
INCREMENTAL SOFTWARE
CONSTRUCTION WITH REFINEMENT

DIAGRAMS

Ralph-Johan Back
Abo Akademi University

August 21, 2006

Home page: www.abo.fi/~backrj

Research / Current research / Incremental Software Construction



LASER 2006, Elba

Overview of Lectures

1. Incremental software construction

2. Refinement diagrams and diagrammatic reasoning

3. Reasoning about software components

4. Reasoning about software extension

5. Advantages of duplication

6. Software evolution

1



LASER 2006, Elba

Incremental software construction

Software is never ready, it evolves by adapting to a changing environment

• Incremental software construction: build and change the system in small steps

• Correctness is maintained by checking that each increment preserves the correctness
of the system built thus far

• However, adding increments accumulates design errors, which must be corrected by
more or less frequent software redesigns (refactorings)

2



LASER 2006, Elba

Software evolution model

Adding
structure

Environment
needs

parts
Changing

evaluate
software

new
requirements

Software process

3



LASER 2006, Elba

Basic questions

• What is a suitable conceptual model for software and its evolution? F

• What is a suitable software architecture to support evolving software?

• How do we reason about the correctness of evolving software? F

• What kind of software processes support software evolution?

• What kind of software tools do we need to manage software evolution?

4



LASER 2006, Elba

Overview of Lectures

1. Incremental software construction

2. Refinement diagrams and diagrammatic reasoning

3. Reasoning about software components

4. Advantages of duplication

5. Reasoning about software extension

6. Software evolution

5



LASER 2006, Elba

Posets

A partially ordered set (poset) is a set A together with an ordering v that is reflexive,
transitive and antisymmetric.

• av a (reflexivity)

• av b∧bv c⇒ av c (transitivity)

• av b∧bv a⇒ a = b (antisymmetry ) a

b

c

e

f

d

The arrow describes the lattice ordering, e.g., a v b (arrow goes from larger to smaller
element). We refer to is as refinement.

6



LASER 2006, Elba

Transitivity rule (assumption)

If we know that av b and bv c

c

b

a

7



LASER 2006, Elba

Transitivity rule (conclusion)

then we may deduce that av c

c

b

a

8



LASER 2006, Elba

Refinement diagram rules

We capture the partial order properties with the following refinement diagram rules:

a
a b

Reflexivity Transitivity Antisymmetry

c

b

a

9



LASER 2006, Elba

Conventions for refinement diagram rules

• Each diagram describes a universally quantified implication:

– the solid arrows indicate assumed relationships,
– the dashed arrows indicate implied relationships.

• The identifiers stand for arbitrary elements in the lattice.

• We use a double arrow to indicate equality of lattice elements.

10



LASER 2006, Elba

Adding reflexivity and transitivity arrows

a

b

c

e

f

d

11



LASER 2006, Elba

Intended use of refinement diagrams

Refinement diagrams are intended to model software components and their relationships

• the elements are software parts,

• the ordering corresponds to refinement between software parts.

Intuitively, we can think of refinement as permission for replacement: a v b means that
the part a may be replaced by part b in any context.

12



LASER 2006, Elba

Instantiating refinement diagrams

Refinement calculus:

• Statements, procedures with algorithmic refinement

• Abstract data types, classes with data refinemenet and superposition refinement

• Action systems with trace refinement and superposition refinement

Other formalisms:

• CSP with trace refinement, ...

• Statements as relations with inverse implication

• etc.

13



LASER 2006, Elba

Lattices

A poset is a lattice, if any two elements a and b in the lattice have a least upper bound
(or join) atb and a greatest lower bound (or meet) aub .

• av atb and bv atb (join is upper bound)

• av c∧bv c⇒ atbv c (join is least upper bound)

• aubv a and aubv b (meet is lower bound)

• cv a∧ cv b⇒ cv aub (meet is greatest lower bound)

We will in fact assume that all our lattices are complete, i.e., any set of lattice elements
have a meet and a join in the lattice.

14



LASER 2006, Elba

Lattice properties as refinement diagram rules

Join properties:
av atb and bv atb
av c∧bv c⇒ atbv c

a b

c’

c

a meet b

a join b

15



LASER 2006, Elba

Terms and dependencies

• A lattice term is constructed by applying lattice operations to constants and variables
that range over lattice elements.

• We write a lattice term as t[X1, . . . ,Xm] to indicate that it depends on the variables
X1, . . . ,Xm.

• A box in a refinement diagram denotes a lattice term. We show a term as a box with
dependency arrows, each arrow labeled with a lattice variable.

• Example: the term t[t1, t2] is expressed in a refinement diagram as

t1
X2X1

t[X1,X2] t2

• Can also write the term using explicit binding: t[X1,X2][X1 := t1,X2 := t2]

16



LASER 2006, Elba

Refinement ordering and terms

Refinement between terms relate the meaning of terms, not the terms themselves:

s[X1,X2]X1t3

t1
X2X1

t[X1,X2] t2

X2

Here the refinement arrow indicates that

t[t1, t2]v s[t3, t2]

17



LASER 2006, Elba

Monotonicity

A function f : A→ B from poset A to poset B is monotonic, if for any a,a′ ∈ A

avA a′⇒ f (a)vB f (a′)

a

a’

X

X
f(X)

f(X)

18



LASER 2006, Elba

Monotonic terms

• Assume a collection of constants that denote specific lattice elements.

• Assume a collection of monotonic functions (operations) on a given lattice.

• The composition of monotonic functions is also monotonic

• A lattice term is monotonic, if it is built out of constants and monotonic lattice functions.

19



LASER 2006, Elba

Circular dependencies
Dependencies between terms in a diagram may be circular . Need a more elaborate
notion of what a box denotes in such diagrams.

A B

C

s[X] t[Y]

r[X,Y]

X Y

Y

X

• Components A = s[X ], B = t[Y ], and C = r[X ,Y ]

• Bind X to C in s[X ], Y to A in t[Y ], and X to A, Y to B in r[X ,Y ]

20



LASER 2006, Elba

Least fixed point

Circular dependencies are handled using fixed points of functions on lattices.
A monotonic function f : A → A on a complete lattice A always has a unique least fixed
point, denoted µ. f ∈ A . The least fixed point has the following properties:

• f (µ. f ) = µ. f (i.e., µ. f is a fixed point)

• f (a) v a ⇒ µ. f v a (least fixed point in-
duction)

a
X

X
mu.f

f(X)

f(X)

21



LASER 2006, Elba

Environment mapping

Environment E maps part names to their terms, once bindings have been resolved.

A B

C

s[X] t[Y]

r[X,Y]

X Y

Y

X

E(A) = s[C]

E(B) = t[A]

E(C) = r[A,B]

22



LASER 2006, Elba

System as fixpoint of environment mapping

Environment mapping E

E







A
B
C





 =




s[C]
t[A]

r[A,B]




System is least solution to this equation, defined as µE (least fixed point of E).

µE =




s∗

t∗

r∗




Thus (A,B,C) = (s∗, t∗,r∗) gives the meaning of the parts. The meanings are essentially
the infinite unfoldings of the recursive definitions.

23



LASER 2006, Elba

Local refinement gives global refinement

Refining a component will lead to a refinement of the system as a whole. Assume that we
refine r[X ,Y ] to r′[X ,Y ]. Then the meanings of the original system will be refined by the
meanings of the new system.

t[Y]

r[X,Y] r’[X,Y]

Y Y

X X

r[X,Y]

t[Y]

s[X]

Y

X

Y

X

r’[X,Y]

s[X]

X

Y

X

Y

A

B

C C’

A

B

C

A

B

C’

• The empty box stands for an arbitrary term.

24



LASER 2006, Elba

Diagrammatic reasoning

Refinement diagrams provide a visual way of reasoning about lattice elements. The three
main ingredients are:

Refinement diagrams: describe a collection of lattice elements, how they depend on
each other and how they are ordered (described above)

Refinement diagram rules: describe how to add new entities and ordering relations to
a refinement diagram (described above)

Refinement diagram derivations: record the order in which the entities and ordering
relations have been introduced (described next)

25



LASER 2006, Elba

Refinement diagram derivation

1. A refinement diagram derivation is a refinement diagram where the ordering arrows
are numbered by consecutive integers

2. The integers show the order in which the relations have been introduced in the dia-
gram.

3. With each number we associate a proof rule that justifies the introduction of this arrow,
together with a possible side conditions that must hold for this inference to be valid.

4. New entities may only be introduced into the diagram if justified by some proof rule.

5. No entities may ever be removed from the diagram.

6. The proof rules used in the diagram can be textually defined proof rules, or they can
be refinement diagram rules.

26



LASER 2006, Elba

Example

a

b

c

x

x

x

x y

x join y

1.

2.

3.

4.

5.

6.

7.

f(g(x))

f(g(x))

f(g(x))

• Dashed arrows were inferred by inference rules.

27



LASER 2006, Elba

Refinement diagram derivations and Hilbert-like proofs

• There is an equivalent textual presentation of a refinement diagram derivation, in the
form of a Hilbert-like proof in lattice theory.

• In this textual proof, each step is numbered, and is either justified

– as an axiom,
– as an assumption or
– as an inference drawn from some previous steps using an inference rule.

28



LASER 2006, Elba

Example as Hilbert like proof

1. av b (assumption)
2. bv c (assumption)
3. f (g(a))v f (g(b)) (mon. 1)
4. f (g(b))v f (g(c)) (mon.2)
5. f (g(a))v f (g(c)) (trans.3,4)
6. f (g(c))v ct f (g(c)) (lub prop)
7. f (g(a))v ct f (g(c)) (trans. 5,6) a

b

c

x

x

x

x y

x join y

1.

2.

3.

4.

5.

6.

7.

f(g(x))

f(g(x))

f(g(x))

29



LASER 2006, Elba

Software construction in the large and in the small

• Refinement diagrams used for software construction “in the large”

• Justification for each step may require quite a lot of work, and amounts to software
construction “in the small”

• “assumption” or “lemma” as justification in the proof indicate that these steps may
have been established in a different proof framework, and are here taken as lemmas
or assumptions.

30



LASER 2006, Elba

Alternative formalization

• The above formalization assumes that the software parts are always well formed and
internally consistent.

• We can emphasize the construction of a well formed and consistent software part by
introducing a separate judgment for this, e.g., ` S, that states that S is consistent .

• Then the diagrammatic proof and the corresponding Hilbert like proof will have two
kinds of judgements, ` S and ` Sv T

• Paradigm: first construct a consistent part and then check that it satisfies its require-
ments.

31



LASER 2006, Elba

Overview of Lectures

1. Incremental software construction

2. Refinement diagrams and diagrammatic reasoning

3. Reasoning about software components

4. Advantages of duplication

5. Reasoning about software extension

6. Software evolution

32



LASER 2006, Elba

Specifications and implementations

• A specification is a description of a the functional (and sometimes also non-functional)
behavior of a software component. It describes what the component does, but not how
it does it.

• An implementation is a software component that realises the functional behavior de-
scribed by the specification

• Both specifications and implementations are parts

• A specification S is satisfied by an implementation T , if Sv
T

S

T

33



LASER 2006, Elba

Multiple implementations

A specification S0 can be satisfied by more than one implementation,
S0 v S1, S0 v S2, ,S0 v S3

• S0 could be a standard for some component, and
S1,S2, S3 could be different implementations of this
standard which are provided by different vendors.

S1

S0

S3S2

34



LASER 2006, Elba

Multiple interfaces

An implementation can also satisfy more than one specification,
S1 v T , ,S2 v T , ,S3 v T etc.

• Then we often talk about multiple interfaces to the same software component.

• A banking application may provide one in-
terface for the bank customer and another
interface for the bank clerk.

S1 S2 S3

T

35



LASER 2006, Elba

Refining implementations

It is also possible that an implementation T1 is seen as a specification of another imple-
mentation T2, in which case we require T1 v T2.

For instance,

• T2 could be a more efficient implementation of T1,

• T2 could be an adaptation of T1 to a different platform, or

• T2 could be the object code of the source code component T1. T1

T2

T3

Stepwise refinement is based on this idea.

36



LASER 2006, Elba

Refining specifications

It is also possible that we have refinement between specifications, S1 v
S2.

• we add functionality to a specification, or

• we add further detail to the specification. S0

S2

S1

37



LASER 2006, Elba

Specifications and implementations

S1

S0

S2

T1

U1 T2

T0

U2

38



LASER 2006, Elba

Modularity and information hiding

• Specifications allow us to modularize software systems.

• Information hiding: a component knows only the specifications of another components

• The implementation of the used component can then be changed at will, as long as it
still satisfies its original specification.

39



LASER 2006, Elba

Example 1: Constructing systems with specifications

• We have a specification T0 of a part that we want to build

• We want to implement this with a part T1 that uses another part S1

• The implementation must be correct, i.e., T0 v T1[S1] must hold.

T1 S1

T0

40



LASER 2006, Elba

Refinement diagram derivation

S0T1

T0

T1 S1

1.

2.34

• The proof shows that we have used a specification S0 of S1 to make it easier to check
the correctness of the constructed system.

41



LASER 2006, Elba

Animation of this construction, step 0

• Initially only the specification T0

is provided

T0

42



LASER 2006, Elba

Step 1

• We provide the specification of
an auxiliary part S0 and

• an implementation T1[S0] of T0.

• We show that this is a correct im-
plementation.

S0T1

T0

1.

43



LASER 2006, Elba

Step 2

• We then provide an implementa-
tion S1 of S0

• We prove that this implementa-
tion satisfies the specification S0.

S0T1

T0

S1

1.

2.

44



LASER 2006, Elba

Step 3

• We redirect T1 to use the im-
plementation S1 rather than the
specification S0.

• This is a correct refinement of
the previous version of T1 (by
monotonicity).

S0T1

T0

T1 S1

1.

2.3

45



LASER 2006, Elba

Step 4

• We now have a correct imple-
mentation T1[S1] of the original
specification T0(by transitivity).

S0T1

T0

T1 S1

1.

2.34

46



LASER 2006, Elba

Hiding intermediate steps

• The specification S0 and the pre-
vious version of T1 that used S0

are now obsolete,

• so we can hide them

S0T1

T0

T1 S1

47



LASER 2006, Elba

Construction as Hilbert-like proof

We can also express the construction as a proof in lattice theory:

1. T0 v T1[S0] (assumption or lemma)

2. S0 v S1 (assumption or lemma)

3. T1[S0]v T1[S1] (by monotonicity from 2)

4. T0 v T1[S1] (by transitivity from 1,3)

48



LASER 2006, Elba

Example 2: Component reuse

A component satisfies some interfaces (specifications) and depends on some other inter-
faces (specifications)

TU0 S0

T0 T1

49



LASER 2006, Elba

Another component R

T

R

U0 S0

T0 T1

R0 R1

U1

50



LASER 2006, Elba

Use R in T

T

R

U0 S0

1.

T0 T1

U1

R0 R1

51



LASER 2006, Elba

Use monotonicity and transitivity

T

R

T

T

U0 S0

1.2.

3.

4.

T0 T1

R0 R1

U1

52



LASER 2006, Elba

Final result

T

R

T

T

U0 S0

T0 T1

R0 R1

U

53



LASER 2006, Elba

Hide derivation

T RU0

T0 T1

U

54



LASER 2006, Elba

Package into bigger component

U0 R

T

T0 T1

U1

55



LASER 2006, Elba

Example 3: Information hiding / information revealing

• T0 knows (uses) the specification S0

• T0 does not know the implementation S1

of S0 (information hiding)

• We want to refine T0 to a new part T1. T0

S1

S0

56



LASER 2006, Elba

Information hiding in refinement: two scenarios

Should the new part T1 know about the implementation S1 or not? Consider two different
scenarios

T0

S1

S0

1.

Not hiding informationHiding information

T0

S1

S0

1.

57



LASER 2006, Elba

Information hiding in refinement (cont.)

Hiding: Refinement T1 only knows specification S0. We prove that T0[S0]v T1[S0]

Not hiding: Allow T0 to know the implementation S1. By monotonicity, we have T0[S0] v
T0[S1]

T0

S1T0

S0

1.2.

Not hiding informationHiding information

T0

S1T1

S0

1.2.

58



LASER 2006, Elba

Information hiding in refinement (cont.)

Hiding: By monotonicity, we have that T1[S0]v T1[S1]

Not hiding: We prove that T0[S1]v T ′
1[S1] . Now T ′

1 may use information about S1.

T0

S1T0

S0

1.2.

3.

Not hiding informationHiding information

T0

T1

S1T1

S0

1.2.

3.

T1’

59



LASER 2006, Elba

Information hiding in refinement (cont.)

Hiding and not hiding gives similar result. But T1 does not use any information about S1

while T ′
1 may make use of information about S1.

T0

S1

S0

1.

4.

Not hiding informationHiding information

T0

T1

S1

S0

1.

4.

T1’

60



LASER 2006, Elba

Overview of Lectures

1. Incremental software construction

2. Refinement diagrams and diagrammatic reasoning

3. Reasoning about software components

4. Advantages of duplication

5. Reasoning about software extension

6. Software evolution

61



LASER 2006, Elba

Duplication vs redirection

Derivations can seem overly complex, because we are duplicating some entities (T1 in left
figure)

S0T1

T0

T1 S1

1.

2.34

T1

T0

1.

S0

S1

2.3

It would seem more economical to redirect the arrow in the derivation rather than dupli-
cating the whole entity (like in right figure)

62



LASER 2006, Elba

Redirecting arrows

• This figure shows the third step as just a redirection of the solid arrow from T1 to S1.

• Implicitly could state that this redirection is ok, in the sense that all relations that held
before are still valid.

• In particular, this would mean that T1[S1] would still be an implementation of T0

• Advantage: the derivation becomes more compact, the use of duplicates is avoided,
and the layout of the class diagram is unchanged, we just move arrows around.

63



LASER 2006, Elba

Why not to use redirection

• the meaning of a box becomes ambiguous. Consider a user of T1, say U1.

T1

T0

1.

S0

S1

2.3

U1

U0

• A change in T1 (to use S1 rather than S0) will also mean that U1 is changed, from
U1[T1[S0]] to U1[T1[S1]] . But this change is difficult to notice here.

64



LASER 2006, Elba

Duplication is good

• Duplication of terms avoids hidden, uncontrolled and unwanted changes in the soft-
ware system.

• Compare above to the same derivation with duplication:

T0

1.

S0

S1

2.

U0

T1

U1

U1

T1

3

4

5.

6

• New terms are shown explicitly, U1[T1[S0]] and U1[T1[S1]] both occur in the diagram.

65



LASER 2006, Elba

Compacting refinement diagrams

Avoid making inferences unless they are explicitly needed. Example:

T0

1.

S0

S1

2.

4

U0

U1 T1

The refinement of S0 by S1 is shown, but we have not drawn the consequences. Inferred
terms and arrows can be indicated later, if they are needed.

66



LASER 2006, Elba

Combine inference steps

Alternatively, we could combine a number of inference steps into a single step:

T0

1.

S0

S1

2.3

4

U0

T1

U1

U1

T1

Here we only show the desired conclusion, that U1[T1[S0]] is refined by U1[T1[S1]]. In-
termediate transitivity and monotonicity steps are implicit, and are easy to see by arrow
chasing.

67



LASER 2006, Elba

Conclusion on compactness

• Duplication of terms is needed, to avoid ambiguity in the derivations

• But one does not have to draw all the inference arrows and intermediate terms that are
possible, only those that are relevant for the final result.

• The refinement derivation is a proof, so it must be unambiguous and show all the
necessary information

• After the proof is done, then one need only to display the part of the diagram that is
interesting for the present purpose. The rest can be hidden.

68



LASER 2006, Elba

Overview of Lectures

1. Incremental software construction

2. Refinement diagrams and diagrammatic reasoning

3. Reasoning about software components

4. Advantages of duplication

5. Reasoning about software extension

6. Software evolution

69



LASER 2006, Elba

Software increments

Increment an existing system by either

• adding a new component , (described above), or

• adding a new extension, increasing the functionality of an existing component (de-
scribed below).

• components and extensions are both parts in the system

70



LASER 2006, Elba

Extension

• Let S be some part, and let T [base] be another part that extends S. The parameter
base indicates the use of S in T .

• We write S / T [base] for the component that we get by extending component S by
component T [base], i.e. S /T [base] = T [S]

• We will require from an extension that S v T [S] holds, i.e., the extension should pre-
serve the functionality of the original component (superposition refinement).

• Example: an extension class may add new attribute and methods, but behavior of old
methods on old attributes must remain the same.

71



LASER 2006, Elba

Extension in refinement diagrams

We introduce a special arrow for superposition refinement.

==
base

S S

T[base] T[base]

Note that S and T may dependend on other parts in the environment.

72



LASER 2006, Elba

Example 4: Adding new functionality to a system

• We have built a basic system, consisting of a collection of parts (e.g., classes) that use
each other. This system provides some basic functionality.

• Next, we want to extend the functionality of the system with some new features

• Often, it is not sufficient to just extend a single part, the new functionality may require
that a number of components are extended simultaneously

• Essentially, we want to build a new layer of functionality on top of the basic system
layer, where the new layer provides the added functionality.

73



LASER 2006, Elba

Example application:Teenage girl diary

74



LASER 2006, Elba

Layered structure

75



LASER 2006, Elba

Initial layer

• Start with a system consisting of T0[X ]
and S0

• X is bound to S0.
T0[X] S0

X

76



LASER 2006, Elba

Extend used component

• Introduce a part S1 that extends S0
T0[X]

S1[base]

S0

base

X

77



LASER 2006, Elba

Extend using component

• Then introduce a new part T1 that uses
the extension S1 and extends T0

T0[X]

T1[base,X] S1[base]

S0

base

X

X

base

78



LASER 2006, Elba

Static and layered binding

• The meaning of the parts are determined here by carrying out the substitutions ac-
cording to the bindings

• We get static binding if we bind X and base at the same time (extension and usage
bound at the same time).

• We get layered binding (dynamic binding?) if we first bind base and then bind X (ex-
tension bound before usage).

79



LASER 2006, Elba

Static binding

• T0[X ][X := S0] = T0[S0]

• S1[base][base := S0] = S1[S0]

• T1[base,X ][base := T0[S0],X := S1[S0]] = T1[T0[S0],S1[S0]]

T0[X]

T1[base,X] S1[base]

S0

base

X

X

base

S0T0[S0]

S1[S0]T1[T0[S0],S1[S0]]

80



LASER 2006, Elba

Layered binding

• S1[base][base := S0] = S1[S0]

• T1[base,X ][base := T0[X ]] = T1[T0[X ],X ]
T0[X]

T1[base,X] S1[base]

S0

base

X

X

base

S0
X

X

T0[X]

S1[S0]T1[T0[X],X]

S0

S1[S0]

T0[S0]

T1[T0[S1[S0]],S1[S0]]

81



LASER 2006, Elba

Layers

• Layered binding gives here a layered structure, where a layer is a collection of exten-
sions that are to be used together.

• A reference to a part at a lower level of extension is taken to refer the extension in the
current layer (i.e., all calls are bound to extensions in the current layer).

• We will use the extension symbol (white arrowhead) when we want to have layered
binding

• We indicate a layer with a dashed outline in the diagram.

82



LASER 2006, Elba

Two layers

S0T0[X]

S1[base]T1[base,X] X

X

fist layer

second layer

83



LASER 2006, Elba

Two systems

T0[X] S0X

T1[base.X] S1[base]
X

S0T0[X]

base

X

base

first layer second layer

84



LASER 2006, Elba

Overview of Lectures

1. Incremental software construction

2. Refinement diagrams and diagrammatic reasoning

3. Reasoning about software components

4. Advantages of duplication

5. Reasoning about software extension

6. Software evolution

85



LASER 2006, Elba

Software evolution

• A refinement diagram proof models the evolution of software over time

• Each new addition to the diagram increases the (logical) time counter by one.

• The fact that the time steps correspond to proof steps help maintain consistency of the
construction:

– we cannot refer to a part that has not been constructed yet or to a relation that has
not yet been established

• The construction of the software system can be played back like a movie, showing how
each step adds to the construction.

86



LASER 2006, Elba

No deletions in refinement diagrams

• We are only permitted to add elements to the diagram; we do not permit any elements
to be removed from a refinement diagram.

• Removing elements may make the corresponding Hilbert proof inconsistent

• Over time the diagram will be filled with elements that are not needed anymore.

– stepping stones in the derivation that have served their purpose, or
– alternative approaches that we have abandoned

87



LASER 2006, Elba

Keeping (but hiding) the history

• The diagram shows the historic development

• The parts which are not relevant for our present purposes may be hidden, but not
removed– they may be needed later.

• A step in the derivation that we ignore may have to be revisited later,

– if we find an error in the proof,
– or if we are considering an alternative development that could be based on this

version.

• Keeping the trail of the software development may be useful for auditing purposes, for
certification purposes, or for backup purposes.

88



LASER 2006, Elba

Redesign of the system

• In practice, it is often necessary and desirable to redesign the system, i.e., change the
software architecture without necessarily changing the functionality of the system.

• Redesign is also done by adding new elements to the diagram.

• The now obsolete elements (describing the earlier design) are not removed. They
remain in the diagram, but are on paths that will be ignored in later construction phases.

89



LASER 2006, Elba

Example redesign

T10 S10

S11T11

T10

T11

1.

2.3.
4.

6.
7.

8.

T00

S01

S00

11.

12.13.

10. 5.

Layer 0

Layer 1

S21

14.

T10 15.

T11

16

17

T01

90



LASER 2006, Elba

Refinement diagram editor

• Many of the operations described above become rather cumbersome if done by hand

• In particular, need support for selective showing and hiding of sections of the refine-
ment diagram.

• A refinement diagram editor provides an environment for building and manipulating
refinement diagrams

• Can also work as a code base, proof environment, testing environment, documentation
environment, version control system

• Presently working on a 3-d refinement diagram editor, Socos (Software Construction
Site).

91



LASER 2006, Elba

Thank you!

92


