-
ment to be carried out directly with diagrams.

• Refinement calculus: the logic for reasoning about software systems.
The calculus models software parts as elements in a lattice.

1

Marktoberdorf, August 2004

Apply framework to the incremental construction of large software system.
Focus on:

• modularization of software systems: component specifications and the
role of information hiding

• layered extension of software: adding new features and the role of in-
heritance and dynamic binding

• evolution of software: preserving correctness during evolution and man-
aging successive versions.

2

Marktoberdorf, August 2004

INCREMENTAL SOFTWARE CONSTRUCTION

Software is never ready, it evolves by adapting to a changing environment

• Incremental software construction: build and change the system in small
steps

• Correctness is maintained by checking that each increment preserves
the correctness of the system built thus far

• Adding increments accumulates design errors, which must be corrected
by frequent software redesigns (refactorings)

3

Marktoberdorf, August 2004

Software evolution model

Adding
structure

Environment
needs

parts
Changing

evaluate
software

new
requirements

Software process

4

Marktoberdorf, August 2004

Software process

Software construction is in a continuous interaction with the environment
that needs the software

• The present system is checked for conformance with the environment
needs

• Based on this, new requirements are given that influence the further
development of the system.

The system process alternates between

• adding new parts that implement required features and

• internal redesign of the software in order to meet new demands.

5

Marktoberdorf, August 2004

Basic questions

• What is a suitable conceptual model for software and its evolution?

• What is a suitable software architecture to support evolving software?

• How to reason about the correctness of evolving software?

• What kind of software processes support software evolution?

• What kind of software tools do we need to manage software evolution?

6

Marktoberdorf, August 2004

LATTICES AND REFINEMENT DIAGRAMS

Need a way of describing and reasoning about evolving software:

1. We define lattices and their basic properties

2. We introduce refinement diagrams as a way of describing and reasoning
about lattice elements

7

Marktoberdorf, August 2004

Posets

A partially ordered set (or poset) is a set A together with an ordering v that
is reflexive, transitive and antisymmetric. This means that for any elements
a, b, c in the poset:

• a v a (reflexivity)

• a v b∧b v c ⇒ a v c (transitivity)

• a v b∧b v a ⇒ a = b (antisymmetry)

8

Marktoberdorf, August 2004

Example poset

a

b

c

e

f

d

The arrow describes ordering, e.g., a v b.

9

Marktoberdorf, August 2004

Refinement diagram rules

We capture the partial order properties with the following refinement dia-
gram rules:

a
a b

Reflexivity Transitivity Antisymmetry

c

b

a

10

Marktoberdorf, August 2004

Conventions for refinement diagram rules

• Each diagram describes a universally quantified implication:

– the solid arrows indicate assumed relationships,
– the dashed arrows indicate implied relationships.

• The identifiers stand for arbitrary elements in the lattice.

• An arrow from b to a indicates that a v b holds (think of the arrow as a
greater than sign).

• We use a double arrow to indicate equality of lattice elements.

11

Marktoberdorf, August 2004

Example: transitivity

If we know that a v b and b v c

c

b

a

12

Marktoberdorf, August 2004

Example: transitivity

then we may deduce that a v c

c

b

a

13

Marktoberdorf, August 2004

Adding transitivity arrows

a

b

c

e

f

d

14

Marktoberdorf, August 2004

Intended use of refinement diagrams

Refinement diagrams are intended to model software components and
their relationships

• the lattice elements are software parts,

• the ordering corresponds to refinement between software parts.

Intuitively, we can think of refinement as permission for replacement: a v b
means that the part a may be replaced by part b in any context.

(The poset is generalized to a category, if we the arrows need to be la-
belled.)

15

Marktoberdorf, August 2004

Lattices

A poset is a lattice, if any two elements a and b in the lattice have a least
upper bound (or join) atb and a greatest lower bound (or meet) aub . A
lattice is thus characterized by the following properties:

• a v atb and b v atb (join is upper bound)

• a v c∧b v c ⇒ atb v c (join is least upper bound)

• aub v a and aub v b (meet is lower bound)

• c v a∧ c v b ⇒ c v aub (meet is greatest lower bound)

16

Marktoberdorf, August 2004

Refinement diagram rule

a v atb and b v atb
a v c∧b v c ⇒ atb v c

a b

c’

c

a meet b

a join b

17

Marktoberdorf, August 2004

Bounded lattice

A lattice is bounded, if there is a least element ⊥ and a greatest element
>in the lattice. This means that for any element b in the lattice, we have
that

• ⊥ v a v> (least and greatest element)

top

b

bot

.

18

Marktoberdorf, August 2004

Complete lattices

• A lattice is complete, if any set of elements in the lattice has a least
upper bound and a greatest lower bound.

• Any finite set will have this property in a lattice, but in an complete lattice
also infinite sets and the empty set have a least upper bound and a
greatest lower bound.

• In particular, we have that ⊥ is then the least element of the whole lat-
tice, while > is the greatest element of the whole lattice

19

Marktoberdorf, August 2004

Terms and dependencies

• A lattice term is constructed by applying lattice operations on lattice con-
stants and variables over lattice elements.

• We write a lattice term as t[X1, . . . ,Xm] to indicate that it depends on the
variables X1, . . . ,Xm.

• In general, a box in a refinement diagram denotes a lattice term. We
show a term as a box with dependency arrows, each arrow labeled with
a lattice variable.

• Example: the term t[t1, t2]

t1
X2X1

t[X1,X2] t2

20

Marktoberdorf, August 2004

Private subterms

The same term box with the subterms as nested boxes (left), or using
aggregation as in UML (right):

t2
t1 t2

X2
X2

X1

t1

X1 t[X1,X2] t[X1,X2]

• Here the subterms are private to the enclosing box, in the previous rep-
resentation they can be shared by other terms.

21

Marktoberdorf, August 2004

Monotonicity

A function f : A→B from poset A to poset B is monotonic, if for any a,a′∈A

a vA a′ ⇒ f .a vB f .a′

(f .x stands for the function application f (x)).

a

a’ f.X

f.X
X

X

22

Marktoberdorf, August 2004

Monotonic terms

• Assume constants that denote specific lattice elements (like ⊥ and >).

• Assume a collection of monotonic functions (operations) on a given lat-
tice.

• The composition of monotonic functions is also monotonic

• A lattice term is monotonic, if it is built out of constants and monotonic
lattice functions.

23

Marktoberdorf, August 2004

RECURSION, ENVIRONMENTS AND
SYSTEMS

• Recursion and fixed points

• Environments

• System as solutions of environment equation

24

Marktoberdorf, August 2004

Circular dependencies

Dependencies between terms in a diagram may be circular. Need a more
elaborate notion of what a box denotes in such diagrams.

A

B

C

Circular dependencies are handled using fixed points of functions on lat-
tices.

25

Marktoberdorf, August 2004

Least fixed point

A monotonic function f : A → A on a complete lattice A has a unique least
fixed point, denoted µ. f ∈ A . The least fixed point has the following prop-
erties:

• f .(µ. f) = µ. f (µ. f is a fixed point)

• f .a v a ⇒ µ. f v a (least fixed
point induction)

a f.X
X

X
f.Xmu.f

26

Marktoberdorf, August 2004

Greatest fixed point

Similarly, there is also a unique greatest fixed point ν. f ∈A , which satisfies
the following conditions

• f .(ν. f) = ν. f (ν. f is a fixed point)

• a v f .a ⇒ a v ν. f (greatest fixed
point induction)

nu.f’ f.X

f.X

X

X
a

27

Marktoberdorf, August 2004

Pointwise extension

• Consider the set of all monotonic functions from lattice A to lattice B. We
denote this set by A →m B.

• The pointwise extension of the partial ordering on B to A→m B is defined
by

f v f ′ ≡ (∀a ∈ A · f .a vB f ′.a)

• The pointwise extension of a (complete) lattice is also a (complete) lat-
tice.

28

Marktoberdorf, August 2004

Lattice products

• A special case of pointwise extension is lattice product.

• Let A1×·· ·×Am be the Cartesian product of lattices A1, . . . ,Am.

• Then we define a lattice ordering on A1×·· ·×Am by

(a1, . . . ,am) v (a′
1, . . . ,a

′
m) ≡ a1 v a′

1∧ . . .∧am v a′
m

This is a special case of the previous definition when each Ai denotes
the same lattice B, and we choose A = {1, . . . ,m}.

• The product of a collection of (complete) lattices is a (complete) lattice.

29

Marktoberdorf, August 2004

Monotonicity of fixed point operators

• Consider now the set A →m A.

• The least and greatest fixpoint operators are functions of type µ,ν :
(A →m A) → A.

• Both operators are monotonic with respect to lattice ordering, i.e., we
have for any f ,g : A →m A that

f v g ⇒ µ. f v µ.g

f v g ⇒ ν. f v ν.g

30

Marktoberdorf, August 2004

Environments

• An environment is a tuple of
monotonic lattice terms, E =

(t1[X], . . . , tn[X])

• Here X = (X1, . . . ,Xm) is a tuple of
variables over lattice elements.

t1

t2

t3

t4

X2

X3

X4

X1

• Note that ti[X] has to use projection to access a specific variable in X .
Projection is denoted by πm

i , so πm
i .X = Xi for i = 1, . . . ,m.

31

Marktoberdorf, August 2004

Mutually recursive terms

• Consider the special case when m = n, i.e., E = (t1[X], . . . , tn[x]) and
X = (X1, . . . ,Xn).

• Then the function
Ẽ = (λX ·E)

is a function of type An → An.

• This function is monotonic on the complete lattice (An
,v) .

• Hence, this function has a least fixed point µE = µ.Ẽ .

32

Marktoberdorf, August 2004

System defined by environment

• µE is the least solution to the
equation

X = E

• We refer to µE as the (least) sys-
tem defined by the environment E.

• We write µE = (µE1, . . . ,µEn), i.e.,
µEi is the ith lattice element in the
system µE.

t1

t2

t3

t4

33

Marktoberdorf, August 2004

Unfolding

We can use unfolding to determine the meaning of an environment:

µE = (t1[µE], . . . , tn[µE])

Intuitively, this means that the system µE is the infinite unfolding of the
environment E .

34

Marktoberdorf, August 2004

Environment and system

t1

t2

t3

t4

t1

t2

t3

t4

X2

X3

X4

X1

X2

X3

X4

X1

Environment System

35

Marktoberdorf, August 2004

System equation




X1

X2

X3

X4


 =




t1[X1,X3]

t2[X1,X2,X4]

t3[X1,X3,X4]

t4[X3,X4]




36

Marktoberdorf, August 2004

UML-like notation

t3

X3

t1

X1 X2

t4

X4

t2

37

Marktoberdorf, August 2004

Monotonicity of systems

We can define a lattice ordering on environments, by pointwise extensions:

E v E ′ ≡ Ẽ v Ẽ ′

The monotonicity of the fixed point operator then gives us that

E v E ′ ⇒ µE v µE ′

38

Marktoberdorf, August 2004

Refinement of complex systems

• This can be used to reason about refinement in a complex system.

• Assume that we have a term ti[X] in E, and that we make some small
change to this term, to get t ′i [X]. The changed environment is E ′.

• If this change is such that ti[X] v t ′i [X], then E v E ′ , so µ.E v µ.E ′

• This again means that µEi v µE ′
i holds. In other words, a refinement

of one of the terms in the environment will result in a refinement of the
meaning of each term in the system.

39

Marktoberdorf, August 2004

DIAGRAMMATIC REASONING

Refinement diagrams provide a way of reasoning in a visual way about
lattice elements. We have three main ingredients here:

Refinement diagrams: describe a collection of lattice elements and how
they are ordered

Refinement diagram rules: describe how to add new entities and order-
ing relations to a refinement diagram

Refinement diagram derivations: also records the order in which the en-
tities and ordering relations have been introduced.

40

Marktoberdorf, August 2004

Refinement diagrams

1. The entities of the diagram are

(a) lattice terms (shown as rectangels, but other graphical notation is also
possible),

(b) orderings (shown as refinement arrows) and equalities (shown as dou-
ble arrows) between lattice elements, and

(c) dependency relations (shown as usage arrows).

2. The lattice terms in a diagram form an environment E: each occurrence
of a lattice term in the diagram is an element in the environment tuple.

3. The same lattice term can occur in two or more places in the diagram,
but each occurrence corresponds to a separate element in the tuple.

41

Marktoberdorf, August 2004

4. The meaning of a term ti in the diagram (environment) E is the system
element µEi.

5. An ordering indicated in the diagram holds between the meanings of the
terms in the environment (not the terms themselves). The arrow goes
from the larger to the smaller element.

6. A name Xi for a box with term ti can be understood as the equation Xi =

ti. The collection of all such equations determine the system defined by
the diagram.

7. A name associated with a dependency arrow must be one of the free
variables in the term that is the source of the arrow. (The variables in
the terms can be local names for terms, which are bound to the actual
term by the dependency arrow).

42

Marktoberdorf, August 2004

Remarks

• May annotate entities. For instance, for software components the

– refinement arrows would in general be annotated by an abstraction
function (or relation) to determine the data refinement between the
components.

• Nested boxes are interpreted as a dependency of the enclosing box on
the inner box.

• Conventions (4) and (5) can be explicated as follows. Assume

E = (t1[X], . . . , tn[X)

43

Marktoberdorf, August 2004

where the indexes 1, . . . ,n identify the different occurrences of terms in
the refinement diagram that describes E. A refinement arrow from box i
to box j means that

µE j v µEi

where
µEi = πm

i (µ.(λX ·E[X]))

.

44

Marktoberdorf, August 2004

Refinement diagram rule

1. A rule gives a permission to add some new terms and ordering relations
to a refinement diagram.

2. The elements and ordering relations that must be present are shown
with solid lines.

3. The elements and ordering relations that may be added are shown with
dashed lines.

45

Marktoberdorf, August 2004

Refinement diagram derivation

1. A refinement diagram derivation is a refinement diagram where the or-
dering relations are numbered by consecutive integers that show the
order in which the relations have been introduced in the diagram.

2. With each number we associate a proof rule that justifies the introduction
of this arrow, together with a possible side conditions that must hold for
this inference to be valid.

3. New entities may only be introduced into the diagram if justified by some
proof rule.

4. No entities may ever be removed from the diagram.

46

Marktoberdorf, August 2004

5. The proof rules used in the diagram can be textual proof rules, or they
can be refinement diagram rules.

6. Refinement diagrams provide a construction logic for constructing com-
plicated lattice terms with specific properties.

47

Marktoberdorf, August 2004

Example

a f.(g.x)

f.(g.x)

f.(g.x)

b

c

x

x

x

x y

x join y

1.

2.

3.

4.

5.

6.

7.

• Dashes show which parts had to be assumed and which parts could be
inferred by inference rules.

48

Marktoberdorf, August 2004

Refinement diagram derivations and Hilbert-like proofs

• There is an equivalent textual presentation of the refinement diagram
derivation, in the form of a Hilbert-like proof in a lattice theory.

• In this textual proof, each step is numbered, and is either justified

– as an axiom,
– as an assumption or
– as an inference drawn from some previous steps using an inference

rule.

49

Marktoberdorf, August 2004

Example as Hilbert like proof

1. a v b (assumption)
2. b v c (assumption)
3. f .(g.a) v f .(g.b)) (mon. 1)
4. f .(g.b) v f .(g.c) (mon.2)
5. f .(g.a) v f .(g.c) (trans.3,4)
6. f .(g.c) v ct f .(g.c) (lub prop)
7. f .(g.a) v ct f .(g.c (trans. 5,6)

a f.(g.x)

f.(g.x)

f.(g.x)

b

c

x

x

x

x y

x join y

1.

2.

3.

4.

5.

6.

7.

50

Marktoberdorf, August 2004

REFINEMENT CALCULUS

• Predicate transformers

• Refinement relation as lattice ordering

• Refinement calculus hierarchy

• Reasoning in the hierarchy

51

Marktoberdorf, August 2004

Background

• How to describe software in terms of lattices

• Base our approach on the refinement calculus

– Back Ph.D. thesis, MC tract, articles 1978 - 1982
– further developed by Back, Morgan and others 1988 –
– presentation here based on book by Back & von Wright 1998.

• Refinement calculus is in turn based on the weakest precondition ap-
proach by Dijkstra 1976 –

52

Marktoberdorf, August 2004

Predicate transformers
A predicate is a property of a state. Hence, we can identify a predicate
with a set of states.
A predicate transformer maps predicates to predicates.
A predicate transformer can be understood as the semantics of a program
statement [Dijkstra]:

• For any programming language statement S, we define its meaning wp.S
as a predicate transformer.

• wp.S determined for any predicate (postcondition) q on the state space
another predicate (precondition) wp.S.q

• wp.S.q is the weakest precondition for statement S to terminate in a
state satisfying q.

53

Marktoberdorf, August 2004

Example statements

abort can fail to terminate in any initial state: wp.abort.q = f alse for
any q

magic is guaranteed to always terminate and establish any postcon-
dition: wp.magic.q = true for any q

skip does not change the state at all: wp.skip.q = q

x := e an assignment statement: wp.(x := e).q = q[x := e]

S1;S2 sequential composition: wp.(S1;S2).q = wp.S1.(wp.S2.q)

54

Marktoberdorf, August 2004

(b → S1|S2) conditional composition:

wp.(b → S1|S2).q = (b∩wp.S1.q)∪ (¬b∩wp.S2.q)

55

Marktoberdorf, August 2004

Refinement ordering

Refinement S v T says that

any postcondition that S can establish can also be established by T .

In this sense T is better than S (or at least as good as S) . We define

S v T ≡ (∀q ·wp.S ⊆ wp.T)

• Intuitively, this means that any user of the statement S who only is in-
terested in the functional properties of this statement, should not notice
any difference if S is replaced by T .

• The monotonic predicate transformers form a complete lattice with the
refinement ordering.

56

Marktoberdorf, August 2004

Refinement lattice

• The meet SuT is the demonic choice between executing S or executing
T .

– One of these alternatives is chosen, but we have no influence of which
alternative that is chosen.

• The join StT is the angelic choice between executing S or executing T .

– We can choose the alternative that suits our purpose better

57

Marktoberdorf, August 2004

Refinement calculus interpretation

• The refinement calculus interprets software systems as elements in a
lattice (of, e.g., predicate transformers).

• Simpler lattice interpretations also possible: e.g., consider program
statements as relations on the state space.

• More complicated lattice interpretations used to, e.g., model classes in
object oriented systems, or interactive systems, real-time systems or
concurrent systems.

• In fact, one often forces the semantics into a lattice framework, in order
to handle recursion with fixed points.

58

Marktoberdorf, August 2004

A theory of program parts

• We will therefore postulate here that a software system can be under-
stood as the system defined by an environment on a lattice, as explained
above.

• The terms can be seen as the collection of parts of the system.

• A part can depend on (or use) other parts.

• A part can be refined by another part, in the sense that any user of this
part does not see the difference if that part is replaced with the refining
part.

59

Marktoberdorf, August 2004

• We can think of parts as real physical entities, like machine parts or
building components or similar things.

• We can also think of parts as software components, like procedures,
functions, expressions, classes, modules, libraries, or packages. The
latter interpretation is the one that we are here primarily interested in.

60

Marktoberdorf, August 2004

The refinement calculus hierarchy

A hierarchy of complete lattices that
allow sone to reason about complex
software systems at different level of
detail.
The hierarchy is built on top of an ar-
bitrary collection of state spaces Σ, Γ,
and collection of agents Ω (for con-
tracts).
Check Back & von Wright 1998 for
details.

values

state
predicates

truth

predicate
transformers

contract
statements

state
relations

61

Marktoberdorf, August 2004

Truth value lattice

• The truth value lattice
Bool = {T,F}

.

• The ordering is implication, i.e., b v b′ ≡ (b ⇒ b′).

• The smallest element is falsity F and the largest element is truth T .

• Meet is defined by aub = a∧b and join is defined by atb = a∨b.

62

Marktoberdorf, August 2004

State predicate lattice

• The state predicate (or subset) lattice

Pred(Σ) = Σ → Bool

.

• The ordering is subset inclusion, p v q ≡ p ⊆ q.

• The smallest element is the universally false predicate f alse = /0 and
the largest element is the universally true predicate true = Σ.

• Meet is intersection, puq = p∩q, and join is union, ptq = p∪q.

63

Marktoberdorf, August 2004

State relation lattice

• The state relation lattice

Rel(Σ,Γ) = Σ → Pred(Γ)

.

• The ordering is relational inclusion, P v Q ≡ P ⊆ Q.

• The smallest element is the universally false (empty) relation False = /0
and the largest relation is the true (universal) relation True = Σ×Γ.

• Meet is intersection of relations and join is union of relations.

64

Marktoberdorf, August 2004

Predicate transformer lattice

• The predicate transformer lattice

Mtran(Σ,Γ) = Pred(Γ) →m Pred(Σ)

• The ordering is refinement, defined by S v T ≡ (∀q ·S.q ⊆ T.q).

• The least element is the predicate transformer abort = (λq · f alse)and
the greatest element is the predicate transformer magic = (λq · true).

• Meet is the predicate transformer SuT = (λq ·S.q∩T.q) and join is the
predicate transformer StT = (λq ·S.q∪T.q).

65

Marktoberdorf, August 2004

Contracts lattice

• The contracts lattice

Cont(Ω,Σ,Γ) = Pred(Ω) → Mtran(Σ,Γ)

.

• The ordering is F v G ≡ (∀c ·F.c v G.c).

• The least element is Abort = (λc · abort) and the greatest element is
Magic = (λc ·magic).

• Meet is defined by FuG = (λc ·F.cuG.c) and join is defined by FtG =

(λc ·F.ctG.c).

66

Marktoberdorf, August 2004

• Contracts model systems where a number of independent agents with
possibly conflicting goals participate in making decisions about how the
system should behave.

67

Marktoberdorf, August 2004

Pointwise extension

• The implication ordering of truth values forms the basis for the refine-
ment calculus hierarchy. The other lattice orderings are defined by point-
wise extension of lower orderings.

• Subset inclusion is the pointwise extension of implication, and relation
inclusion is the pointwise extension of subset inclusion.

• Refinement is also the pointwise extension of subset inclusion, to a dif-
ferent domain than relations.

• Finally, contract ordering is the pointwise extension of the refinement
ordering.

68

Marktoberdorf, August 2004

• The refinement calculus hierarchy also contains other, more exotic lat-
tices, which we will not describe in detail here.

69

Marktoberdorf, August 2004

Other operations in the lattices

• The refinement calculus hierarchy contains, in addition to the lattice op-
erations, also other operations that are defined on these domains.

• In particular, we usually need some operation for sequential composition
of relations and predicate transformers.

• In addition, there are a number of homomorphic embeddings between
the lattices in the hierarchy.

70

Marktoberdorf, August 2004

Reasoning in the refinement calculus hierarchy

• Reasoning with refinement diagrams in the refinement calculus hierar-
chy typically involves reasoning on different levels in the hierarchy simul-
taneously.

• It is possible to show reasoning in different lattices in the same refine-
ment diagram.

• Transfers between different levels in the hierarchy are achieved by using
homomorphic embeddings of a lower level lattice in a higher level lattice.

71

Marktoberdorf, August 2004

Example: assume statement

• assume statement [p] models a
guard

• wp.[p].q = ¬p∪q

• we have that p ⊆ q ⇒ [q] v [p]
p q

[X] [X]

72

Marktoberdorf, August 2004

COMPONENTS AND SPECIFICATIONS

• Specifications and implementation of components

• Recursive components

• Information hiding

73

Marktoberdorf, August 2004

Specifications and implementations

• A specification is a description of a the functional (and sometimes also
non-functional) behavior of a software component. It describes what the
component does, but not how it does it.

• An implementation is a software component that realises the functional
behavior described by the specification

• We consider a specification to be a part in a software system, in the
same way that an an implementation is a part in a software system

• We assume that there is a (possibly idealized) sense in which the spec-
ification can be executed

74

Marktoberdorf, August 2004

Satisfying a specification

• A specification S is satisfied by an implementation
T , if S v T S

T

• Intuitively, this means that we are allowed to replace the specification S
by the implementation T in any context.

• We indicated specifications by rounded boxes to emphasize the in-
tended use of these components.

• (In practice, one would often have data refinement between the compo-
nents rather than simple algorithmic refinement.)

75

Marktoberdorf, August 2004

Multiple implementations

A specification S0 can be satisfied by more than one implementation,

S0 v S1, S0 v S2, ,S0 v S3

• S0 could be a standard for some compo-
nent, and S1,S2, S3 could be different im-
plementations of this standard which are
provided by different vendors.

S1

S0

S3S2

76

Marktoberdorf, August 2004

Multiple interfaces

An implementation can also satisfy more than one specification,

S1 v T , ,S2 v T , ,S3 v T etc.

• Then we often talk about multiple interfaces to the same software com-
ponent.

• A banking application may provide
one interface for the bank cus-
tomer and another interface for the
bank clerk.

S1 S2 S3

T

77

Marktoberdorf, August 2004

Refining implementations

It is also possible that an implementation T1 is seen as a specification of
another implementation T2, in which case we require T1 v T2.
For instance,

• T2 could be a more efficient implementation of T1,

• T2 could be an adaptation of T1 to a different platform, or

• T2 could be the object code of the source code compo-
nent T1. T1

T2

T3

Stepwise refinement is based on this idea.

78

Marktoberdorf, August 2004

Refining specifications

It is also possible that we have refinement between specifi-
cations, S1 v S2.

• we add functionality to a specification, or

• we add further detail to the specification. S0

S2

S1

79

Marktoberdorf, August 2004

Specifications and implementations

S1

S0

S2

T1

U1 T2

T0

U2

80

Marktoberdorf, August 2004

Modularity and information hiding

• Specifications allow us to modularize software systems.

• If a component only knows about the specifications of other compo-
nents, then the implementation of a used component can be changed
at will, as long as it still satisfies the original specification.

• This information hiding technique is a powerful technique for building
loosely coupled systems

• It allows us to build different parts of the system independently (e.g., by
different people or at different times), as long as we do not change the
specifications of the parts in the system.

81

Marktoberdorf, August 2004

Specifications and correctness

• Specifications are also important for verifying
that a software system is correct.

• A specification S0 is usually more abstract and
simpler to reason about than an implementa-
tion S1.

• If T is another component that depends on
the S component, T [S1] is likely to be a much
more complex term than T [S0], and hence
much more difficult to reason about.

S0

S1

T

T

82

Marktoberdorf, August 2004

Constructing systems with specifications

• We have a specification T0 of a part that we want to build

• We want to implement this with a part T1 that uses another part S1

• The implementation must be correct, i.e., T0 v T1[S1] must hold.

T1 S1

T0

83

Marktoberdorf, August 2004

Refinement diagram derivation

S0T1

T0

T1 S1

1.

2.34

• The proof shows that we have used a specification S0 of S1 to make it
easier to check the correctness of the constructed system.

84

Marktoberdorf, August 2004

Animation of construction, step 0

Initially only the specification
T0 is provided

T0

85

Marktoberdorf, August 2004

Step 1

We provide the specification
of an auxiliary part S0 and an
implementation T1[S0] of T0.
We show that this is a correct
implementation.

S0T1

T0

1.

86

Marktoberdorf, August 2004

Step 2

We then provide an imple-
mentation S1 of S0

We prove that this implemen-
tation satisfies the specifica-
tion S0.

S0T1

T0

S1

1.

2.

87

Marktoberdorf, August 2004

Step 3

We redirect T1 to use the im-
plementation S1 rather than
the specification S0.
This is a correct refinement of
the previous version of T1 (by
monotonicity).

S0T1

T0

T1 S1

1.

2.3

88

Marktoberdorf, August 2004

Step 4

We now have a correct imple-
mentation T1[S1] of the origi-
nal specification T0(by transi-
tivity).

S0T1

T0

T1 S1

1.

2.34

89

Marktoberdorf, August 2004

Hiding intermediate steps

The specification S0 and the
previous version of T1 that
used S0 are now obsolete, so
we can ignore them in future
steps

S0T1

T0

T1 S1

90

Marktoberdorf, August 2004

Construction as a log

The verbal explanations above can be seen as a log of the software con-
struction process:

1. We provide the specification of an auxiliary part S0 and an implementa-
tion T1[S0] of T0. We show that this is a correct implementation.

2. We then provide an implementation S1 of S0, and prove that this imple-
mentation satisfies the specification S0.

3. We redirect T1 to use the implementation S1 rather than the specification
S0. This is a correct refinement of the previous version of T1 which used
the specification S0 (by monotonicity).

91

Marktoberdorf, August 2004

4. Finally, we notice that we now have a correct implementation T1[S1] of
the original specification T0(by transitivity). The specification S0 and the
previous version of T1 that used S0 are now obsolete, so we can forget
about them.

92

Marktoberdorf, August 2004

Construction as Hilbert-like proof

We can also express the construction as a proof in lattice theory:

1. T0 v T1[S0] (assumption or lemma)

2. S0 v S1 (assumption or lemma)

3. T1[S0] v T1[S1] (by monotonicity from 2)

4. T0 v T1[S1] (by transitivity from 1,3)

93

Marktoberdorf, August 2004

Three different presentations

We thus have three different ways of describing the same construction:

• a diagrammatic way based on refinement diagrams (intuitive, visual
overview)

• a software process log describing the successive development steps
(shows and explains the actions taken)

• a formal proof in the refinement calculus (mathematical, precise)

94

Marktoberdorf, August 2004

Software construction in the large and small

• Refinement diagrams used for software construction “in the large”

• Justification for each step may require quite a lot of work, and amount to
software construction “in the small”

• “assumption” or “lemma” as justification in the proof indicate that these
steps may have been established in a different proof framework, and are
here taken as lemmas or assumptions.

95

Marktoberdorf, August 2004

Alternative formalization

• Above formalization assumes that the terms describing the software
parts are always well formed and internally consistent.

• We can emphasize the construction of a well formed and consistent soft-
ware part by introducing a separate judgment for this, e.g., ` S, that
states that S is consistent.

• Then the diagrammatic proof and the corresponding Hilbert like proof
will have two kinds of judgements, ` S and ` S v T

• Paradigm: first construct a consistent part and then check that it satis-
fies its requirements.

96

Marktoberdorf, August 2004

Components

A component satisfies some interfaces (specifications) and depends on
some other interfaces (specifications)

T

T01 T01

U0 S0

97

Marktoberdorf, August 2004

Another component R

T

T01 T01

R00 R01

R U0

U0 S0

98

Marktoberdorf, August 2004

Use R in T

T

T01 T01

R00 R01

R U0

U0 S0

99

Marktoberdorf, August 2004

Use monotonicity and transitivity

T

T01 T01

R00 R01

R U0

T

T

U0 S0

100

Marktoberdorf, August 2004

Final result

T

T01 T01

R00 R01

R U0

T

T

U0 S0

101

Marktoberdorf, August 2004

Hide derivation

T R U0U0

T01 T01

102

Marktoberdorf, August 2004

Package into bigger component

U0U0

T01 T01

R

T

103

Marktoberdorf, August 2004

Implementing recursive components

The following recursion rule can be used to reason about a recursive con-
struct:

S0 v S1[S0] ⇒ S0 v (µX ·S1[X]) (∗)

The star indicates that there is a side condition for this rule (usually some
kind of termination or well-foundedness condition).

104

Marktoberdorf, August 2004

Refinement diagram /Hilbert-like derivation

S0

S1

S1

.

1.

2*.

1. S0 v S1[S0]

2. S0 v (µX · S1[X]) (by recursion
rule)

105

Marktoberdorf, August 2004

Mutual recursion

• Initially, we have two specifications, S0 and T0 .

• Assume that we implement T0 with T1 that uses the specification S0 and
S0 with S1 that uses the specification T0.

• Want to show that the system where these two statements call each
other directly is a correct implementation of the specifications S0 and T0.

106

Marktoberdorf, August 2004

Refinement diagram / Hilbert-like derivation

S0

S1T1

T0

T1 S1

1. 1.

2*. 2*.

1.(T0,S0) v (T1[S0],S1[T0])

2.(T0,S0)v (µX ,Y ·(T1[Y],S1[X])

(by recursion rule)

107

Marktoberdorf, August 2004

One step at a time

S0

S1T1

T0

T1 S1

1. 2.

3*. 4*.

1. T0 v T1[S0]

2. S0 v S1[T0]

3. T0 v (µX ,Y · (T1[Y],S1[X]))1 (by
recursion rule)

4. S0 v (µX ,Y · (T1[Y],S1[X]))1 (by
recursion rule)

108

Marktoberdorf, August 2004

Refining a component and information hiding

• The T - component knows the
specification S0 of the S- compo-
nent,

• T component does not know the
implementation S1 of the S compo-
nent (information hiding)

• We want to refine T0 to a new part
T1. T0

S1

S0

109

Marktoberdorf, August 2004

Information hiding in refinement
Should the new part T1 know about the implementation S1 or not?

T0

T1

S1T0

S0

1.2.

3.

4.

Not hiding informationHiding information

T0

T1

S1T1

S0

1.2.

3.4.

110

Marktoberdorf, August 2004

Remarks

• On the left T1[S0] occurs as an intermediate step in the derivation, so T1

cannot have any information about the implementation S1.

• On the right, T0[S1] occurs as an intermediate step, so T1 may use infor-
mation about the implementation S1.

• The final diagrams are the same in both cases, but the derivation shows
the differences between the two diagrams.

• Information hiding is good when components are shared, not necessary
when we have private components.

111

Marktoberdorf, August 2004

Reasons not to respect information hiding

• If we insist on information hiding in the refinement step above, then it
follows that the implementation T1 of T0 cannot make use of the imple-
mentation S1.

• In many cases, it may be desirable that T1 does make use of the imple-
mentation, e.g., because of efficiency reason, or because it needs direct
access to the data representation in S1, or because it wants to utilize
new functionality provided by S1.

• In this case, we would prefer to implement S0 and T0 together, and there-
fore break the information hiding principle.

112

Marktoberdorf, August 2004

Bottom up and top down construction

• In both these cases, the ordering of the steps 1 and 2 are not important.

• If step 1 comes before step 2, then we proceed bottom up, first defining
the components that are used before using them.

• If step 2 comes before step 1, then we are proceeding top down, first
defining the user of a component, before implementing the component.

• We can also think about the construction as proceeding by first plac-
ing all the entities on the diagram, before starting to connect them by
refinement arrows (off the shelf components).

113

Marktoberdorf, August 2004

ON DUPLICATION OF TERMS

• Duplication vs redirection

• Ambiguity with redirection

• Compacting refinement diagrams

114

Marktoberdorf, August 2004

Duplication vs redirection

Derivation can seem overly complex, because we are duplicating some
entities (T1 in left figure)

S0T1

T0

T1 S1

1.

2.34

T1

T0

1.

S0

S1

2.3

It would seem more economical to redirect the arrow in the derivation rather
than duplicating the whole entity (right)

115

Marktoberdorf, August 2004

Redirecting arrows

• This figure shows the third step as just a redirection of the solid arrow
from T1 to S1.

• Implicitly could state that this redirection is ok, in the sense that all rela-
tions that held before are still valid.

• In particular, this would mean that T1[S1] would still be an implementation
of T0

• Advantage: the derivation becomes more compact, the use of duplicates
is avoided, and the layout of the class diagram is unchanged, we just
move arrows around.

116

Marktoberdorf, August 2004

Why not to use redirection

• the meaning of a box becomes ambiguous. Consider a user of T1, say
U1.

T1

T0

1.

S0

S1

2.3

U1

U0

• A change in T1 (to use S1 rather than S0) will also mean that U1 is
changed, from U1[T1[S0]] to U1[T1[S1]] . But this change is difficult to
notice here.

117

Marktoberdorf, August 2004

Duplication is good

• Duplication of terms avoids hidden, uncontrolled and unwanted changes
in the software system.

• Compare above to the same derivation with duplication:

T0

1.

S0

S1

2.

U0

T1

U1

U1

T1

3

4

5.

6

• New terms are shown explicitly, U1[T1[S0]] and U1[T1[S1]] both in dia-
gram.

118

Marktoberdorf, August 2004

Compacting refinement diagrams

Avoid making inferences unless they are explicitly needed. Example:

T0

1.

S0

S1

2.

4

U0

U1 T1

The refinement of S0 by S1 is shown, but we have not drawn the conse-
quences. Inferred terms and arrows can be indicated later, if they are
needed.

119

Marktoberdorf, August 2004

Combine inference steps

Alternatively, we could combine a number of inference steps into a single
step:

T0

1.

S0

S1

2.3

4

U0

T1

U1

U1

T1

Here we only show the desired conclusion, that U1[T1[S0]] is refined by
U1[T1[S1]]. Intermediate transitivity and monotonicity steps are implicit, and
are easy to see by arrow chasing.

120

Marktoberdorf, August 2004

Conclusion on compactness

• Duplication of terms is needed, to avoid ambiguity in the derivations

• But one does not have to draw all the inference arrows and intermediate
terms that are possible, only those that are relevant for the final result.

• The refinement derivation is a proof, so it must be unambiguous and
show all the necessary information

• After the proof is done, then one need only to display the part of the
diagram that is interesting for the present purpose. The rest can be
hidden.

121

Marktoberdorf, August 2004

EXTENDING SOFTWARE SYSTEMS

Increment an existing system by either

• adding a new component, (described above), or

• adding a new extension, on top of an existing component (described
below).

122

Marktoberdorf, August 2004

Extension

• We write S / T for the component that we get by extending component
S by component T .

• The extending component T refers to the extended component S by the
name base , T = T [base] (could also call the base part super).

• We model extension by usage: S / T = T [S], i.e. an extension is a
component that uses another component.

123

Marktoberdorf, August 2004

Refinement requirement

• We will require from an extension that S v T [S] holds, i.e., the extension
should preserve the functionality of the original component.

• This holds if the extension is a superposition refinement of the original
statement. E.g., for classes,

– the extended statement can introduce some new attributes, but cannot
remove old attributes

– it can add new methods, an redefine old methods, but must preserve
the effect of the old methods on old attributes

• We write S � T (S is superposition refined by T) for the statement S v

S/T .

124

Marktoberdorf, August 2004

Extension in refinement diagrams

We introduce a special arrow for superposition refinement.

==
base

S

T

S

T

Note that (S/T)[X] = S[X]/T [X] = T [X ,S[X]], i.e., both S and T can also
be dependent on other parts in the environment.

125

Marktoberdorf, August 2004

Adding new functionality to a system

• We have built a basic system, consisting of a collection of parts (e.g.,
classes) that use each other. This system provides some basic func-
tionality.

• Next, we want to extend the functionality of the system with some new
features

• Often, it is not sufficient to just extend a single part, the new functionality
may require that a number of components are extended simultaneously

• Essentially, we want to build a new layer of functionality on top of the
basic system layer, where the new layer provides the added functionality.

126

Marktoberdorf, August 2004

Initial layer

Start with the system consisting of
T0[S0] and S0 (the basic layer). T0 S0

127

Marktoberdorf, August 2004

Extend used component

Introduce a part S1 such that S0 � S1
T0 S0

S1

1.

128

Marktoberdorf, August 2004

Extend using component

Then introduce a new part T1 such
that T0[S0] � T1[S0 /S1] T0 S0

S1T1

2 1.

129

Marktoberdorf, August 2004

Derivation in terms of usage alone

• Start with the system consisting of
T0[S0] and S0 (the basic layer).

• Introduce a part S1 such that S0 v S0 /

S1

• Then introduce a new part T1 such that
T0[S0] v T0[S0]/T1[S0 /S1] T0 S0

S1T1

2 1.

130

Marktoberdorf, August 2004

Static and dynamic binding

• This layering uses static binding for the extended parts: in the extended
system

T0 /T1 = T0[S0]/T1[S0 /S1]

the base part T0 continues to use the base part S0, even if there is an
extension S0 /S1 of this part available.

• We model dynamic binding by requiring that the extended version is
used in all extension layers.

131

Marktoberdorf, August 2004

Extension with dynamic binding

• The following derivation achieves dynamic binding:

T0 S0

S1T1

1.
4.

2

T0

3

132

Marktoberdorf, August 2004

Step 1

First step same as before, introduce
extension S1 of S0

T0 S0

S1

1.

133

Marktoberdorf, August 2004

Step 2

Step 2 uses monotonicity to derive
T0[S0] v T0[S0 /S1] T0 S0

S1

1.

2

T0

134

Marktoberdorf, August 2004

Step 3

In step 3 we show that T0[S0 / S1] v

T0[S0 /S1]/T1[S0 /S1] T0 S0

S1T1

1.

2

T0

3

135

Marktoberdorf, August 2004

Step 4

Step 4 gives required result by
transitivity,T0[S0]v T0[S0/S1]/T1[S0/

S1] T0 S0

S1T1

1.
4.

2

T0

3

136

Marktoberdorf, August 2004

Dynamic binding with successive extensions

T0 S0

S1

S2

T0

T1

T0

T1

T2

137

Marktoberdorf, August 2004

Layers

• The extra steps that are required by dynamic binding can be inferred
and do not have to be proved explicitly. This suggests that we could
introduce implicit dynamic binding.

• We introduce layers: a collection of extensions that are to be used to-
gether.

• A reference to a part at a lower level of extension it is taken to refer the
extension in the current layer (i.e., all calls are bound to extensions in
the current layer).

• We indicate a layer with a dashed outline in the diagram.

138

Marktoberdorf, August 2004

Two layers

Layers (left), no layers (right)

T0 S0

S1T1

1.
4.

T0

3

2

T0 S0

S1T1

2 1.

139

Marktoberdorf, August 2004

Three layers

:

T0 S0

S1

S2

T0

T1

T0

T1

T2

T0 S0

S1T1

T2 S2

Each layer defines a different system

140

Marktoberdorf, August 2004

Basic system

• The basic system is started by us-
ing T0 as the main program.

• It provides some basic functional-
ity, and makes use of S0 as an aux-
iliary part.

T0 S0

141

Marktoberdorf, August 2004

Intermediate system

• The intermediate system is started
using T1 and it makes use of the
extension S1 of S0.

• All calls to S0 are redirected to S1.
T0 S0

S1T1

142

Marktoberdorf, August 2004

Final system

• The most advanced system is
started from T2 and makes use of
the extension S2 of S1 .

• Calls to S0 or S1 are redirected to
the extension S2 .

T0 S0

S1T1

T2 S2

143

Marktoberdorf, August 2004

Loose ends

• We assume that the layers in the system have a tree like structure, so
that for each layer there is a unique previous (father) layer.

• A part may only reference a part in a preceding layer (which means
either a previous layer or a layer that precedes the previous layer).

• For any used component, the most recent extension below or in the
present layer is used

• These conventions correspond to the single inheritance principle in ob-
ject oriented systems.

144

Marktoberdorf, August 2004

Remarks

• Note that the layering construct allows a number of different extension
hierarchies to co-exist at the same time.

• At the same time, it prevents extensions in different layers to be used at
the same time.

• In many situations, this is exactly what we want. There are, however,
also situations where we do not want this. For such situations, we may
use both kinds of calls: dynamic calls that are redirected by layering,
and static calls that cannot be redirected.

• We then need a differentiating notation for these two calls

145

Marktoberdorf, August 2004

LAYERED SPECIFICATIONS AND
COMPONENTS

• Let us next consider the relationship between extension and implemen-
tation.

• Assume that we have a preliminary specification S0 which we have im-
plemented by S1.

• Assume now that we want to extend the specification by some new fea-
tures T0. This now gives us a new layered specification S0 /T0.

146

Marktoberdorf, August 2004

Implementing layered specifications

We could implement this layered specification directly by

• a new implementation U1 (left), or

• by an extension T1 of the original implementation S1, giving us S1 / T1

(right).

S0 S1

T0

S0 S1

T0 U1 T1

147

Marktoberdorf, August 2004

Comparison

• Left, the presence of the new features in T0 requires a change of the orig-
inal implementation of S0, and so the new and old features are therefore
implemented anew, as U1.

• Right, the new features in T0 do not require a reimplementation of the
features in S0, it is sufficient to just extend the implementation S1 with an
implementation T1 for the new features of T0.

• Right approach works if the new feature are rather orthogonal to the old
features

148

Marktoberdorf, August 2004

Advantage of layered implementation

• One can reuse the implementation of the S0 features

• Need to check that

– the new features in T0 are correctly implemented and
– that their implementation does not invalidate the implementation of old

S0 features.

149

Marktoberdorf, August 2004

Extension, non-recursive implementation and usage

• A problem with the construction of layered system above is that the proof
is not local.

• Thus, when we add extension layers to the system, we are forced to
prove refinement between larger and larger terms.

• For instance, we have to prove in step 3 that T0[S0 / S1] v T0[S0 / S1] /

T1[S0 /S1] .

• If S0 and S1 are non-trivial statements, then this can require proofs involv-
ing very large terms. If these statements in turn call other statements,
the terms get even bigger.

150

Marktoberdorf, August 2004

Modularizing extensions

• We therefore need to use more local reasoning and modularize the
proof, in order to keep it of manageable complexity.

• The solution is again to introduce specifications for components.

• This complicates the proof, because we have to come up with a whole
new set of constructions, the specifications, and we have to establish
many more properties.

• However, the terms in the propositions are now smaller, and calls only
refer to specification statements.

151

Marktoberdorf, August 2004

• 16a

152

Marktoberdorf, August 2004

Constructing first layer

Earlier derivation for implementing a specification using an auxilliary part.

S0T1

T0

T1 S1

1.

2.34

Turn figure sideways, add 0 to component as layer index (S1 becomes S10

etc).

153

Marktoberdorf, August 2004

Constructing first layer - 2

T10 S10

T10

1.

2.3.
4.

T00

S00

5.

Layer 0

154

Marktoberdorf, August 2004

We write here S jk for component S in implementation j and layer k, and
similarly for component T .

155

Marktoberdorf, August 2004

Hilbert proof for first layer

1. T00 v T10[S00] (prove)

2 S00 v S10 (prove)

3. T10[S00] v T10[S10] (by monotonicity)

4. T00 v T10[S10] (transitivity)

156

Marktoberdorf, August 2004

Verification of individual proof steps

The steps indicated by “proof” are verified in some lower level formalism:

• possibly refinement diagrams at a lower level, or

• textual proofs in refinement calculus, Hoare logic, ..., or

• interactively by proof checkers, or

• automatically by automatic deduction or model checking, or

• just handchecked

• or by testing

157

Marktoberdorf, August 2004

Second layer construction

T10 S10

S11T11

T10

T11

1.

2.3.
4.

6.
7.

8.

T00

S01

S00

11.

12.13.

10. 5.

Layer 0

Layer 1

T01

158

Marktoberdorf, August 2004

Hilbert proof (second layer)

5. S00 � S01 (prove)

6. S10 � S11 (prove)

7. S00 /S01 v S10 /S11 (prove)

8. T00 � T01 (prove)

9. T10[S00] v T10[S00 /S01] (monotonicity)

10. T10[S00 /S01] � T11[S00 /S01] (prove)

11. T00 /T01 v T10[S00 /S01]/T11[S00 /S01] (prove)

159

Marktoberdorf, August 2004

12. T10[S00 /S01]/T11[S00 /S01]v T10[S10/S11]/T11[S10 /S11] (monotonic-
ity)

13 T00 /T01 v T10[S10 /S11]/T11[S10 /S11] (transitivity)

160

Marktoberdorf, August 2004

Derived system

The final system that we have derived is the following:

Level 1

Level 0

T10

T00 T10

T11

S10

S11

161

Marktoberdorf, August 2004

Two systems constructed

In fact, this describes two different systems, Layer 0 and Layer 1:

Level 1Level 0

T10

T00 T10

T11

S10

S11

T00 T10 S10

162

Marktoberdorf, August 2004

More compact notation

• Extension adds a new dimension to software diagrams.

• Diagrams can become quite large, so need to describe extensions in a
more concise way

• One approach: stack extensions on top of each other.

• This is only notational abbreviations, it does not change the underlying
logic of the derivations.

T2

T1

T0

S2

S1

S0

163

Marktoberdorf, August 2004

Layers and implementations

• We can also show implementations as boxes to the right of the original
boxes.

• Example: the result of the derivation above can be compressed into the
following figure:

S11T10

T00 T10

T11

S10

• Considerably more compact than the previous derivation.

• Shows that the system essentially consists of two components, a T and
an S component.

164

Marktoberdorf, August 2004

Layered components

• The figure shows that the T component is internally constructed in two
layers, and for both layers we have a specification and an implementa-
tion.

• Similarly, the S component is constructed in two layers.

• We refer to these components as layered components.

• In addition, this figure shows that the bottom layer of the T component
uses the bottom layer of the S component.

• Thus we can allow a layered component to be used on different levels,
with increasing functionality.

165

Marktoberdorf, August 2004

• The T component also provides a layered specification of the compo-
nent, and shows explicitly that there are two levels on which the compo-
nent can be used.

166

Marktoberdorf, August 2004

Different layerings

• The layering of the different components does not have to be the same.

• Moreover, the layering of specifications and implementations need not
be directly corresponding.

T00

T10

T20

T30

167

Marktoberdorf, August 2004

Remarks

• Here the specification T00 is implemented by two layers in the imple-
mentation, whereas T20 and T30 are implemented at the same time by a
single layer.

• The layering of the S component is here independent of the layering of
the T component.

• Moreover, the implementation of extensions T20 and T30 has been further
optimized by providing further implementations.

• In addition, some of the implementations use private components, that
are not visible to the outside.

168

Marktoberdorf, August 2004

Combining proximity and arrows

• The example has been constructed to exemplify the different possibilities
for using proximity rather than arrows to indicate usage, implementation
and extension.

• The abbreviated notation is convenient when we are describing simple
structures, but can be restrictive for larger systems. is quite restrictive
and can also be ambiguous.

• In more complex situations we will need both proximity and arrows.

• Proximity gives compactness, arrows give generality.

169

Marktoberdorf, August 2004

SOFTWARE EVOLUTION

• Software evolution and proofs

• Redesigning software

• Version control

170

Marktoberdorf, August 2004

Evolution over time

• The refinement diagrams model the evolution of software over time by
numbering the inference steps.

• Each new inference step increases the (logical) time counter by one.

• This time dimension is then the same as the step number in a Hilbert
like proof system.

• The fact that the time steps correspond to proof steps help maintain
consistency of the construction:

– we cannot refer to a part that has not been constructed yet or to a
relation that has not yet been established

171

Marktoberdorf, August 2004

Growth of refinement diagrams

• The construction of software can be played back like a movie, showing
how each step adds to the construction.

• Only permitted to add elements; we do not permit any elements to be
removed from a refinement diagram.

• Over time the diagram will be filled with elements that are not needed
anymore.

– stepping stones in the derivation that have served their purpose, or
– alternative approaches that we have abandoned

172

Marktoberdorf, August 2004

Hiding details

• Parts of the diagram that reflect the historic development but are not
relevant now may be hidden, but not removed– they may still be needed
later.

• A step in the derivation that can usually be ignored may have to be
revisited,

– if we find an error in the proof,
– or if we are considering an alternative development that could be

based on this version.

• Keeping the trail of the software development may be useful for auditing
purposes, for certification purposes, or for backup purposes.

173

Marktoberdorf, August 2004

Redesign of system

• In practice, it is often necessary and desirable to redesign the system,
i.e., change the software architecture without necessarily changing the
functionality of the system.

• This means that the refinement diagram is extended with new elements,
and some of the old elements become obsolete.

• These obsolete elements are not, however, removed. They remain in
the diagram, but are on paths that will be ignored in later construction
phases.

174

Marktoberdorf, August 2004

Example redesign

T10 S10

S11T11

T10

T11

1.

2.3.
4.

6.
7.

8.

T00

S01

S00

11.

12.13.

10. 5.

Layer 0

Layer 1

S21

14.

T10 15.

T11

16

17

T01

175

Marktoberdorf, August 2004

Continued derivation

14. We decide that the implementation S10 / S11 is too inefficient or too
complicated, and we want to improve it by implementing the S compo-
nent directly without layering. For this purpose, we introduce a new class
S21. We show that this new class is a correct implementation of S10 /S11.

15. Because of this, we are now allowed to deduce that T10 using S10 is
refined by T10 using S21instead (this requires two applications of mono-
tonicity and one application of transitivity)

16. Next, we show that T11 using S21is a correct extension of T10 using S21.

17. Finally, we show that T00 /T01 is correctly refined by T10[S21]/T11[S21] .

176

Marktoberdorf, August 2004

Remarks

• We started with a quite strict layered construction

• Having managed to get this to work, we decided that we needed a more
efficient version, so we refactored the system by reimplementing the
layered component S10 /S11 by a non-layered component S21.

• The T components were changed to use the new component instead,
and we showed that the changed T components still satisfied the layered
specification.

• We did not change the layered structure of the T component .

177

Marktoberdorf, August 2004

Associated information

• The refinement diagrams emphasise the structure of software, but do not
properly discuss the information associated with the different structure
elements.

• Typically, we would associate program code with the components, as
well as other information (e.g., protection).

• We would associate proofs with refinement and extension arrows, in
addition to, e.g., abstraction relations with refinement arrows.

• We may also associate test sets (e.g., automatic unit tests) with the
implementation and extension arrows.

178

Marktoberdorf, August 2004

• We could associate usage restrictions (e.g., method preconditions) with
usage arrows (or with the methods themselves), and so on.

179

Marktoberdorf, August 2004

A software editor

• Currently implementing a software editor where the software is de-
scribed as a refinement diagram

• Editor also provides more compact views of the software, along the lines
explained above

• Allows code to be associated directly with the parts, and to execute a
refinement diagram

• Allows proofs / tests to be carried out in order to check the correctness
of the refinement arrows.

• Provides a version control system system based on refinement dia-
grams.

180

Marktoberdorf, August 2004

Software editor design

• A specialized editor constructs and browses the refinement diagram

• Other specialized editors are used to construct and inspect the informa-
tion associated with the structure elements:

– source code editor for writing program text,
– interactive proof editor for checking correctness of refinement steps,
– unit test framework to execute the tests automatically,
– compiler for executing the software system, ...

181

Marktoberdorf, August 2004

Tentative design

• The refinement diagram as presented above essentially equate a refine-
ment arrow with a true refinement proposition.

• In practice, one may want to make a difference between a refinement
arrow that should be true (the intention) and one that has been shown
to be true (the established fact).

• We can decorate an tentative entity (part or usage or refinement arrow)
with a question mark, and an established refinement arrow with an ex-
clamation mark.

• The exclamation mark may further be qualified by the way in which the

182

Marktoberdorf, August 2004

truth of the refinement has been established: by inspection, by testing,
by a manual proof, or by a formal, possibly machine checked proof.

183

Marktoberdorf, August 2004

Committing entities and relations

• Tentative elements may be changed at will, and even deleted.

• When the relation has been established, it is committed to the diagram,
and cannot be changed any more

• The committed diagram elements provide the historic trace of the con-
struction, a k o version control system.

184

Marktoberdorf, August 2004

Applications for incremental software construction

• Stepwise feature introduction: a programming technique and a
software architecture

• Extreme programming: a software process that supports incre-
mental construction

• The ladder process: incremental software design

• Automated unit testing: incremental testing of superposition

185

Marktoberdorf, August 2004

186

Marktoberdorf, August 2004

Conclusions

• We have above shown how to extend the refinement calculus with a dia-
grammatic notation that allows large software systems to be constructed
in a rigorous and (in our opinion) quite intuitive way.

• The refinement diagrams that we introduce for this purpose are essen-
tially tools to reason about lattice elements, but can be used for software
by interpreting software components as elements in lattices, as is done
in refinement calculus.

• We have shown that the refinement diagram proofs are equivalent to
Hilbert like proofs in a lattice theory.

• We have applied this framework to analyze a collection of important
problems in software engineering.

187

Marktoberdorf, August 2004

• The importance of specifications has been highlighted, and we have
shown the importance of specifications when deriving large systems.

• We have also discussed the rational for the information hiding principle
when constructing large software systems, that this principle should be
used when applicable, but that there are situations when it should not
be used.

• We have also shown how to formalize and reason about systems that
are built by extension layers, where the layering is based on inheritance
and dynamic or static binding.

• We have proposed a new software construct, layered component, and
discussed how to reason about such components.

188

Marktoberdorf, August 2004

• Finally, we have described how the refinement diagram proofs provide a
high level view of the evolution of the software system, and that a version
control system could be based on this kind of diagrams.

189

Marktoberdorf, August 2004

Acknowledgments

A number of colleagues have been very helpful in discussing the issues de-
scribed here. In particular, I want to thank Marcus Alanen, Johannes Eriks-
son, Luka Milovanov, Herman Norrgrann, Viorel Preoteasa, and Joakim
von Wright.

190

Marktoberdorf, August 2004

References

[1] Ralph-Johan Back. Refinement diagrams. In J. M. Morris and R. C.
Shaw, editors, 4th Refinement Workshop, Workshops in Computer Sci-
ence, pages 125–137. Springer-Verlag., 1991.

[2] Ralph-Johan Back. Software construction by stepwise feature introduc-
tion. In Bowen J.P. Henson M.C. Robinson K. Bert, D., editor, ZB 2002:
Formal Specification and Development in Z and B, proceedings of the
2nd International Conference of B and Z Users, LNCS, pages 162–
183, Grenoble, France, January 2002. Springer Verlag. Also appeared

191

Marktoberdorf, August 2004

as TUCS Technical Report 496.

[3] Ralph-Johan Back, Leonid Mikhajlov, and Joakim von Wright. Formal
semantics of inheritance and object substitutability. Technical Report
337, TUCS - Turku Centre for Computer Science, Turku, Finland, March
2000.

[4] Ralph-Johan Back, Anna Mikhajlova, and Joakim von Wright. Rea-
soning about interactive systems. In J. Woodcock J. Wing and
J. Davies, editors, Proc. of the World Conference on Formal Methods
(FM’99),Toulouse, France., volume 1709 of Lecture Notes in Computer
Science, pages 1460 – 1476. Springer-Verlag, 1999.

[5] Ralph-Johan Back and Kaisa Sere. Stepwise refinement of action sys-
tems. Structured Programming, 12:17–30, 1991.

192

Marktoberdorf, August 2004

[6] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A
Systematic Introduction. Springer-Verlag, 1998.

193

Marktoberdorf, August 2004

Related and earlier work

• An earlier version of refinement diagrams has been described in [1].

• The present version is influenced by UML class diagrams. The way
we reason about refinement diagrams is obviously also influenced by
category theory diagrams.

• The new thing here is to use refinement calculus as the underlying logic
for the diagrams, and to use the diagrams to reason about software
architecture and correct refinement.

• The theory described here is intended to support the stepwise feature
introduction methods [2] for constructing layered software, where each
layer introduces only one new feature in the system. We are not in this

194

Marktoberdorf, August 2004

paper going into ways for modelling more complicated software notions
in the refinement calculus, like concurrent and interactive systems, or
object oriented systems.

• Some references are to be found in [4, 5, 3] .

195

Marktoberdorf, August 2004

Recursion rule

Consider first a system with a single recursive component. We assume
that we have a specification S0 of a component, and we want to implement
this with the component (µX · S1[X]). We can use the following induction
principle to reason about properties of a fixed point.
Assume that f is a monotonic function on a lattice, and that we have a
monotonically increasing sequence x0 = ⊥ v x1 v x2 v . . . such that x =
F∞

i=0 xi. Assume further that

xn+1 v f .xn

holds for any n ≥ 0. We then have that

x v µ. f

196

Marktoberdorf, August 2004

This result is the basis for a proof rule for recursive procedures described
in [6].

The proof of this is a rather simple exercise in lattice theory. We first show
that xn v µ. f holds for any n ≥ 0. We prove this by induction. For n = 0,
we have x0 = ⊥ v µ. f . Next, assume that xn v µ. f holds. We then have
that

xn+1 v f .xn v f .(µ. f) = µ. f

From this then follows that
∞

G

n=0

xn v µ. f

on associated with the different structure elements. Typically, we would
associate program code with thas the limit is the least of all fixed points
of the sequence. (Note: for the general case, we need to carry on the
argument to transfinite induction).

197

Marktoberdorf, August 2004

This result would be used in the following way. The sequence x0 = ⊥ v

x1 v x2 v . . . provides better and better approximations of the specification
of the component, such that x =

F∞
n=0 xn is the complete specification of the

component. We prove for an arbitrary approximate specification xn+1, that
xn+1 v f .xn holds. In other words, the specification xn+1 can be replaced by
the body of the component, which calls some specification lower down in
the approximation hierarchy. This means that any sequence of unfoldings
will eventually terminate.

198

