# INCREMENTAL SOFTWARE CONSTRUCTION WITH REFINEMENT DIAGRAMS

Ralph-Johan Back Abo Akademi University

August 21, 2006

Home page: www.abo.fi/~backrj

Research / Current research / Incremental Software Construction



# **Overview of Lectures**

- 1. Incremental software construction
- 2. Refinement diagrams and diagrammatic reasoning
- 3. Reasoning about software components
- 4. Reasoning about software extension
- 5. Advantages of duplication
- 6. Software evolution



#### **Incremental software construction**

Software is never ready, it *evolves* by *adapting* to a changing environment

- Incremental software construction: build and change the system in small steps
- *Correctness* is maintained by checking that each increment preserves the correctness of the system built thus far
- However, adding increments accumulates *design errors*, which must be corrected by more or less frequent software *redesigns (refactorings)*



# Software evolution model





#### **Basic questions**

- What is a suitable *conceptual model* for software and its evolution?  $\bigstar$
- What is a suitable *software architecture* to support evolving software?
- How do we *reason* about the *correctness* of evolving software?  $\bigstar$
- What kind of *software processes* support software evolution?
- What kind of *software tools* do we need to manage software evolution?



# **Overview of Lectures**

- 1. Incremental software construction
- 2. Refinement diagrams and diagrammatic reasoning
- 3. Reasoning about software components
- 4. Advantages of duplication
- 5. Reasoning about software extension
- 6. Software evolution



#### Posets

A *partially ordered set* (*poset*) is a set A together with an ordering  $\sqsubseteq$  that is *reflexive*, *transitive* and *antisymmetric*.



- $a \sqsubseteq a$  (reflexivity)
- $a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c$  (transitivity)
- $a \sqsubseteq b \land b \sqsubseteq a \Rightarrow a = b$  (antisymmetry)

The arrow describes the lattice ordering, e.g.,  $a \sqsubseteq b$  (arrow goes from larger to smaller element). We refer to is as refinement.



# **Transitivity rule (assumption)**



If we know that  $a \sqsubseteq b$  and  $b \sqsubseteq c$ 



# **Transitivity rule (conclusion)**



then we may deduce that  $a \sqsubseteq c$ 



# **Refinement diagram rules**

We capture the partial order properties with the following *refinement diagram rules*:





# **Conventions for refinement diagram rules**

- Each diagram describes a universally quantified implication:
  - the solid arrows indicate *assumed* relationships,
  - the dashed arrows indicate *implied* relationships.
- The identifiers stand for arbitrary elements in the lattice.
- We use a double arrow to indicate equality of lattice elements.



# Adding reflexivity and transitivity arrows





# Intended use of refinement diagrams

Refinement diagrams are intended to model software components and their relationships

- the elements are *software parts*,
- the ordering corresponds to *refinement* between software parts.

Intuitively, we can think of refinement as permission for replacement:  $a \sqsubseteq b$  means that the part *a* may be replaced by part *b* in any context.



# **Instantiating refinement diagrams**

#### Refinement calculus:

- Statements, procedures with algorithmic refinement
- Abstract data types, classes with data refinemenet and superposition refinement
- Action systems with trace refinement and superposition refinement

#### Other formalisms:

- CSP with trace refinement, ...
- Statements as relations with inverse implication
- etc.



#### Lattices

A poset is a *lattice*, if any two elements a and b in the lattice have a *least upper bound* (or *join*)  $a \sqcup b$  and a *greatest lower bound* (or *meet*)  $a \sqcap b$ .

- $a \sqsubseteq a \sqcup b$  and  $b \sqsubseteq a \sqcup b$  (join is upper bound)
- $a \sqsubseteq c \land b \sqsubseteq c \Rightarrow a \sqcup b \sqsubseteq c$  (join is least upper bound)
- $a \sqcap b \sqsubseteq a$  and  $a \sqcap b \sqsubseteq b$  (meet is lower bound)
- $c \sqsubseteq a \land c \sqsubseteq b \Rightarrow c \sqsubseteq a \sqcap b$  (meet is greatest lower bound)

We will in fact assume that all our lattices are complete, i.e., any set of lattice elements have a meet and a join in the lattice.



#### Lattice properties as refinement diagram rules



Join properties:  $a \sqsubseteq a \sqcup b$  and  $b \sqsubseteq a \sqcup b$  $a \sqsubseteq c \land b \sqsubseteq c \Rightarrow a \sqcup b \sqsubseteq c$ 



# **Terms and dependencies**

- A *lattice term* is constructed by applying lattice operations to constants and variables that range over lattice elements.
- We write a lattice term as  $t[X_1, \ldots, X_m]$  to indicate that it depends on the variables  $X_1, \ldots, X_m$ .
- A box in a refinement diagram denotes a lattice term. We show a term as a box with dependency arrows, each arrow labeled with a lattice variable.
- Example: the term  $t[t_1, t_2]$  is expressed in a refinement diagram as

$$t1 < X1 \qquad t[X1,X2] \qquad X2 \qquad t2$$

• Can also write the term using explicit binding:  $t[X_1, X_2][X_1 := t_1, X_2 := t_2]$ 



#### **Refinement ordering and terms**

Refinement between terms relate the meaning of terms, not the terms themselves:



Here the refinement arrow indicates that

 $t[t_1, t_2] \sqsubseteq s[t_3, t_2]$ 



#### **Monotonicity**

A function  $f : A \to B$  from poset A to poset B is *monotonic*, if for any  $a, a' \in A$ 

$$a \sqsubseteq_A a' \Rightarrow f(a) \sqsubseteq_B f(a')$$





#### **Monotonic terms**

- Assume a collection of *constants* that denote specific lattice elements.
- Assume a collection of monotonic functions (*operations*) on a given lattice.
- The composition of monotonic functions is also monotonic
- A lattice term is *monotonic*, if it is built out of constants and monotonic lattice functions.



#### **Circular dependencies**

Dependencies between terms in a diagram may be *circular*. Need a more elaborate notion of what a box denotes in such diagrams.



- Components A = s[X], B = t[Y], and C = r[X, Y]
- Bind X to C in s[X], Y to A in t[Y], and X to A, Y to B in r[X,Y]



#### Least fixed point

Circular dependencies are handled using *fixed points* of functions on lattices.

A monotonic function  $f : A \to A$  on a complete lattice A always has a unique *least fixed point*, denoted  $\mu f \in A$ . The least fixed point has the following properties:

- $\mu.f \text{ is a fixed point}$   $a \text{ (least fixed point in-} \qquad \qquad X \text{ mu.f} \qquad \qquad X \text{ f(X)}$
- $f(\mu.f) = \mu.f$  (i.e.,  $\mu.f$  is a fixed point)
- $f(a) \sqsubseteq a \Rightarrow \mu.f \sqsubseteq a$  (least fixed point induction)



#### **Environment mapping**

Environment *E* maps part names to their terms, once bindings have been resolved.



$$E(A) = s[C]$$
$$E(B) = t[A]$$
$$E(C) = r[A,B]$$



# System as fixpoint of environment mapping

Environment mapping *E* 

$$E\left(\left[\begin{array}{c}A\\B\\C\end{array}\right]\right) = \left[\begin{array}{c}s[C]\\t[A]\\r[A,B]\end{array}\right]$$

System is least solution to this equation, defined as  $\mu E$  (least fixed point of *E*).

$$\mu E = \left[ egin{array}{c} s^{*} \ t^{*} \ r^{*} \end{array} 
ight]$$

Thus  $(A, B, C) = (s^*, t^*, r^*)$  gives the meaning of the parts. The meanings are essentially the infinite unfoldings of the recursive definitions.



# Local refinement gives global refinement

Refining a component will lead to a refinement of the system as a whole. Assume that we refine r[X,Y] to r'[X,Y]. Then the meanings of the original system will be refined by the meanings of the new system.



• The empty box stands for an arbitrary term.



# **Diagrammatic reasoning**

Refinement diagrams provide a visual way of reasoning about lattice elements. The three main ingredients are:

- **Refinement diagrams:** describe a collection of lattice elements, how they depend on each other and how they are ordered (described above)
- **Refinement diagram rules:** describe how to add new entities and ordering relations to a refinement diagram (described above)

**Refinement diagram derivations:** record the order in which the entities and ordering relations have been introduced (described next)



# **Refinement diagram derivation**

- 1. A refinement diagram derivation is a refinement diagram where the ordering arrows are numbered by consecutive integers
- 2. The integers show the order in which the relations have been introduced in the diagram.
- 3. With each number we associate a proof rule that justifies the introduction of this arrow, together with a possible side conditions that must hold for this inference to be valid.
- 4. New entities may only be introduced into the diagram if justified by some proof rule.
- 5. No entities may ever be removed from the diagram.
- 6. The proof rules used in the diagram can be textually defined proof rules, or they can be refinement diagram rules.



# Example



• Dashed arrows were inferred by inference rules.



# **Refinement diagram derivations and Hilbert-like proofs**

- There is an equivalent textual presentation of a refinement diagram derivation, in the form of a Hilbert-like proof in lattice theory.
- In this textual proof, each step is numbered, and is either justified
  - as an axiom,
  - as an assumption or
  - as an inference drawn from some previous steps using an inference rule.



#### **Example as Hilbert like proof**

Х У, Х С 1.  $a \sqsubseteq b$  (assumption) 2 2.  $b \sqsubseteq c$  (assumption) 3.  $f(g(a)) \sqsubseteq f(g(b))$  (mon. 1) Х b 4.  $f(g(b)) \sqsubseteq f(g(c))$  (mon.2) 5.  $f(g(a)) \sqsubseteq f(g(c))$  (trans.3,4) 6.  $f(g(c)) \sqsubseteq c \sqcup f(g(c))$  (lub prop) Х  $\leftarrow$ а 7.  $f(g(a)) \sqsubseteq c \sqcup f(g(c))$  (trans. 5,6)





# Software construction in the large and in the small

- Refinement diagrams used for software construction "in the large"
- Justification for each step may require quite a lot of work, and amounts to software construction "in the small"
- "assumption" or "lemma" as justification in the proof indicate that these steps may have been established in a different proof framework, and are here taken as lemmas or assumptions.



# **Alternative formalization**

- The above formalization assumes that the software parts are always well formed and internally consistent.
- We can emphasize the construction of a well formed and consistent software part by introducing a separate judgment for this, e.g., ⊢ *S*, that states that *S* is consistent.
- Then the diagrammatic proof and the corresponding Hilbert like proof will have two kinds of judgements, ⊢ S and ⊢ S ⊑ T
- Paradigm: first *construct* a consistent part and then *check* that it satisfies its requirements.



# **Overview of Lectures**

- 1. Incremental software construction
- 2. Refinement diagrams and diagrammatic reasoning
- 3. Reasoning about software components
- 4. Advantages of duplication
- 5. Reasoning about software extension
- 6. Software evolution



# **Specifications and implementations**

- A *specification* is a description of a the functional (and sometimes also non-functional) behavior of a software component. It describes *what* the component does, but not *how* it does it.
- An *implementation* is a software component that realises the functional behavior described by the specification
- Both specifications and implementations are parts

• A specification S is satisfied by an implementation T, if  $S \sqsubseteq T$ 





### **Multiple implementations**

A specification  $S_0$  can be satisfied by more than one implementation,  $S_0 \sqsubseteq S_1, S_0 \sqsubseteq S_2, S_0 \sqsubseteq S_3$ 

•  $S_0$  could be a *standard* for some component, and  $S_1, S_2, S_3$  could be different implementations of this standard which are provided by different vendors.





#### **Multiple interfaces**

An implementation can also satisfy more than one specification,  $S_1 \sqsubseteq T$ ,  $S_2 \sqsubseteq T$ ,  $S_3 \sqsubseteq T$  etc.

• Then we often talk about multiple *interfaces* to the same software component.

• A banking application may provide one interface for the bank customer and another interface for the bank clerk.




## **Refining implementations**

It is also possible that an implementation  $T_1$  is seen as a specification of another implementation  $T_2$ , in which case we require  $T_1 \sqsubseteq T_2$ .

For instance,

- $T_2$  could be a more efficient implementation of  $T_1$ ,
- $T_2$  could be an adaptation of  $T_1$  to a different platform, or
- $T_2$  could be the object code of the source code component  $T_1$ . **Stepwise refinement** is based on this idea.





## **Refining specifications**

It is also possible that we have refinement between specifications,  $S_1 \sqsubseteq S_2$ .

- we add functionality to a specification, or
- we add further detail to the specification.





## **Specifications and implementations**





# **Modularity and information hiding**

- Specifications allow us to *modularize* software systems.
- Information hiding: a component knows only the specifications of another components
- The implementation of the used component can then be changed at will, as long as it still satisfies its original specification.



### **Example 1: Constructing systems with specifications**

- We have a specification  $T_0$  of a part that we want to build
- We want to implement this with a part  $T_1$  that uses another part  $S_1$
- The implementation must be correct, i.e.,  $T_0 \sqsubseteq T_1[S_1]$  must hold.





#### **Refinement diagram derivation**



• The proof shows that we have used a specification  $S_0$  of  $S_1$  to make it easier to check the correctness of the constructed system.



# Animation of this construction, step 0



• Initially only the specification *T*<sub>0</sub> is provided



- We provide the specification of an auxiliary part  $S_0$  and
- an implementation  $T_1[S_0]$  of  $T_0$ .
- We show that this is a correct implementation.





- S1 2. 50 1. T0
- We then provide an implementation *S*<sub>1</sub> of *S*<sub>0</sub>
- We prove that this implementation satisfies the specification  $S_0$ .



- We redirect  $T_1$  to use the implementation  $S_1$  rather than the specification  $S_0$ .
- This is a correct refinement of the previous version of  $T_1$  (by monotonicity).







• We now have a correct implementation  $T_1[S_1]$  of the original specification  $T_0$ (by transitivity).



## **Hiding intermediate steps**

- T1 S1 S1 T1 S0 T1 S0 T1 T0
- The specification  $S_0$  and the previous version of  $T_1$  that used  $S_0$ are now obsolete,
- so we can hide them



### **Construction as Hilbert-like proof**

We can also express the construction as a proof in lattice theory:

- 1.  $T_0 \sqsubseteq T_1[S_0]$  (assumption or lemma)
- 2.  $S_0 \sqsubseteq S_1$  (assumption or lemma)
- 3.  $T_1[S_0] \sqsubseteq T_1[S_1]$  (by monotonicity from 2)
- 4.  $T_0 \sqsubseteq T_1[S_1]$  (by transitivity from 1,3)



### **Example 2: Component reuse**

A component satisfies some interfaces (specifications) and depends on some other interfaces (specifications)





## **Another component** *R*







# Use R in T





## **Use monotonicity and transitivity**





## **Final result**





### **Hide derivation**





# Package into bigger component





# **Example 3: Information hiding / information revealing**

- $T_0$  knows (uses) the specification  $S_0$
- *T*<sup>0</sup> does not know the implementation *S*<sup>1</sup> of *S*<sup>0</sup> (i*nformation hiding*)
- We want to refine  $T_0$  to a new part  $T_1$ .





#### Information hiding in refinement: two scenarios

Should the new part  $T_1$  know about the implementation  $S_1$  or not? Consider two different scenarios





### **Information hiding in refinement (cont.)**

**Hiding:** Refinement  $T_1$  only knows specification  $S_0$ . We prove that  $T_0[S_0] \sqsubseteq T_1[S_0]$ 

**Not hiding:** Allow  $T_0$  to know the implementation  $S_1$ . By monotonicity, we have  $T_0[S_0] \sqsubseteq T_0[S_1]$ 





## Information hiding in refinement (cont.)

**Hiding:** By monotonicity, we have that  $T_1[S_0] \sqsubseteq T_1[S_1]$ 

**Not hiding:** We prove that  $T_0[S_1] \sqsubseteq T'_1[S_1]$ . Now  $T'_1$  may use information about  $S_1$ .



**Hiding information** 

Not hiding information



### Information hiding in refinement (cont.)

Hiding and not hiding gives similar result. But  $T_1$  does not use any information about  $S_1$  while  $T'_1$  may make use of information about  $S_1$ .



**Hiding information** 

Not hiding information



## **Overview of Lectures**

- 1. Incremental software construction
- 2. Refinement diagrams and diagrammatic reasoning
- 3. Reasoning about software components
- 4. Advantages of duplication
- 5. Reasoning about software extension
- 6. Software evolution



### **Duplication vs redirection**

Derivations can seem overly complex, because we are duplicating some entities ( $T_1$  in left figure)



It would seem more economical to redirect the arrow in the derivation rather than duplicating the whole entity (like in right figure)



## **Redirecting arrows**

- This figure shows the third step as just a redirection of the solid arrow from  $T_1$  to  $S_1$ .
- Implicitly could state that this redirection is ok, in the sense that all relations that held before are still valid.
- In particular, this would mean that  $T_1[S_1]$  would still be an implementation of  $T_0$
- Advantage: the derivation becomes more compact, the use of duplicates is avoided, and the layout of the class diagram is unchanged, we just move arrows around.



#### Why not to use redirection

• the meaning of a box becomes ambiguous. Consider a user of  $T_1$ , say  $U_1$ .



• A change in  $T_1$  (to use  $S_1$  rather than  $S_0$ ) will also mean that  $U_1$  is changed, from  $U_1[T_1[S_0]]$  to  $U_1[T_1[S_1]]$ . But this change is difficult to notice here.



## **Duplication is good**

- Duplication of terms avoids hidden, uncontrolled and unwanted changes in the software system.
- Compare above to the same derivation with duplication:



• New terms are shown explicitly,  $U_1[T_1[S_0]]$  and  $U_1[T_1[S_1]]$  both occur in the diagram.



### **Compacting refinement diagrams**

Avoid making inferences unless they are explicitly needed. Example:



The refinement of  $S_0$  by  $S_1$  is shown, but we have not drawn the consequences. Inferred terms and arrows can be indicated later, if they are needed.



### **Combine inference steps**



Alternatively, we could combine a number of inference steps into a single step:

Here we only show the desired conclusion, that  $U_1[T_1[S_0]]$  is refined by  $U_1[T_1[S_1]]$ . Intermediate transitivity and monotonicity steps are implicit, and are easy to see by arrow chasing.



## **Conclusion on compactness**

- Duplication of terms is needed, to avoid ambiguity in the derivations
- But one does not have to draw all the inference arrows and intermediate terms that are possible, only those that are relevant for the final result.
- The refinement derivation is a proof, so it must be unambiguous and show all the necessary information
- After the proof is done, then one need only to display the part of the diagram that is interesting for the present purpose. The rest can be hidden.



## **Overview of Lectures**

- 1. Incremental software construction
- 2. Refinement diagrams and diagrammatic reasoning
- 3. Reasoning about software components
- 4. Advantages of duplication
- 5. Reasoning about software extension
- 6. Software evolution



### **Software increments**

Increment an existing system by either

- adding a new *component*, (described above), or
- adding a new *extension*, increasing the functionality of an existing component (described below).
- components and extensions are both parts in the system



### Extension

- Let *S* be some part, and let *T*[*base*] be another part that extends *S*. The parameter *base* indicates the use of *S* in *T*.
- We write S ⊲ T[base] for the component that we get by *extending* component S by component T[base], i.e. S ⊲ T[base] = T[S]
- We will require from an extension that  $S \sqsubseteq T[S]$  holds, i.e., the extension should preserve the functionality of the original component (*superposition refinement*).
- Example: an extension class may add new attribute and methods, but behavior of old methods on old attributes must remain the same.


### **Extension in refinement diagrams**

We introduce a special arrow for superposition refinement.



Note that *S* and *T* may dependend on other parts in the environment.



#### **Example 4: Adding new functionality to a system**

- We have built a basic system, consisting of a collection of parts (e.g., classes) that use each other. This system provides some basic functionality.
- Next, we want to extend the functionality of the system with some new features
- Often, it is not sufficient to just extend a single part, the new functionality may require that a number of components are extended simultaneously
- Essentially, we want to build a new *layer* of functionality on top of the basic system layer, where the new layer provides the added functionality.



### **Example application: Teenage girl diary**

| 🗃 Teenage Girl Diary |                |               |             |          |              |               |                                      |
|----------------------|----------------|---------------|-------------|----------|--------------|---------------|--------------------------------------|
| nage                 |                |               |             |          |              |               |                                      |
| /eek 12              | Mon 23         | Tue 24        | Wed 25      | Thu      | 26 Fri 27    | Sat 28        |                                      |
| - 9                  |                |               | 0.00        | 1 10     | N MAN        |               | Nextmark                             |
| - 10                 | Biology        | Î             | 2223        | T        | Cooking      | 1012          | Next week                            |
| 0 - 11               | Biology        |               | 1994        | 1        | Cooking      | 100           | r                                    |
| 1 - 12               | English        | Math          | Geography   |          | 10ml b. 111  | A             | Last week                            |
| 2 - 13               | English        | Math          | Geography   | Swe dish | 8 Y 1        | Sun 29        |                                      |
| 3 - 14               |                | Symnastics    | 1 Salaris   | Bwedish  |              | NE SERVIC     |                                      |
| 4 - 15               |                | Gymnastics    | CI SI MAR   | 181      |              | T             | Clear week                           |
| 5 - 16               |                |               | VAT ANTA    | 1321     | H N          |               | 1                                    |
|                      |                | Riding        | 100000      | 14       | Jen's parte  |               | Viewterm                             |
| 2.0                  |                |               | a sal se    | A        |              |               |                                      |
| Tee                  | nage Girl Diar |               |             |          |              |               |                                      |
| 3100                 | lage all blai  | y             |             |          |              |               |                                      |
| /eek2                | Mon 12         | Tue 13        | Wed 14      | Thu      | 15 Fri 16    |               |                                      |
| - 9                  |                |               |             |          |              | Sat 17        | Next week                            |
| - 10                 | Biology        |               |             |          | Gooking      | Party.        |                                      |
| 0 - 11               | Biology        |               |             |          | Cooking      |               | -                                    |
| 1 - 12               | English        | Mathematics   | Geographics |          |              |               | Last week                            |
| 2 - 13               | English        | Mathematics   | Geographics |          |              |               |                                      |
| 3 - 14               | ſ              | Gymnastics    |             | Swedish  |              |               |                                      |
| 4 - 15               | ſ              | Gymnastics    |             | Bwedish  |              | Sun 18        | Clear week                           |
| 5 - 16               | 1              |               |             |          |              | More party.   | -                                    |
|                      |                | Riding.       |             |          | Cider drinki | ng.           | 10                                   |
|                      |                |               |             |          | Disco.       |               | viewterm                             |
|                      |                |               |             |          |              |               | -                                    |
| -                    |                |               |             |          |              | /             |                                      |
| lk                   |                |               |             | 10 VA    |              |               |                                      |
| eek 49               | Monday         | Tuesda        | / We        | dnesday  | Thursday     | Friday        | _                                    |
| 8-9                  | Math           | English       |             |          |              |               | Saturday                             |
| 9 · 10               | Math           | Finnish       | Drawing     | Math     | Math         | E.S.          | Katarina's birthday.<br>Skiing 20 km |
| 0.11                 | History        | Finnish       | Drawing     |          | Physics      | E.S.          |                                      |
| 1 • 12               | Gym            | Biology       |             |          | Physics      | Biology       | _                                    |
| 2-13                 |                | [English      |             |          | Geography    | Swedish       | - Sundav                             |
| 3-14                 |                |               |             |          |              |               | -                                    |
| 4 · 15               |                | <u> </u>      |             |          |              | _             | -                                    |
| 5 - 16               |                |               |             | 01       |              |               | _                                    |
|                      | skiing, 15 km. | Skiing 10 km. | Running 1   | U KM.    | Hest.        | Buy six-pack. |                                      |



#### **Layered structure**





## **Initial layer**

- Start with a system consisting of  $T_0[X]$  and  $S_0$
- X is bound to  $S_0$ .





# **Extend used component**



• Introduce a part  $S_1$  that extends  $S_0$ 



## **Extend using component**



• Then introduce a new part  $T_1$  that uses the extension  $S_1$  and extends  $T_0$ 



## Static and layered binding

- The meaning of the parts are determined here by carrying out the substitutions according to the bindings
- We get *static binding* if we bind *X* and *base* at the same time (extension and usage bound at the same time).
- We get *layered binding* (dynamic binding?) if we first bind *base* and then bind X (extension bound before usage).



#### **Static binding**

- $T_0[X][X := S_0] = T_0[S_0]$
- $S_1[base][base := S_0] = S_1[S_0]$
- $T_1[base, X][base := T_0[S_0], X := S_1[S_0]] = T_1[T_0[S_0], S_1[S_0]]$





### Layered binding





## Layers

- Layered binding gives here a layered structure, where a *layer* is a collection of extensions that are to be used together.
- A reference to a part at a lower level of extension is taken to refer the extension in the current layer (i.e., all calls are bound to extensions in the current layer).
- We will use the extension symbol (white arrowhead) when we want to have layered binding
- We indicate a layer with a dashed outline in the diagram.



## **Two layers**





## **Two systems**





## **Overview of Lectures**

- 1. Incremental software construction
- 2. Refinement diagrams and diagrammatic reasoning
- 3. Reasoning about software components
- 4. Advantages of duplication
- 5. Reasoning about software extension
- 6. Software evolution



### **Software evolution**

- A refinement diagram proof models the evolution of software over time
- Each new addition to the diagram increases the (logical) time counter by one.
- The fact that the time steps correspond to proof steps help maintain consistency of the construction:
  - we cannot refer to a part that has not been constructed yet or to a relation that has not yet been established
- The construction of the software system can be played back like a movie, showing how each step adds to the construction.



## No deletions in refinement diagrams

- We are only permitted to add elements to the diagram; we do not permit any elements to be removed from a refinement diagram.
- Removing elements may make the corresponding Hilbert proof inconsistent
- Over time the diagram will be filled with elements that are not needed anymore.
  - stepping stones in the derivation that have served their purpose, or
  - alternative approaches that we have abandoned



# Keeping (but hiding) the history

- The diagram shows the historic development
- The parts which are not relevant for our present purposes may be hidden, but not removed—they may be needed later.
- A step in the derivation that we ignore may have to be revisited later,
  - if we find an error in the proof,
  - or if we are considering an alternative development that could be based on this version.
- Keeping the trail of the software development may be useful for auditing purposes, for certification purposes, or for backup purposes.



### **Redesign of the system**

- In practice, it is often necessary and desirable to *redesign* the system, i.e., change the software architecture without necessarily changing the functionality of the system.
- Redesign is also done by adding new elements to the diagram.
- The now obsolete elements (describing the earlier design) are not removed. They remain in the diagram, but are on paths that will be ignored in later construction phases.





## **Example redesign**



## **Refinement diagram editor**

- Many of the operations described above become rather cumbersome if done by hand
- In particular, need support for selective showing and hiding of sections of the refinement diagram.
- A refinement diagram editor provides an environment for building and manipulating refinement diagrams
- Can also work as a code base, proof environment, testing environment, documentation environment, version control system
- Presently working on a 3-d refinement diagram editor, Socos (Software Construction Site).



LASER 2006, Elba

## Thank you!

